Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Ruzza, Valentina (2017) Data assimilation techniques for leakage detection in water distribution systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1298Kb

Abstract (inglese)

Leakage in pressurized water distribution systems is a major issue for water utilities today, because of the huge concerns over public health risks and the economic constraints on energy and resources. This thesis investigates innovative techniques for the detection of leakages in water distribution systems, relying on the calibration of network hydraulic models. The main goal is to suggest a method to reduce the costs of the field surveys currently required from the leakage detection activity on real systems.
An inverse model, based on the coupling between Kalman Filter based data assimilation techniques and network hydraulic models, is proposed and critically analyzed. The model is based on the knowledge of pressure heads, pipe flow rates and volume measurements, which can be easily obtained in any network with a limited effort and no technical troubles, with exception of the flow rate measurements.
The present work investigates different aspects of the proposed coupled model, related to the data assimilation technique used (Ensemble Kalman Filter or Ensemble Smoother), the type of hydraulic analysis developed (demand driven analysis through standard EpaNET or pressure driven analysis), the type of model parameters to be calibrated (the nodal leakage flow rates or the EpaNET emitter coefficients responsible for the nodal leakage flow rates), besides distinctions on the type of assimilated data and on the number and locations of available measurements.
Despite the fact that the success of the proposed technique depends on the specific features and topological structure of the network analyzed, this coupled model applied to synthetic water distribution systems proves to be effective for leakage detection and could be a competitive solution compared to the traditionally used district metering procedures in real world cases.

Abstract (italiano)

La gestione delle perdite nelle condotte in pressione è una delle più importanti problematiche nei sistemi di distribuzione, per le preoccupazioni riguardo il rischio per la salute pubblica e per i vincoli economici su energia e risorse. Questa tesi intende analizzare tecniche innovative per l'individuazione delle perdite nei sistemi di distribuzione, basandosi sulla calibrazione dei modelli idraulici delle reti. Lo scopo principale è suggerire un metodo per ridurre i costi delle indagini di campo attualmente richieste dall'attività di ricerca perdite su reti reali.
Un modello inverso, basato sull'accoppiamento tra tecniche di assimilazione dati basate sul filtro di Kalman e i modelli idraulici delle reti, è proposto ed analizzato criticamente. Il modello si basa sulla conoscenza di misure di pressione, portata e volume, le quali possono essere facilmente ottenute in ogni rete a costi contenuti e senza problemi tecnici, ad eccezione delle misure di portata.
Il presente lavoro analizza differenti aspetti del modello accoppiato proposto, relativamente alla tecnica utilizzata per l'assimilazione dati (Ensemble Kalman Filter o Ensemble Smoother), al tipo di analisi idraulica sviluppata (demand driven attraverso la versione standard di EpaNET o pressure driven), il tipo di parametri da calibrare (le portate di perdita ai nodi oppure i coefficienti di emitter responsabili della perdita ai nodi), oltre che alla distinzione sul tipo di dati assimilati e sul numero e sulle posizioni di misura a disposizione.
Nonstante il successo della tecnica proposta dipenda dalle caratteristiche peculiari e dalla struttura topologica della rete analizzata, questo modello accoppiato applicato a reti di distribuzione sintetiche si dimostra efficace per l'individuazione delle perdite e può costituire un'alternativa competitiva rispetto alle tecniche di distrettualizzazione correntemente applicate nei casi reali.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Salandin, Paolo
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:28 Gennaio 2017
Anno di Pubblicazione:28 Gennaio 2017
Parole chiave (italiano / inglese):ricerca perdite / leakage detection sistemi di distribuzione / water distribution systems assimilazione dati / data assimilation calibrazione / calibration topologia della rete / network topology
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/02 Costruzioni idrauliche e marittime e idrologia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:10015
Depositato il:24 Nov 2017 10:28
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AWWA (2008). Water audits and loss control programs: M36, volume 36. American Water Works Association. Cerca con Google

Ayres, F. (1962). Schaum's outline of theory and problems of matrices. Cerca con Google

Bailey, R. and Baù, D. (2010). Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution. Water Resources Research, 46(12). Cerca con Google

Boulos, P. F. and Wood, D. J. (1990). Explicit calculation of pipe-network parameters. Journal of Hydraulic Engineering, 116(11):1329-1344. Cerca con Google

Bragalli, C., Fortini, M. and Todini, E. (2016). Enhancing knowledge in water distribution networks via data assimilation. Water Resources Management, pages 1-18. Cerca con Google

Brunone, B. (2007). La ricerca delle perdite e la gestione delle reti di acquedotto. Morlacchi Editore. Cerca con Google

Bush, C. A. and Uber, J. G. (1998). Sampling design methods for water distribution model calibration. Journal of Water Resources Planning and Management, 124(6):334-344. Cerca con Google

Casillas, M. V., Puig, V., Garza-Castanón, L. E. and Rosich, A. (2013). Optimal sensor placement for leak location in water distribution networks using genetic algorithms. Sensors, 13(11):14984-15005. Cerca con Google

Centre for Water Systems (2004). Benchmark networks for design and optimization of water distribution networks. University of Exeter, Exeter, UK. Available from: http://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/expansion/. Vai! Cerca con Google

Chen, Y. and Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman Filter. Advances in Water Resources, 29(8):1107-1122. Cerca con Google

Collins, M., Cooper, L., Helgason, R., Kennington, J. and LeBlanc, L. (1978). Solving the pipe network analysis problem using optimization techniques. Management science, 24(7):747-760. Cerca con Google

Crestani, E., Camporese, M., Baù, D. and Salandin, P. (2013). Ensemble Kalman Filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation. Hydrol. Earth Syst. Sci, 17(4):1517-1531. Cerca con Google

Cross, H. (1936). Analysis of flow in networks of conduits or conductors. University of Illinois. Engineering Experiment Station. Bulletin; no. 286. Cerca con Google

Darvini, G., Salandin, P. and Da Deppo, L. (2008). Coping with uncertainty in the reliability evaluation of water distribution systems. In proceedings of the 10th annual Water Distribution Systems Analysis conference, WDSA 2008, pages 483-498. Cerca con Google

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143-10162. Cerca con Google

Evensen, G. (2003). The ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean dynamics, 53(4):343-367. Cerca con Google

Evensen, G. (2009a). Data assimilation: the ensemble Kalman Filter. Springer Science & Business Media. Cerca con Google

Evensen, G. (2009b). The ensemble Kalman Filter for combined state and parameter estimation. IEEE Control Systems, 29(3):83-104. Cerca con Google

Evensen, G. and Van Leeuwen, P. J. (2000). An ensemble Kalman smoother for nonlinear dynamics. Monthly Weather Review, 128(6):1852-1867. Cerca con Google

Farmani, R., Walters, G. A. and Savic, D. A. (2005). Trade-off between total cost and reliability for Anytown water distribution network. Journal of Water Resources Planning and Management, 131(3):161-171. Cerca con Google

Gertler, J. (1998). Fault detection and diagnosis in engineering systems. CRC press. Cerca con Google

Gupta, R. and Bhave, P. R. (1996). Comparison of methods for predicting deficient-network performance. Journal of water resources planning and management, 122(3):214-217. Cerca con Google

Hendricks Franssen, H. and Kinzelbach, W. (2008). Real-time groundwater flow modeling with the ensemble Kalman Filter: joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). Cerca con Google

Hunaidi, O., Chu, W., Wang, A. and Guan, W. (2000). Detecting leaks in plastic pipes. American Water Works Association. Journal, 92(2):82. Cerca con Google

Hutton, C. J., Kapelan, Z., Vamvakeridou-Lyroudia, L. and Savic, D. A. (2012). Dealing with uncertainty in water distribution system models: a framework for real-time modeling and data assimilation. Journal of Water Resources Planning and Management, 140(2):169-183. Cerca con Google

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1):35-45. Cerca con Google

Kapelan, Z. S., Savic, D. A. and Walters, G. A. (2005). Optimal sampling design methodologies for water distribution model calibration. Journal of Hydraulic Engineering, 131(3):190-200. Cerca con Google

Kershaw, D. S. (1978). The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Journal of Computational Physics, 26(1):43-65. Cerca con Google

Martin, D. and Peters, G. (1963). The application of Newton's method to network analysis by digital computer. Journal of the institute of Water Engineers, 17(2):115-129. Cerca con Google

McLaughlin, D. (2002). An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Advances in Water Resources, 25(8):1275-1286. Cerca con Google

Morosini, A. F., Veltri, P., Costanzo, F. and Savic, D. (2014). Identification of leakages by calibration of WDS models. Procedia Engineering, 70:660-667. Cerca con Google

Nowak, W. (2009). Best unbiased ensemble linearization and the quasi-linear Kalman ensemble generator. Water Resources Research, 45(4). Cerca con Google

Okeya, I., Kapelan, Z., Hutton, C. and Naga, D. (2014). Online modelling of water distribution system using data assimilation. Procedia Engineering, 70:1261-1270. Cerca con Google

Pérez, R., Cugueró, M.-A., Cugueró, J. and Sanz, G. (2014). Accuracy assessment of leak localisation method depending on available measurements. Procedia Engineering, 70:1304-1313. Cerca con Google

Pérez, R., Puig, V., Pascual, J., Peralta, A., Landeros, E. and Jordanas, L. (2009). Pressure sensor distribution for leak detection in Barcelona water distribution network. Water science and technology: water supply, 9(6):715-721. Cerca con Google

Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E. and Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10):1157-1167. Cerca con Google

Pilati, S. and Todini, E. (1984). La verifica delle reti idrauliche in pressione. Istituto di Costruzioni Idrauliche, Facoltà di Ingegneria dell'Università di Bologna. Cerca con Google

Poulakis, Z., Valougeorgis, D. and Papadimitriou, C. (2003). Leakage detection in water pipe networks using a bayesian probabilistic framework. Probabilistic Engineering Mechanics, 18(4):315-327. Cerca con Google

Pudar, R. S. and Liggett, J. A. (1992). Leaks in pipe networks. Journal of Hydraulic Engineering, 118(7):1031-1046. Cerca con Google

Quevedo Casín, J. J., Cugueró Escofet, M. A., Pérez Magrané, R., Nejjari Akhi-Elarab, F., Puig Cayuela, V. and Mirats Tur, J. M. (2011). Leakage location in water distribution networks based on correlation measurement of pressure sensors. In IWA Symposium on System Analysis and Integrated Assessment, pages 290-297. Internatinal Water Association (IWA). Cerca con Google

Ragot, J. and Maquin, D. (2006). Fault measurement detection in an urban water supply network. Journal of Process Control, 16(9):887-902. Cerca con Google

Rossman, L. A. et al. (2000). Epanet 2: users manual. Cerca con Google

Rougier, J. (2005). Probabilistic leak detection in pipelines using the mass imbalance approach. Journal of Hydraulic Research, 43(5):556-566. Cerca con Google

Ruzza, V., Crestani, E., Darvini, G. and Salandin, P. (2014). Losses identification in uncalibrated water distribution networks: A case study. Procedia Engineering, 89:1545-1552. Proceedings of 16th Water Distribution System Analysis Conference, WDSA2014 Urban Water Hydroinformatics and Strategic Planning. Cerca con Google

Ruzza, V., Crestani, E., Darvini, G. and Salandin, P. (2015). Losses identification in water distribution networks through EnKF and ES. Journal of Applied Water Engineering and Research. Cerca con Google

Ruzza, V. and Salandin, P. (2015). Localizzazione delle perdite nelle reti di distribuzione. In Tecniche per la difesa dall'inquinamento. 36° corso, volume 36, pages 1-26. Edibios. Cerca con Google

Salandin, P. and Bertola, P. (1996). Analisi dell'affidabilità delle reti di distribuzione soggette a richiesta aleatoria. Proceedings of the XXI Convegno di Idraulica e Costruzioni idrauliche, pages 217-228. Cerca con Google

Salgado, R., Todini, E. and O'Connell, P. (1988). Comparison of the gradient method with some traditional methods for the analysis of water supply distribution networks. In Computer applications in water supply: vol. 1 systems analysis and simulation, pages 38-62. Research Studies Press Ltd. Cerca con Google

Shamir, U. and Howard, C. D. (1968). Water distribution systems analysis. Journal of Hydraulic Division, vol. 94, No. HY1. Cerca con Google

Todini, E. (1979). Un metodo del gradiente per la verifica delle reti idrauliche. Bollettino degli Ingegneri della Toscana, 11:11-14. Cerca con Google

Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban water, 2(2):115-122. Cerca con Google

Todini, E. (2003). A more realistic approach to the "extended period simulation" of water distribution networks. Swets and Zeitlinger Publishers, Balkema, Lisse, The Netherlands. Cerca con Google

Van Leeuwen, P. J. (2001). An ensemble smoother with error estimates. Monthly weather review, 129(4):709-728. Cerca con Google

Van Leeuwen, P. J. and Evensen, G. (1996). Data assimilation and inverse methods in terms of a probabilistic formulation. Monthly Weather Review, 124(12):2898-2913. Cerca con Google

Walski, T. M., Brill Jr, E. D., Gessler, J., Goulter, I. C., Jeppson, R. M., Lansey, K., Lee, H.L., Liebman, J. C., Mays, L., Morgan, D. R., et al. (1987). Battle of the network models: epilogue. Journal of Water Resources Planning and Management, 113(2):191-203. Cerca con Google

Warga, J. (1954). Determination of steady state flows and currents in a network. Proceedings of the Instrument Society of America, 9(Pt 5). Cerca con Google

Wood, D. J. and Charles, C. O. (1972). Hydraulic network analysis using linear theory. Cerca con Google

Xu, C. and Goulter, I. C. (1998). Probabilistic model for water distribution reliability. Journal of Water Resources Planning and Management, 124(4):218-228. Cerca con Google

Zhou, H., Gomez-Hernandez, J. J., Franssen, H.-J. H., and Li, L. (2011). An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7):844-864. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record