Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Tomassini, Roberto (2016) Blade Tip Timing and Blade Tip Clearance Measurement System Based on Magnetoresistive Sensors. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi)
8Mb

Abstract (english)

The accurate control of running gaps between static and rotating components is vital to preserve mechanical integrity and ensure a correct functioning of any rotating machinery. In aero-engines, tip leakage above the airfoil tip results in relevant aerodynamic losses, therefore the gap between the rotor blades tip and the casing must be the smallest possible, but enough to avoid contacts. One way to measure and monitoring tip gap is by a Blade Tip Clearance (BTC) technique.
The measurement of blade vibrations and eigen frequencies is also a crucial part of the development of any new gas turbine or aero-engine. For more than half a century, this has been performed by installing strain gauges on the blades and using telemetry to transmit the signals. The Blade Tip Timing (BTT) technique, (i.e. measuring the blade time of arrival from the casing at different angular locations with proximity sensors) is currently being adopted by all manufacturers as a replacement for the classical strain gauge technique because of its non-intrusive character.
However, the aero engines presents an extremely challenging environment for the application of reliable in-service instrumentation. Current studies focus on sensors development, new data processing methods and the realization of a standard for such measurements.
In this thesis, a simultaneous BTC & BTT measurement system was designed, realized and optimized using magnetoresistive sensing elements. A simultaneous BTC & BTT system ensures the measurement of the gap between the rotor blades and the casing and the measurement of blade vibrations. Different types of probes have been proposed and are currently used to monitor these parameters: optical, capacitive, microwave, eddy current. The sensors developed in this research project are based on the magnetoresistivity. Dedicated hardware and software components had to be designed and manufactured. Two external test at Fogale Nanotech in France and at the Military Research Institute of Technology (ITWL) in Poland are reported. The measurement chain was fully characterized and the innovative instrumentation for BTT and BTC measurements based on the magnetoresistivity has achieved promising performance for a professional product.

Abstract (italian)

L'accurato controllo del gap esistente fra componenti statici e rotanti è un aspetto di vitale importanza per il corretto funzionamento di ogni macchinario rotante. Nei motori aeronautici, perdite aerodinamiche fra punta della pala e casing comportano rilevanti perdite in efficienza. Questo gap deve quindi essere il più piccolo possibile, ma abbastanza da evitare contatti.Un modo per misurare e monitorare il "blade tip gap" va sotto il nome di tecnica Blade Tip Clearance (BTC).
La misura delle vibrazioni delle palette e delle frequenze naturali è un'altro aspetto cruciale dello sviluppo di turbine a gas e motori aeronautici. Per più di 50 anni, tale misura era condotta installando estensimetri sulle palette e trasmettendo i segnali con un sistema telemetrico. La tecnica Blade Tip Timing (BTT) (per esempio misurare il tempo di arrivo delle palette con sensori di prossimità montati sul carter a differenti posizioni angolari) è correntemente adottata dai principali costrutturi di turbomacchine come rimpiazzo per il classico sistema di estensimetri, grazie al funzinamento non-intrusivo.Tuttavia, i motori aeronautici presentano delle condizioni di lavoro che rendono quasi impossibile l'applicazione di una strumentazione in-service. I recenti studi si focalizzano sullo sviluppo di nuovi sensori, nuovi metodi di analisi dei dati e la realizzazione di uno standard per questo tipo di misure.
In questa tesi è stato progettato, realizzato e ottimizzato un sistema di misura BTC & BTT simultaneo, utilizzando sensori magnetoresistivi. Un sistema BTC & BTT simultaneo permette la misura del gap tra punta della paletta e carter e, allo stesso tempo, la misura delle vibrazioni delle palette.
Diverse tipologie di sensori sono state proposte e correntemente adottate nei test di turbomacchine: sensori ottici, capacitivi, microonde e a correnti indotte. I sensori sviluppati in questo lavoro si basano sulla magnetoresistività. Hardware e software dedicati sono stati progettati ad hoc. Due test esterni presso Fogale Nanotech in Francia e all'istituto di ricerca militare (ITWL) in Polonia sono qui presentati. L'intera catena di misura è stata caratterizzata e l'innovativa strumentazione basata sugli elementi magnetoresistivi ha evidenziato ottime performance e potenzialità per la realizzazione di un prodotto professionale.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Rossi, Gianluca
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE TECNOLOGIE E MISURE SPAZIALI
Data di deposito della tesi:28 January 2017
Anno di Pubblicazione:15 November 2016
Key Words:blade tip timing blade tip clearance non contact measurements magnetoresistive sensors
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/12 Misure meccaniche e termiche
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:10025
Depositato il:02 Nov 2017 16:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] T. C. Booth, Importance of tip clearance flows in tur¬bine design. Tip Clearance Effects in Axial Turbo-machines. Lecture Series, Von Karman Institute for Fluid Dynamics, 1985. Cerca con Google

[2] D. Lombaert, Blade vibrations in turbomachinery -a literature study. Von Karman Institute for Fluid Dynamics, U-VKI2008-10, 2007. Cerca con Google

[3] K. Chana, Fundamentals of tip timing and tip clear¬ance sensors. Tip timing and tip clearance problems in turbomachinery. Lecture Series, Von Karman In¬stitute for Fluid Dynamics, 2007. Cerca con Google

[4] J. P. Roberts, The potentials of tip timing and tip clearance measurements for aero propultion gas tur¬bines, in Tip timing and tip clearance problems in turbomachinery, Lecture Series, Von Karman Insti¬tute for Fluid Dynamics, 2007. Cerca con Google

[5] A. von Flotow, M. Mercadal, and P. Tappert, Health monitoring and prognostics of blades and disks with blade tip sensors, in Aerospace Conference Proceed¬ings, 2000 IEEE, vol. 6, pp. 433^40, IEEE, 2000. Cerca con Google

[6] J. F. Brouckaert, Tip timing and tip clearance prob¬lems in turbomachinery. Lecture Series, Von Karman Institute for Fluid Dynamics, 2007. Cerca con Google

[7] D. Cardwell, K. Chana, and P. Russhard, The use of eddy current sensors for the measurement of ro¬tor blade tip timing-sensor development and engine testing, ASME GT2008-50792, 2008. Cerca con Google

[8] J. Gallego-Garrido, G. Dimitriadis, and J. R. Wright, A class of methods for the analysis of blade tip timing data from bladed assemblies undergoing si¬multaneous resonances part ii: Experimental valida¬tion, International Journal of Rotating Machinery, vol. 2007, 2007. Cerca con Google

[9] S. Heath and M. Imregun, An improved single-parameter tip-timing method for turbomachinery blade vibration measurements using optical laser probes, International journal of mechanical sci-ences, vol. 38, no. 10, pp. 1047-1058, 1996. Cerca con Google

[10] H. S. Dhadwal and A. P. Kurkov, Dual-laser probe measurement of blade-tip clearance, Journal of tur¬bomachinery, vol. 121, Issue 3, pag. 481-485, 1999. Cerca con Google

[11] T. Pfister, L. Buttner, J. Czarske, H. Krain, and R. Schodl, Turbomachine tip clearance and vibra¬tion measurements using a fibre optic laser doppler position sensor, Measurement Science and Technol¬ogy, vol. 17, no. 7, p. 1693, 2006. Cerca con Google

[12] M. Zielinski and G. Ziller, Noncontact blade vibra¬tion measurement system for aero engine applica¬tion, in 17th International Symposium onAirbreath-ing Engines, Paper No. ISABE-2005-1220, 2005. Cerca con Google

[13] S. Lavagnoli, G. Paniagua, M. Tulkens, and A. Steiner, High-fidelity rotor gap measurements in a short-duration turbine rig, Mechanical Systems and Signal Processing, vol. 27, pp. 590-603, 2011. Cerca con Google

[14] G. W. Terpay, Shielded Eddy Current Sensor For En¬hanced Sensitivity, United states patent 5,942,893, 1999. Cerca con Google

[15] R. Grzybowski, G. Foyt, W. Atkinson, W. Knoell, J. Wenger, and D. Benz, Microwave blade tip clear¬ance measurement system. ASME96-GT-2, 1996. Cerca con Google

[16] A. Maslovskiy, Microwave Turbine Tip Clearance Measuring System for Gas Turbine Engines. ASME-GT2008-50354, 2008. Cerca con Google

[17] M. Wagner, A. Schulze, M. Vossick, C. Stephelbauer, R. Weigel, N. Vortmeyer, and P. Heide, Novel mi¬crowave vibration monitoring system for industrial power generating turbines, in Microwave Sympo¬sium Digest, 1998 IEEE MTT-S International, vol. 3, pp. 1211-1214, IEEE, 1998. Cerca con Google

[18] C. Belsterling, Sensing with air, Instrumentation Science and Technology, vol. 18, no. 3, pp. 37—41, 1971. Cerca con Google

[19] J. Rickman Jr, Eddy current turbocharger blade speed detection, IEEE Transactions on Magnetics, vol. 18, no. 5, pp. 1014-1021, 1982. Cerca con Google

[20] C. Roeseler, A. von Flotow, and P. Tappert, Moni¬toring blade passage in turbomachinery through the engine case (no holes), in Aerospace Conference Proceedings, 2002. IEEE, vol. 6, pp. 6-3125, IEEE, 2002. Cerca con Google

[21] J. Gallego-Garrido, G. Dimitriadis, and J. Cooper, Further Developments of Blade Tip-timing Data Analysis Techniques. PhD thesis, 2005. Cerca con Google

[22] I. B. Carrington, Development of blade tip timing data analysis techniques. PhD thesis, University of Manchester, 2002. Cerca con Google

[23] G. Rossi, Progettazione, realizzazione e caratterizzazione di un sistema di misura di vibrazioni di organi rotanti di turbomacchine con sensori stazionari. PhD thesis, Facolta di ingegneria Universita di Ancona, 1993. Cerca con Google

[24] I. Y. Zablotskiy and Y. A. Korostelev, Measure¬ment of resonance vibrations of turbine blades with the elura device, Energomashinostroneniye,(USSR), no. 2, pp. 36-39, 1970. Cerca con Google

[25] S. Heath, T. Slater, L. Mansfield, and P. Lof-tus, Turbomachinery blade tip-timing measurement techniques, Proceedings of Advisory Group for Aerospace Research and Development Conference, 90th Symposium on Advanced Non Intrusive Instru¬mentation for Propulsion Engines, pp. 32-1 32-9, Brussels, Belgium, 1997. Cerca con Google

[26] S. Heath and M. Imregun, A survey of blade tip-timing measurement techniques for turbomachinery vibration, Journal of engineering for gas turbines and power, vol. 120, no. 4, pp. 784-791, 1998. Cerca con Google

[27] M. Zielinski and G. Ziller, Noncontact vibration measurements on compressor rotor blades, Mea¬surement Science and Technology, vol. 11, no. 7, p. 847, 2000. Cerca con Google

[28] G. Dimitriadis, I. B. Carrington, J. R. Wright, and J. E. Cooper, Blade-tip timing measurement of syn¬chronous vibrations of rotating bladed assemblies, Mechanical Systems and Signal Processing, vol. 16, n. 4, pp. 599-622, 2002. Cerca con Google

[29] I. B. Carrington, J. R. Wright, J. E. Cooper, and G. Dimitriadis, A comparison of blade tip timing data analysis methods, Proceedings of the Institu¬tion of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 215, no. 5, pp. 301-312, 2001. Cerca con Google

[30] J. Gallego Garrido, G. Dimitriadis, and J. R. Wright, Development of a multiple modes simulator of rotat¬ing bladed assemblies for blade tip timing data anal¬ysis, in Proceedings of the 27th International Con¬ference on Noise and Vibration Engineering ISMA02, pp. 1437-1446, 2002. Cerca con Google

[31] J. Gallego Garrido and G. Dimitriadis, Validating synchronous blade vibration amplitudes from blade tip-timing data analysis, Institution of Mechanical Engineers, vol. 623, no. 23, pp. 205-213, 2004. Cerca con Google

[32] E. Armstrong and R. Stevenson, Some practical as¬pects of compressor blade vibration, The Journal of the Royal Aeronautical Society, vol. 64, no. 591, pp. 117-130, 1960. Cerca con Google

[33] W. Robinson, Overview of pratt and whitney nsms, in 45th International Instrumentation Symposium, Albuquerque, New Mexico, 1999. Cerca con Google

[34] W. Robinson and R. Washburn, A real time non¬interference stress measurement system (nsms) for determining aero engine blade stresses, in Proceed¬ings of the 37th Symposium of the Instrumentation Society of America, San Diego, California, pp. 91-103, 1991. Cerca con Google

[35] H. T. Jones, Development of advanced non-intrusive stress measurement processing techniques, in Pro¬ceedings of the 6th National Turbine Engine High Cycle Fatigue Conference, Jacksonville, Fla, USA, 2001. Cerca con Google

[36] B. W. Hayes, S. Arnold, C. Vining, and R. Howard, Application of generation 4 non-contact stress mea¬surement system on hcf demonstrator engines, in Technical Papers of ISA, vol. 451, pp. 147-163, 2004. Cerca con Google

[37] J. Gallego-Garrido, G. Dimitriadis, and J. R. Wright, A class of methods for the analysis of blade tip timing data from bladed assemblies undergoing si¬multaneous resonances part i: Theoretical develop¬ment, International Journal of Rotating Machinery, vol. 2007, 2007. Cerca con Google

[38] Ewins, D. (1992b). Structural dynamic characteristics of individual blades, in Vibration and rotor dynamic, Lecture Series 1992-06. VKI. Cerca con Google

[39] Rao, J. (1991). Turbomachine blade vibration. New York: Wiley. Cerca con Google

[40] Haupt, U. (1987a). Blade vibration problems in centrifugal compressors, in Flow in centrifugal compressors, Lecture Series 1987-01 (Vol. A). VKI. Cerca con Google

[41] Hasemann, H., Weser, G., Hagelstein, D., & Rautenberg, M. (1997). Investigation of the solidity and the blade vibration behaviour of unshrouded centrifugal compressor impellers with different aerodynamic design, ASME, Vol. 97GT233. Cerca con Google

[42] Rao, S. S. (2007). Vibration of continuous systems, Hoboken: Wiley. Cerca con Google

[43] Imregun, M. (1999). Aeroelasticity in axial Turbomachine, in , Lecture Series 1999-05. VKI. Cerca con Google

[44] Ewins, D. (1992a). Structural dynamic characteristics of bladed disks, in Vibration and rotor dynamic, Lecture Series 1992-06. VKI. Cerca con Google

[45] Singh, M. P., Vargo, J. J., Schiffer, D. M., & Dello, J. D.(2000). SAFE Diagram, A design and reliability tool for turbine blading, Wellsville, New York: Dresser-Rand. Cerca con Google

[46] Mehdigholi, H. (1991). Forced Vibration of Rotating Disc and Interaction with Non-rotaring structures. Ph.D. Thesis, College of Science, Technology andMedicine, London. Cerca con Google

[47] JAY, R., MACBAIN, J., & BURNS, D. (1984). Structural response due to blade vane interaction. Journal of Engineering for Gas Turbines and Power, Vol.106, No 1, 50-56. Cerca con Google

[48] Kushner, F. (2000). Compressor blade and impeller rotating disk vibration avoidance parameters. The American Society of Mechanical Engineers. Cerca con Google

[49] Judge, J., Pierre, C., & Mehmed, O.(2001). Experimental investigation of mode localization and forced response amplitude magnification for a mistuned bladed disk. Journal of Engineering for Gas Turbines and Power, Vol.123, No 4, 940-950. Cerca con Google

[50] Seinturier, E. (2005b). Forced response computation for bladed disks industrial practices and advanced methods, in Effects of aerodynamic unsteadiness in axial turbomachines, Lecture Series 2005-03. VKI. Cerca con Google

[51] Singh, M., & Vargo, J.(1989). Reliability evaluation of shrouded blading using the SAFE interference diagram. Journal of Engineering for Gas Turbines and Power, Vol.111, No 4, 601-609. Cerca con Google

[52] J. D. Denton. Loss Mechanisms in Turbomachines. Journal of Turbo-machinery, 115(4), pp 621-656, 1993. Cerca con Google

[53] B. Glezer. Transient Tip Clearance Analysis and Measurement Techniques. Number 02 in Turbine Blade Tip Design and Tip Clearance Treatment. Von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, January 2004. Cerca con Google

[54] P.E.McCarty, W.Thompson Jr., Development of non interference technique for measurement of turbine engine compressor blade stress, Arnold Eng. Development Center Technical Report, 79-78, USAir Force, Tennessee, USA Cerca con Google

[55] L.J.Kiraly, Digital system for dynamic turbine engine blade displacement measurements, NASA TM - 81382. Cerca con Google

[56] H.Roth, Vibration and clearance measurements on rotating blades using stationary probes, Von Karman Institute [Lecture Series 81-7], (1981), Rhode Saint Genese, Belgium. Cerca con Google

[57] Rossi G., Brouckaert J.-F., Design of a blade tip timing measurement system based on uncertainty analysis, 58th ISA International Instrumentation Symposium, San Diego (CA), June 4-7, 2012. Cerca con Google

[58] P. A. Holman, Magnetoresistance (MR) Transducers And How to Use Them as Sensors, 2004. Cerca con Google

[59] http://www.magneticsensors.com/literature.php Vai! Cerca con Google

[60] Honeywell, Magnetic Displacement Sensors HMC1501/1512, (datasheet) Cerca con Google

[61] Procházka, P. and F. Vaněk. (2010).Contactless Diagnostics of Blade Vibration of Low-Pressure Steam Turbine Stages, Proceedings of ISMA2010 International Conference on Noise and Vibration Engineering including USD2010. Leuven,Vol. 2420. Cerca con Google

[62] E. Cardelli, A. Faba, R. Marsili, G. Rossi, and R. Tomassini, Magnetic nondestructive testing of rotor blade tips, Journal of Applied Physics 117.17, 17A705 (2015); doi: 10.1063/1.4907180. Cerca con Google

[63] E. Cardelli, A. Faba, F. Tissi, Surface field measurements in vector characterization of Si-Fe magnetic steel samples, International Journal of Applied Electromagnetics and Mechanics, Volume 44, Number 3-4, pages 331-338, April 2014. Cerca con Google

[64] E. Cardelli, A. Faba, Vector hysteresis measurements of not oriented grain SiFe steels by a biaxial hall sensors array, Physica B: Condensed Matter, Vol. 435, p. 34–39, February 2014. Cerca con Google

[65] L. Andrenelli, N. Paone and G. L. Rossi, Large-bandwidth reflection fiber-optic sensors for turbomachinery rotor blade diagnostics, in Sensors and Actuators A, vol 32, p. 539-542, 1992. Cerca con Google

[66] P. Nava, N. Paone, G.L. Rossi and E.P. Tomasini, Design and experimental characterization of a nonintrusive measurement system of rotating blade vibration, Journal of engineering for gas turbines and power, vol. 116, p. 657-662, 1994. Cerca con Google

[67] J.-F. Brouckaert, R. Marsili, G. Rossi, and R. Tomassini, Development and experimental char¬acterization of a new non-contact sensor for blade tip timing, in AIP Conference Proceedings, vol. 1457, p. 61, 2012. Cerca con Google

[68] R. Tomassini, G. Rossi, J. Brouckaert, On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems, 11th International conference on vibration measurements by laser and noncontact techniques AIVELA 2014: Advances and Applications, Vol.1600, AIP Publishing, 2014, pp. 65–73. Cerca con Google

[69] Diek, R. H., (2007), Measurement Uncertainty Methods and Applications, Systems and Automation Society (ISA) Cerca con Google

[70] Castrup, S., and Castrup, HT, (2010), Measurement Uncertainty Analysis Principles and Methods, National Aeronautics and Space Administration Cerca con Google

[71] Lattime, S.B., Bruce, M.S., (2004), High-pressure-turbine clearance control systems: current practices and future directions, Journal of Propulsion and Power, 20.2, 302-311. Cerca con Google

[72] Przysowa R. (2014) Analysis of synchronous blade vibration with the use of linear sine fitting, Journal of KONBiN, 2(30), pp. 5-20, De Gruyter Open. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record