Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Righini, Margherita (2017) GEOMORPHIC RESPONSE TO EXTREME FLOODS IN ALLUVIAL AND SEMI-ALLUVIAL RIVERS. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (righini_margherita_tesi) - Accepted Version
30Mb

Abstract (english)

ABSTRACT
Extreme floods are one of the major natural hazards that affect Italian territory causing causalities, severe damages to human properties and infrastructures and major economic losses.
High intensity flood events can significantly affect channel morphology with extremely variable magnitude and pattern among river reaches, even within the same catchment, depending on the initial morphological conditions and being a function of the balance between flood driving and channel boundary resistant forces. This work addresses a better comprehension of morphodynamic processes during extreme flood events through the use of integrated and interlinked approaches.
The thesis addresses: i) the documentation and analysis of channel response and its variability during large floods through different morphological settings (i.e., alluvial/semi-alluvial and confined/unconfined rivers); ii) the development of a systematic approach to assess and quantify geomorphic changes; iii) the investigation of the main factors controlling such changes; iv) the development of empirical and conceptual models for the their prediction.
This research presents a quantitative assessment of the geomorphic effects of extreme hydrological events in three Italian catchments recently affected by large floods. The evaluation of channel response is based on an integrated approach that makes a synergic use of two main methodologies employed in the geomorphological study of rivers: remote sensing and GIS analyses, and field surveys. Flood effects detection was carried out by means of a stepwise approach mainly based on multi-temporal GIS analysis of remote sensing data (i.e., aerial photos and satellite images) in synergy with other topographic data (e.g., DEMs, DTMs) integrated by field surveys.
The research was conducted on alluvial and semi-alluvial rivers displaying typical characteristics of mountain streams and covering relatively wide ranges in terms of physiographic and geomorphological setting (e.g., channel width, channel gradient, lateral confinement, human impacts). The study rivers include six tributaries of the Magra River (northern Apennines) with basin areas ranging from 8 to 38 km2, the Posada River and its main tributary (northeastern Sardinia) with a basin area of 680 km2, and the Lierza Creek (Venetian Prealps) with a basin area of 7.5 km2.
Planimetric changes are the main focus of the study. Channel widening was the most remarkable morphological response to the analysed extreme rainfall events, from alluvial unconfined channel reaches subjected to intense adjustments (i.e., very high effectiveness and magnitude) to lower or negligible adjustments in confined semi-alluvial channels. However, in the upstream reaches, generally characterized by high confinement and steep gradients, the flood power was high enough to erode the valley sides. A deeper analysis of channel width changes underlined two different behaviours depending on the initial channel width, showing larger variability in width changes in the narrower reaches than in the wider reaches.
The results of this study reflect the physical complexity of the river system and the complex nature of high-magnitude events, as they show that flood-driven geomorphic changes are controlled by several factors, both morphological and hydraulic ones, which lead to variable patterns of change. The flood peak stream power is often not sufficient to explain satisfactorily the channel response to floods, and inclusion of other factors turned out to be necessary to increase explanatory capability. In particular, a statistical analysis of controlling factors showed that channel widening magnitude depends – besides unit stream power calculated using the pre-flood channel width – on lateral confinement, especially in unconfined alluvial channels with erodible channel beds. Although the highest values in peak unit stream power were observed in confined and partly confined semi-alluvial reaches, the most intense channel widening did not occur in such reaches. Unit stream power – calculated based on the pre-flood channel width – has a major role in determining channel width changes in alluvial reaches, suggesting that most of width changes occurred after flood peak.
The results of this thesis confirm how predicting geomorphic effects of extreme floods in fluvial systems is challenging. However, a robust geomorphological approach as the one deployed here can contribute to i) the identification of the most probable reaches subject to dramatic morphological effects; ii) to define the minimum lateral extension that should be expected by flood erosion; iii) to provide a basis for the definition of sound river management strategies and interventions.

Abstract (italian)

RIASSUNTO
Gli eventi idrologici estremi sono uno dei maggiori rischi naturali che affliggono il territorio italiano causando la perdita di vite umane, ingenti danni ai beni economici, ai beni privati e alle infrastrutture.
Eventi di piena estremi possono modificare significativamente la morfologia dell'alveo con un’elevata variabilità tra tratti dello stesso corso d’acqua, ma anche all'interno dello stesso bacino idrografico, ,in relazione alle condizioni morfologiche iniziali e in funzione dell'equilibrio tra le forze innescanti e le forze resistenti determinate dalle condizioni al contorno dell'alveo. Perciò, il lavoro è volto ad una migliore comprensione dei processi morfodinamici durante eventi di piena estremi attraverso l'impiego di approcci sinergici ed integrati.
Il lavoro di tesi è volto i) all’analisi e alla documentazione del comportamento e della variabilità della risposta morfologica in contesti morfologici differenti (in corsi d’acqua alluvionali e semi-alluvionali, confinati e non confinati); ii) allo sviluppo di un metodo sistematico indirizzato alla valutazione e quantificazione delle variazioni geomorfologiche; iii) allo studio dei principali fattori che controllano tali variazioni; iv) allo sviluppo di modelli empirici e concettuali per la loro possibile previsione.
Questa ricerca propone di valutare tramite un'analisi quantitativa gli effetti dei processi geomorfologici dovuti ad eventi idrologici estremi in tre differenti bacini idrografici italiani, recentemente colpiti da eventi ad elevata magnitudo. La valutazione della risposta geomorfologica è basata su un approccio integrato attraverso l'uso sinergico delle due principali metodologie impiegate nello studio geomorfologico dei corsi d’acqua, vale a dire l’impiego del telerilevamento e di analisi GIS e il rilevamento sul terreno. L'indagine degli effetti relativi agli eventi di piena considerati è stata effettuata attraverso un approccio stepwise grazie all'integrazione di analisi multitemporali in ambiente GIS di dati telerilevati (foto aeree ed immagini satellitari), in sinergia con altri dati topografici (ad esempio DEM o DTM), e rilievi sul terreno.
Lo studio è stato condotto in corsi d’acqua alluvionali e semi-alluvionali che presentano le tipiche caratteristiche di torrenti montani ma con caratteristiche fisiografiche e geomorfologiche differenti (come ad esempio la larghezza e la pendenza dell'alveo, il confinamento e l'impatto antropico) includendo sei affluenti del Fiume Magra (Appennini settentrionali) con bacini aventi aree comprese tra 8 e 38 km2, il Fiume Posada ed il suo affluente principale (Sardegna nord orientale) avente un bacino di 680 km2, e infine il torrente Lierza (Prealpi venete) con un bacino di 7.5 km2.
Le variazioni planimetriche rappresentano l’aspetto maggiormente analizzato in questo studio. L'allargamento dell'alveo, la riattivazione della pianura alluvionale e l'erosione dei versanti risultano essere la risposta geomorfologica dominante agli eventi estremi analizzati, con intensità da molto elevata, negli alvei alluvionali non confinati, a bassa o praticamente trascurabile, negli alvei semi-alluvionali confinati. Tuttavia, nei tratti di studio situati più a monte, dove generalmente il fondovalle risulta più confinato, ovvero dove la pianura alluvionale è di limitata larghezza e la pendenza è elevata, il flusso è altamente concentrato tende a causare l’arretramento dei versanti che ne limitano la mobilità trasversale, coinvolgendo nel processo erosivo anche porzioni poste al di fuori dello stesso corridoio fluviale erodibile. Un'analisi più dettagliata delle variazioni di larghezza dell'alveo ha fatto emergere due comportamenti differenti a seconda della larghezza iniziale, mostrando un’elevata variabilità nelle variazioni di larghezza maggiore nei tratti più stretti rispetto ai tratti più larghi.
I risultati mostrano che le differenti variazioni morfologiche dovute a tali eventi sono controllate da molteplici fattori, sia morfologici che idraulici, riflettendo la complessità fisica sia del sistema fluviale che della natura di eventi a così elevata intensità. La potenza unitaria della corrente non è spesso sufficiente per l'interpretazione di una determinata risposta geomorfologica, perciò si rende necessario considerare altri fattori al fine di aumentare la capacità esplicativa di tali processi. L'analisi dei fattori di controllo ha evidenziato che la variazione di larghezza dell'alveo dipende essenzialmente da i) il confinamento laterale, specialmente nei tratti alluvionali a fondo mobile, dove il basso confinamento laterale controlla l'allargamento in un fondovalle in cui l'alveo è libero di modificarsi lateralmente, e ii) la potenza unitaria della corrente, calcolata utilizzando la larghezza dell'alveo iniziale (i.e., prima dell'evento). Nonostante nei tratti semi-alluvionali confinati e parzialmente confinati siano stati osservati i maggiori valori della potenza unitaria della corrente, non sono stati rilevati i processi di allargamento più significativi tra quelli osservati. La potenza unitaria della corrente, calcolata utilizzando la larghezza dell'alveo iniziale, risulta invece avere un ruolo maggiore nel determinare il processo di allargamento nei tratti alluvionali, suggerendo altresì che la maggior parte delle variazioni di larghezza si siano verificate successivamente al picco dell’evento di piena.
I risultati di questa tesi confermano come la previsione degli impatti geomorfologici sul sistema fluviale rimanga un aspetto di non facile risoluzione. Ciò nonostante pongono l'attenzione sull'importanza di un'analisi geomorfologica quantitativa che può contribuire all'identificazione dei tratti più sensibili a variazioni morfologiche di elevata intensità e alla definizione di azioni di pianificazione volte alla mitigazione del rischio e alla scelta di strategie di gestione ed eventuali interventi.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Surian, Nicola
Supervisor:Comiti, Francesco and Marchi , Lorenzo and Wohl, Ellen
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE DELLA TERRA
Data di deposito della tesi:30 January 2017
Anno di Pubblicazione:29 January 2017
Key Words:fluvial geomorphology, extreme floods, channel widening, geomorphic response, stream power, remote sensing, lateral confinement
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/04 Geografia fisica e geomorfologia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:10037
Depositato il:24 Nov 2017 10:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abernethy, B., and Rutherfurd, I.D., 2000. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surface Processes and Landforms 25(9): 921-937. Cerca con Google

Amponsah, W., Zoccatelli, D., Marra, F., Marchi, L., Crema, S., Niedda, M., and, Borga, M., 2016. Observational and hydrological modelling uncertainty in flash flood analysis. Submitted to J. Hydrol. Cerca con Google

Ardau, F., Barbieri, G., Vernier, A., Vernier E., 1999. Salinisation phenomena in the Posada costal aquifer (North-East Sardinia). in: De Breuck, W. et al. (Ed.) Proceedings of the 15th Salt-Water Intrusion Meeting Ghent (Belgium), 25-29 May 1998. Natuurwetenschappelijk Tijdschrift, 79(1-4): 125-131. Cerca con Google

Baker, V.R., 1988. Flood erosion. In: Flood Geomorphology. John Wiley & Sons New York. pp 81-95. Cerca con Google

Baker, V.R., 1977. "Stream-channel response to floods, with examples from central Texas". Geological Society of America Bulletin 88 (8). Cerca con Google

Bodini, A., Cossu, Q.A., 2010. Vulnerability assessment of Central-East Sardinia (Italy) to extreme rainfall events. Nat. Hazards Earth Syst. Sci., 10: 61–72. Cerca con Google

Bowen, M.W., Juracek, K.E., 2011. Assessment of the geomorphic effects of large floods using streamgage data: the 1951 floods in eastern Kansas, USA Phys. Geography, 32 (1): 52–77. Cerca con Google

Borga, M., Gaume, E., Creutin, J.D., Marchi, L., 2008. Surveying flash floods: gauging the ungauged extremes. Hydrological Processes, 22(18): 3883-3885. doi: 10.1002/hyp.7111. Cerca con Google

Brierley, G.J, Fryirs, K.A., 2005. Geomorphology and River Management: Applications of the River Style Framework. Blackwell: Oxford.Buraas, E.M., Renshaw, C.E., Magilligan, F.J., Dade, W.B., 2014. Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surface Processes and Landforms 39: 1778–1789. Cerca con Google

Carmignani, L., Oggiano, G., Barca, S., Conti, P., Salvadori, I., Eltrudis, A., Funedda, A., Pasci, S., 2001. Geologia della Sardegna. Note illustrative della Carta Geologica della Sardegna a scala 1:200.000, Memorie Descrittive della Carta Geologica d'Italia. Istituto Poligrafico e Zecca dello Stato, Roma, pp 1–283. Cerca con Google

Comiti, F., Lucía, A., Rickenmann D., 2016. Large wood recruitment and transport during large floods: A review. Geomorphology 269: 23-39. Cerca con Google

Costa, J.E., O'Connor, J.E., 1995. Geomorphically effective floods. In: Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P. (Eds.), Natural and Anthropogenic Influences in Fluvial Geomorphology. Monograph, vol. 89. American Geophysical Union, Washington, D.C., pp. 45–56. Cerca con Google

Czuba, J.A., Magirl C.S., Czuba, C.R., Curran, C.A., Johnson, K.H., Olsen, T.D., Kimball, H.K., Gish, C.C., 2012. Geomorphic Analysis of the River Response to Sedimentation Downstream of Mount Rainier, Washington. Open-File Report 2012–1242, U.S. Department of the Interior U.S. Geological Survey. Cerca con Google

Dean, D.J., Schmidt, J.C., 2013. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic response. Geomorphology 201: 183–198. Cerca con Google

Delitala, A.M.S., Cesari, D., Chessa, P.A., Ward, M.N., 2000. Precipitation over Sardinia (Italy) during the 1946-1993 rainy seasons and associated large-scale climate variations. Int. J. Climatol., 20: 519–541. Cerca con Google

De Waele, J.L.V., Martina, M., Sanna, L., Cabras, S., Cossu, Q.A., 2010. Flash flood hydrology in karstic terrain: Flumineddu Canyon, central-east Sardinia. Geomorphology 120: 162–173.DOI: 10.1016/j.geomorph.2010.03.021. Cerca con Google

Di Pisa, A., Oggiano, G., 2001. Introduction to the Sardinia geologic evolution. Rendiconti Seminario Facoltà Scienze Università Cagliari Supplemento Vol. 71 Fasc. 2. Cerca con Google

Frassi, C., 2015. Structure of the Variscan metamorphic complexes in the central transect of the Posada-Asinara Line (SW Gallura region, Northern Sardinia, Italy), Journal of Maps, 11:1, 136-145, DOI: 10.1080/17445647.2014.944945. Cerca con Google

Gurnell, A.M., Bertoldi, W., Corenblit, D., 2012. Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews 111: 129–141. Cerca con Google

Heritage, G.L., Large, A.R.G., Moon, B.P., Jewitt, G., 2004. Channel hydraulics and geomorphic effects of an extreme flood event on the Sabie River, South Africa. Catena 58: 151–181. Cerca con Google

Hickey, J.T., Salas J.D., 1995. Environmental effects of extreme floods. Paper presented at the US–Italy workshop on the hydrometeorology, impacts, and management of extreme floods, Perugia, Italy, 13–17. November 1995. Cerca con Google

Hickin, E.J., 1984. "Vegetation and river channel dynamics." Canadian Geographer / Le Géographecanadien 28(2): 111-126. Cerca con Google

Hooke, J.M., Mant, J.M., 2000. Geomorphological impacts of a flood event on ephemeral channels in SE Spain. Geomorphology 34 (3-4): 163–180. Cerca con Google

Hooke, J.M., 2015. Variations in flood magnitude–effect relations and the implications for flood risk assessment and river management. Geomorphology 263:19–38. Cerca con Google

Hooke, J.M., 2016a. Morphological impacts of flow events of varying magnitude on ephemeral channels in a semiarid region. Geomorphology 252: 128–143. Cerca con Google

Hooke, J.M., 2016b. Geomorphological impacts of an extreme flood in SE Spain. Geomorphology 263: 19–38. Cerca con Google

Kale, V.S., Hire, P.S., 2004. Effectiveness of monsoon floods 751 on the Tapi River, India: role of channel geometry and hydrologic regime. Geomorphology 57: 275–291. Cerca con Google

Kale, V. S., 2007. Geomorphic effectiveness of extraordinary floods on three large rivers of the Indian Peninsula. Geomorphology 85: 306–316. Cerca con Google

Knighton, D., 1998. Fluvial forms and processes: a new perspective. London, Hodder Education. Cerca con Google

Krapesch, G., Hauer, C., Habersack, H., 2011. Scale orientated analysis of river width changes due to extreme flood hazard. Natural Hazards and Earth System Sciences 11: 2137–2147. Cerca con Google

Marchi, L., Borga, M., Preciso, E., Gaume, E., 2010. Characterisation of selected extreme flash floods in Europe and implications for flood risk management, Journal of Hydrology, 394(1-2): 118-133. doi: 10.1016/j.jhydrol.2010.07.017 Cerca con Google

Langhammer, L., 2010. Analysis of the relationship between the stream regulations and the geomorphologic effects of floods. Natural Hazards 54: 121–139. Cerca con Google

Lucía, A., Comiti, F., Borga, M., Cavalli, M., Marchi, L, 2015. Dynamics of large wood during a flash flood in two mountain catchments. Natural Hazards and Earth System Sciences, 15 (8): 1741-1755. Cerca con Google

Magilligan, F.J., 1992. Thresholds and the spatial variability of flood power during extreme floods. Geomorphology 5: 373–390. Cerca con Google

Magilligan, F.J., Buraas, E.M., Renshaw, C.E., 2015. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175-188. Cerca con Google

Meshkova, L.V., Carling, P.A. and Buffin-Bélanger, T. (2012) Nomenclature, Complexity, Semi-Alluvial Channels and Sediment-Flux-Driven Bedrock Erosion, in Gravel-Bed Rivers: Processes, Tools, Environments (eds M. Church, P. M. Biron and A. G. Roy), John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/9781119952497.ch31 Cerca con Google

Miller, A.J., 1990. Flood hydrology and geomorphic effectiveness in the central Appalachians. Earth Surface Processes and Landforms 15: 119–13. Cerca con Google

Nardi, L., Rinaldi, M., 2015. Spatio-temporal patterns of channel changes in response to a major flood event: the case of the Magra River (central-northern Italy). Earth Surface Processes and Landforms 40: 326-339. Cerca con Google

Niedda, M., Amponsah, W., Marchi, L., Zoccatelli, D., Marra, F., Crema, S., Pirastru, M., Marrosu, R., Borga, M., 2015. Il ciclone Cleopatra del 18 novembre 2013 in Sardegna:analisi e modellazione dell'evento di piena. Quaderni di Idronomia Montana 32/1: 47–58 (in Italian). Cerca con Google

Nanson, GC., 1986. Episodes of vertical accretion and catastrophic stripping: a model of disequilibrium flood-plain development. Bulletin of the Geological Society of America 97: 1467–1475. Cerca con Google

Ortega, J.A., Garzón Heydt Guillermina, 2009. Geomorphological and sedimentological analysis of flash-flood deposits. The case of the 1997 Rivillas flood (Spain). Geomorphology 112: 1–14. Cerca con Google

Phillips, J.D., 2002. Geomorphic impacts of flash flooding in a forested headwater basin. Journal of Hydrology 269: 236–250. Cerca con Google

Renofalt, B., Merritt, D.M., Nilsson, C., 2007. Connecting variation in vegetation and stream flow: the role of geomorphic context in vegetation response to large floods along boreal rivers. Journal of Applied Ecology 44: 147–157. Cerca con Google

Rice, S.P., Church, M., 1998. Grain size along two gravel-bed rivers: statistical variation, spatial pattern and sedimentary links. Earth Surf. Process. Landforms 23: 345–363. Cerca con Google

Rice, S.P., 1998. Which tributaries disrupt downstream fining along gravel-bed rivers? Geomorphology 22: 39-56. Cerca con Google

Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2013. A method for the assessment and analysis of the hydromorphological condition of Italian streams: the Morphological Quality Index (MQI). Geomorphology 180-181: 96–108. Cerca con Google

Rinaldi M., Amponsah W., Benvenuti M., Borga M., Comiti F., Lucìa, A., Marchi L., Nardi, L., Righini, M., Surian, N., 2016. An integrated approach for investigating geomorphic response to extreme events: methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surface Processes and Landforms 41: 835–846. doi: 10.1002/esp.3902. Cerca con Google

Rutherfurd, I., 2000. Some human impacts on australian stream channel morphology. River Management: The Australasian Experience, Wiley, Chichester, UK:11-49. Cerca con Google

Simon, A., Collison, A.J.C., 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms 27(5): 527-546. Cerca con Google

Surian, N., Righini, M., Lucìa, A., Nardi, L., Amponsah, M., Benvenuti, M., Borga, M., Cavalli, M., Comiti, F., Marchi, L., Rinaldi, M., Viero, A., 2016. Channel response to extreme floods: insights on controlling factors from six mountain rivers in northern Apennines Italy. Geomorphology, 272: 78–91. doi:10.1016/j.geomorph.2016.02.002 Cerca con Google

Thompson, C., Croke, J., 2013. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology 197: 156–169. Cerca con Google

Thorne, C.R., 1990. Effects of vegetation on riverbank erosion and stability. In: Thornes, J.B. ed. Vegetation and Erosion: Processes and Environments. Wiley, Chichester. Cerca con Google

Tinkler, K.J., and Wohl, E.E., 1998. Rivers over rock: Fluvial processes in bedrock channels: American Geophysical Union Geophysical Monograph 107. Cerca con Google

Vocal Ferencevic, M.V., Ashmore, P., 2012. Creating and evaluating digital elevation model-based stream-power map as a stream assessment tool. River Research and Applications 28: 1394–1416. Cerca con Google

Wohl, E., 2010. Mountain rivers revisited. AGU, Water Resources Monograph 19. Cerca con Google

Wolman, M.G., Gerson, R., 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189–208. Cerca con Google

Wolman, M.G, Miller, J.P., 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54–74. Cerca con Google

Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., Manes, A., 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29 (11): 31-1–31-4. Cerca con Google

Baker, V.R., 1977. Stream channel response to floods with examples from central Texas. Geological Society of America Bulletin 88: 1057–1071. Cerca con Google

Brunetti, M., Colacino, M., Maugeri, M., Nanni, T., 2001. Trends in the daily intensity of precipitation in Italy from 1951 to 1996: Int. J. Climatol., 21: 299-316. Cerca con Google

Brunetti, M., Maugeri, M., and Nanni, T., 2002. Droughts and extreme events in regional daily italian precipitation series, Int. J. Clim., 22: 543– 558. Cerca con Google

Brunetti, M., Maugeri, M., Monti, F., and Nanni T., 2004. Changes in daily precipitation frequency and distribution in Italy over the last 120 years, J. Geophys. Res., 109, D05102. doi:10.1029/2003JD004296 Cerca con Google

Costa, J.E., 1987. A comparison of the largest rainfall-runoff floods in the United States with those of The People's Republic of China and the world. Journal of Geology 96: 101–115. Cerca con Google

Costa, J.E., 1974. Response and recovery of a Piedmont watershed from tropical storm Agnes, June 1972. Water Resour. Res. 101: 106–112. Cerca con Google

Costa, J.E, O'Connor, J.E. 1995. Geomorphically effective floods. In Natural and Anthropogenic Influences in Fluvial Geomorphology, Costa JE, Miller AJ, Potter KW, Wilcock PR (eds). Geophysical Monograph 89, The Wolman Volume, American Geophysical Union: Washington, DC. 45–56. Cerca con Google

Croke, J., Fryirs, K., Thompson, C., 2013. Channel–floodplain connectivity during an extreme flood event: implications for sediment erosion, deposition, and delivery. Earth Surf. Process. Landforms 38: 1444–1456. DOI: 10.1002/esp.3430 Cerca con Google

Easterling, D.R., Meehl, G.A., Permesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., 2000. Climate extremes: observations, modeling, and impacts. Science 289: 2068–2074. Cerca con Google

Erskine, W.D., 1994. ‘Sand slugs generated by catastrophic floods on the Goulburn River, NSW’, International Association of Hydrological Sciences Publication No. 224: 143–151. Cerca con Google

EUROPEAN COMMISSION (2007). DIRECTIVE 2007/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2007 on the assessment and management of flood risks. Official Journal L 288, 06/11/2007, 27–34 pp. Cerca con Google

Fuller, I.C., 2008. Geomorphic impacts of a 100-year flood: Kiwitea Stream, Manawatu catchment, New Zealand. Geomorphology 98: 84–95. Cerca con Google

Hooke, J.M., Mant, J.M., 2000. Geomorphological impacts of a flood event on ephemeral channels in SE Spain. Geomorphology 34: 163–180. Cerca con Google

Hooke, J.M., 2015. Variations in flood magnitude–effect relations and the implications for flood risk assessment and river management. Geomorphology 263:19–38. Cerca con Google

Hooke, J.M., 2016. Morphological impacts of flow events of varying magnitude on ephemeral channels in a semiarid region. Geomorphology 252: 128–143. Cerca con Google

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. Cerca con Google

Lisenby, P ., Croke, J., Fryirs, K., 2016. Geomorphic Effectiveness: A Linear Concept in a Non-linear World. Earth Surface Processes and Landforms, under review. Cerca con Google

Maddox, R.A., Canova, F., Hoxit, L.R. 1980. Meteorological characteristics of flash flood events over the western United States. Monthly Weather Review 108: 1866–1877. Cerca con Google

Magilligan, F.J., Buraas, E.M., Renshaw, C.E., 2015. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175–188. Cerca con Google

Marchi, L., Cavalli, M., Amponsah, W., Borga, M., Crema, S., 2016. Upper limits of flash flood stream power in Europe, Geomorphology 272: 68-77. doi.org/10.1016/j.geomorph.2015.11.005 Cerca con Google

Milan, D.J., 2012. Geomorphic impact and system recovery following an extreme flood in an upland stream: Thinhope Burn, northern England, UK. Geomorphology 138: 319–328. Cerca con Google

Nanson, G.C., 1986. Episodes of vertical accretion and catastrophic stripping: a model of disequilibrium flood-plain development. Bulletin of the Geological Society of America 97: 1467–1475. Cerca con Google

Newson, M., 2006. The geomorphological effectiveness of floods — a contribution stimulated by two recent events in mid-wales. Earth Surf. Proc. 5: 1–16. Cerca con Google

Osterkamp, W. R., Friedman, J. M., 2000. The disparity between extreme rainfall events and rare floods-with emphasis on the semi-arid American West. Hydrol. Process. 14, 2817–2829. Cerca con Google

Rinaldi, M,. Surian, N., Comiti, F., Bussettini, M., 2015. A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology 251: 122-136. Cerca con Google

Rinaldi, M., Amponsah, W., Benvenuti, M., Borga, M., Comiti, F., Lucìa, A., Marchi, L., Nardi, L., Righini, M., Surian, N., 2016. An integrated approach for investigating geomorphic response to extreme events: methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surface Processes and Landforms 41: 835–846. doi: 10.1002/esp.3902. Cerca con Google

Smith, J.A., Baeck, M.L., Steiner, M., 1996. Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: the Rapidan storm of June 27, 1995. Water Resources Research 32: 3099–3113. Cerca con Google

Tinkler, K.J., Wohl, E.E., 1998. Rivers over rock: Fluvial processes in bedrock channels: American Geophysical Union Geophysical Monograph 107. Cerca con Google

U.S. Environmental Protection Agency, 2016. 'Climate Change Indicators in the United States, 2016 (Fourth Edition)'. Cerca con Google

Wohl, E., 2010. Mountain rivers revisited. AGU, Water Resources Monograph 19. Cerca con Google

Wolman, M.G., Gerson, R., 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189–208. Cerca con Google

World Meteorological Organization, 2015: Guidelines on the definition and monitoring of extreme weather and climate events, draft version – First review by TT-Dewce. Cerca con Google

Allen GH, and Pavelsky TM (2015) Patterns of river width and surface area revealed by the satellite-derived North American River Width data set. Geophys. Res. Lett., 42: 395–402. doi:10.1002/ 2014GL062764 Cerca con Google

Baker VR (1977) Stream-channel response to floods, with examples from central Texas. Geological Society of America Bulletin 88(8) Cerca con Google

Bizzi S and Lerner DN (2015) The Use of Stream Power as an Indicator of Channel Sensitivity to Erosion and Deposition Processes. River Res. Applic., 31: 16–27. doi: 10.1002/rra.2717 Cerca con Google

Bledsoe BP, Watson CC (2001) Logistic analysis of channel pattern thresholds: meandering, braiding, and incising. Geomorphology 38: 281–300 Cerca con Google

Brasington J, Rumsby BT, and McVey RA (2000) Monitoring and modelling morphological change in a braided gravel-bed river using high-resolution GPS-based survey. Earth Surface Processes and Landforms 25: 973–990 Cerca con Google

Bryant RG, Gilvear DJ (1999) Quantifying geomorphic and riparian land cover changes either side of a large flood event using airborne remote sensing: River Tay, Scotland. Geomorphology 29: 307–321 Cerca con Google

Buraas EM, Renshaw CE, Magilligan FJ, Dade WB (2014) Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surface Processes and Landforms 39: 1778–1789 Cerca con Google

Carbonneau PE and Piégay H (2012) Introduction: The Growing Use of Imagery in Fundamental and Applied River Sciences. In: Carbonneau P and Piégay H (ed) Fluvial Remote Sensing for Science and Management. Wiley-Blackwell, p 1-18 Cerca con Google

Carbonneau PE, Piégay H, Lejot J, Dunford R, Michel K (2012) Hyperspatial imagery in riverine environments. Fluvial Remote Sens. Sci. Manag. p 163–191 Cerca con Google

Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31–41. doi:10.1016/j.geomorph.2012.05.007 Cerca con Google

Chandler J, Ashmore P, Paola C, Gooch M, Varkaris F (2002) Monitoring River-Channel Change Using Terrestrial Oblique Digital Imagery and Automated Digital Photogrammetry. Annals of the Association of American Geographers, 92:4, 631-644. doi: 10.1111/1467-8306.00308 Cerca con Google

Costa JE, O'Connor JE (1995) Geomorphically effective floods. In: Costa, JE, Miller, AJ, Potter, KW, Wilcock, P (ed) Natural and Anthropogenic Influences in Fluvial Geomorphology Monograph, vol 89 American Geophysical Union, Washington, DC, p 45–56 Cerca con Google

Dethier E, Magilligan FJ, Renshaw CE, Nislow KH (2016) The role of chronic and episodic disturbances on channel–hillslope coupling: the persistence and legacy of extreme floods Earth Surf Process Landforms 41:1437–1447. doi: 101002/esp3958 Cerca con Google

Dewan AM, Islam MM, Kumamoto T, Nishigaki M (2007) Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques Water Resource Manage 21: 1601–1612. doi:101007/s11269-006-9116-1 Cerca con Google

Ferencevic MV, Ashmore P (2012) Creating and evaluating digital elevation model-based stream-power map as a stream assessment tool River Research and Applications 28: 1394–1416 Cerca con Google

Fonstad MA, Marcus WA (2010) High resolution, basin extent observations and implications for understanding river form and process Earth Surface Processes and Landforms, 35(6): 680–698 Cerca con Google

Gilvear D J, Davids C and Tyler AN (2004) The use of remotely sensed data on channel hydromorphology; River Tummel, Scotland River Res. Applic. 20: 1–17. doi: 101002/rra792 Cerca con Google

Gilvear DJ and Bryant R (2003) Analysis of aerial photography and other remotely sensed data. In: Kondolf GM and Piégay, H (ed) Tools in Fluvial Geomorphology, Wiley: London, p 133–168 Cerca con Google

Gilvear D, Winterbottom S, and Sichingabula H (2000) Character of channel planform change and meander development: Luangwa River, Zambia. Earth Surf Process Landforms, 25: 421–436 Cerca con Google

Ghoshal S, James LA, Singer MB and Aalto R (2010) Channel and Floodplain Change Analysis over a 100-Year Period: Lower Yuba River, California. Remote Sensing 2: 1797-1825. doi:103390/rs2071797 Cerca con Google

Grove JR, Croke J and Thompson C (2013) Quantifying different riverbank erosion processes during an extreme flood event. Earth Surf Process Landforms 38: 1393–1406. doi: 101002/esp3386 Cerca con Google

Gupta A, Fox H (1974) Effects of high magnitude floods on channel form: a case study in the Maryland Piedmont. Water Resour Res 10: 499–509 Cerca con Google

Gurnell AM (1997) Channel change of the river Dee meanders, 1946–1992, from the analysis of air photographs Regulated Rivers. Research and Management 13: 13–26 Cerca con Google

Heritage GL, Large ARG, Moon BP, Jewitt G (2004) Channel hydraulics and geomorphic effects of an extreme flood event on the Sabie River, South Africa. Catena 58: 151–181 Cerca con Google

Hooke JM (2004) Cutoffs galore!: occurrence and causes of multiple cutoffs on a meandering river. Geomorphology 61 (3–4): 225–238 Cerca con Google

Hooke JM (2008) Temporal variations in fluvial processes on an active meandering river over a 20-year period. Geomorphology 100: 3–13 Cerca con Google

Hooke JM and Yorke L (2010) Rates, distributions and mechanisms of change in meander morphology over decadal timescales, River Dane, UK. Earth Surf. Process. Landforms 35: 1601–1614 Cerca con Google

Hughes ML, McDowell PF, and Marcus WA (2006) Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology 74: 1–16 Cerca con Google

Joyce KE, Belliss SE, Samsonov SV, McNeill SJ and Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography 33(2): 1–25. doi :101177/0309133309339563 Cerca con Google

Krapesch G, Hauer C, Habersack H (2011) Scale orientated analysis of river width changes due to extreme flood hazard. Natural Hazards and Earth System Sciences 11: 2137–2147 Cerca con Google

Kumar R, Kamal V and Singh RK (2013) Geomorphic Effects of 2011 Floods on Channel Belt Parameters of Rapti River: A Remote Sensing and GIS Approach. Corona Journal of Science and Technology, vol 2, No II, p 4-12 Cerca con Google

Lane SN, Widdison PE, Thomas RE, Ashworth PJ, Best JL, Lunt IA, Sambrook Smith GH, and Simpson CJ (2010) Quantification of braided river channel change using archival digital image analysis. Earth Surf Process Landforms 35: 971–985 Cerca con Google

Lane SN, Westaway RM, and Hicks DM (2003) Estimation of erosion and deposition volumes in a large, gravel bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms 28(3): 249–271 Cerca con Google

Lane SN, Chandler JH, and Porfiri K (2001) Monitoring river channel and flume surfaces with digital photogrammetry. J. Hydraul. Eng. 127: 871 Cerca con Google

Lane S, Richards K, and Chandler J (1993) Developments in photogrammetry - The geomorphological potential. Progress in Physical Geography, 17(3): 306–328 Cerca con Google

Lea DM , Legleiter CJ (2016) Refining measurements of lateral channel movement from image time series by quantifying spatial variations in registration error. Geomorphology 258: 11–20 Cerca con Google

Legleiter CJ, Roberts DA, Marcus WA, Fonstad MA (2004) Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. Remote Sensing of Environment 93: 493–510 Cerca con Google

Legleiter CJ, Roberts DA, and Lawrence RL (2009) Spectrally based remote sensing of river bathymetry. Earth Surface Processes and Landforms 34: 1039–1059. Cerca con Google

Legleiter CJ and Fonstad MA (2012) An Introduction to the Physical Basis for Deriving River Information by Optical Remote Sensing. In: Carbonneau P and Piégay H (ed) Fluvial Remote Sensing for Science and Management. Wiley-Blackwell, p 43-69 Cerca con Google

Leopold LB, and Maddock TJ (1953) Hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey Professional Paper 252: 55 Cerca con Google

Lichter M and Klein M (2011) The effect of river floods on the morphology of small river mouths in the southeastern Mediterranean Zeitschriftfür. Geomorphology vol 55(3): 317–340 Cerca con Google

Magilligan FJ, Buraas EM, Renshaw CE (2015) The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175-188 Cerca con Google

Magilligan FJ, Gomez B, Mertes LAK, Smith LC, Smith ND, Finnegan D, Garvin JB (2002) Geomorphic effectiveness, sandur development, and the pattern of landscape response during jökulhlaups: Skeiðarársandur, southeastern Iceland. Geomorphology 44: 95–113 Cerca con Google

Magilligan FJ (1992) Thresholds and the spatial variability of flood power during extreme floods. Geomorphology 5: 373–390 Cerca con Google

Marcus WA, Fonstad MA and Legleiter CJ (2012) Management Applications of Optical Remote Sensing in the Active River Channel. In: Carbonneau P and Piégay H (ed) Fluvial Remote Sensing for Science and Management. Wiley-Blackwell, p 19-41 Cerca con Google

Marcus WA and Fonstad MA (2008) Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surface Process Landforms 33: 4–24. doi: 101002/esp1637 Cerca con Google

Mertes LAK (2008) Remote sensing of riverine landscapes. Freshwater Biology 47: 799–816 Cerca con Google

Milan DJ (2012) Geomorphic impact and system recovery following an extreme flood in an upland stream: Thinhope Burn, northern England, UK. Geomorphology 138: 319-328 Cerca con Google

Miller AJ (1990) Flood hydrology and geomorphic effectiveness in the central Appalachians. Earth Surface Processes and Landforms 15: 119–13 Cerca con Google

Milton JA, Gilvear DJ, Hooper ID (1995) Investigating river channel changes using remote sensed data. In: Gurnell A, Petts GE (ed) Changing River Channels. Chichester: Wiley, p277-301 Cerca con Google

Mount NJ and Louis J (2005) Estimation and propagation of error in measurements of river channel movement from aerial imagery Earth Surface Processes and Landforms, 30: 635–643 Cerca con Google

Nardi L, Rinaldi M (2014) Spatio-temporal patterns of channel changes in response to a major flood event: the case of the Magra River (central-northern Italy). Earth Surface Processes and Landforms 40: 326-339 Cerca con Google

Ortega JA, Guillermina GH (2009) Geomorphological and sedimentological analysis of flash-flood deposits The case of the 1997 Rivillas flood (Spain). Geomorphology 112: 1–14 Cerca con Google

Pan Z, Glennie C, Legleiter C, and Overstreet B (2015) Estimation of water depths and turbidity from hyperspectral imagery using support vector regression, IEEE Geosci. Remote Sens. Lett., vol. 12, no. 10, pp. 2165–2169, Cerca con Google

Peixoto JMA, Nelson BW, Wittmann F (2009) Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sensing of Environment 113: 2258–2266 Cerca con Google

Piégay H, Darby SE, Mosselman E, Surian N (2005) A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Research and Applications 21: 773–789 Cerca con Google

Piégay H, Kondolf GM, Minearc JT, Vaudora L (2015) Trends in publications in fluvial geomorphology over two decades: A truly new era in the discipline owing to recent technological revolution?. Geomorphology 248: 489-500 Cerca con Google

Phillips JD (2002) Geomorphic impacts of flash flooding in a forested 828 headwater basin. Journal of Hydrology 269: 236–250 Cerca con Google

Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology vol 9(2), p 1-18 Cerca con Google

Priestnall G and Aplin P (2006) Spatial and temporal remote sensing requirements for river monitoring International. Journal of Remote Sensing vol 27(11): 2111–2120 Cerca con Google

Puech C and Raclot D (2002) Using geographical information systems and aerial photographs to determine water levels during floods. Hydrological processes 16 (8): 1593-1602 Cerca con Google

Rango A, Laliberte A, Herrick JE, Winters C, Havstad K, Steele C, and Browning D (2009) Unmanned aerial vehicle based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3.10.1117/1.3216822 Cerca con Google

Richardson JM and Fuller IC (2010) Quantification of channel planform change on the lower Rangitikei River, New Zealand, 1949-2007: response to management? Palmestron North NZ: Massey University School of People, Environment and Planning Cerca con Google

Rinaldi M, Simoncini C, Piégay H (2009) Scientific strategy design for promoting a sustainable sediment management: the case of the Magra River (Central – Northern Italy). River Research and Applications 25: 607–625 doi: 101002/rra1243 Cerca con Google

Rinaldi M, Surian N, Comiti F, Bussettini M (2013) A method for the assessment and analysis of the hydromorphological condition of Italian streams: the Morphological Quality Index (MQI). Geomorphology 180-181: 96–108. doi: 101016/jgeomorph201209009 Cerca con Google

Rinaldi M, Amponsah W, Benvenuti M, Borga M, Comiti F, Lucìa, A, Marchi L, Nardi, L, Righini, M, Surian, N (2016) An integrated approach for investigating geomorphic response to extreme events: methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surface Processes and Landforms, 41, 835–846. doi: 10.1002/esp.3902 Cerca con Google

Righini M (2017) Geomorphic response to extreme floods in alluvial and semi-alluvial rivers, Unpublished PhD Thesis, University of Padua Cerca con Google

Sanyal J and Lu XX (2004) Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Natural Hazards 33: 283–301 Cerca con Google

Schumm SA, Lichty RW (1963) Channel widening and floodplain construction along Cimarron River in southwestern Kansas. U.S. Geological Survey Professional Paper 352D: 71–88 Cerca con Google

Singh A (1989) Review Article Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6): 989-1003. doi: 101080/01431168908903939 Cerca con Google

Sloan J, Miller JR, Lancaster N (2001) Response and recovery of the Eel River, California, and its tributaries to floods in 1955, 1964 and 1997. Geomorphology 36: 129–154 Cerca con Google

Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrologic Processes 11: 1427–1439 Cerca con Google

Stweart JH, and La Marche VC Jr (1967) Erosion and deposition produced by the flood of December 1964 on Coffee Creek, Trinity County, California. U.S. Geol Survey Prof Paper 422K Cerca con Google

Surian N, Rinaldi M, Pellegrini L, Audisio C, Maraga F, Teruggi L, Turitto O, Ziliani L (2009) Channel adjustments in northern and central Italy over the last 200 years In: James LA, Rathburn SL, Whittecar GR (ed) Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts. Special Paper, 451 Geological Society of America, Boulder, USA, p 83–95 Cerca con Google

Surian N, Righini M, Lucìa A, Nardi L, Amponsah M, Benvenuti M, Borga M, Cavalli M, Comiti F, Marchi L, Rinaldi M, Viero A (2016) Channel response to extreme floods: insights on controlling factors from six mountain rivers in northern Apennines, Italy. Geomorphology, 272, 78–91. doi:10.1016/j.geomorph.2016.02.002 Cerca con Google

Tamminga AD, Eaton BC and Hugenholtz CH (2015) UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surface Process Landforms 40: 1464–1476. DOI: 101002/esp3728 Cerca con Google

Tholey N, Clandillon S and De Fraipont P (1997) The contribution of spaceborne SAR and optical data in monitoring flood events: examples in northern and Southern France. Hydrological Processes, vol 11, 1409-1413 Cerca con Google

Thompson C, Croke J (2013) Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology 197: 156–169 Cerca con Google

Walsh SJ, Butler DR, Malanson GP (1998) An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective. Geomorphology 21: 183-205 Cerca con Google

Wohl E (2014) Time and the rivers flowing: Fluvial geomorphology since 1960. Geomorphology 216: 263–282 Cerca con Google

Wolman MG, Gerson R (1978) Relative scales of time 854 and effectiveness of climate in watershed geomorphology. Earth Surface Processes Landforms 3: 189–208 Cerca con Google

Wolman MG, Miller JP(1960) Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54–74 Cerca con Google

Woodget A, Carbonneau P, Visser F, and Maddock I (2015) Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry,” Earth Surf. Process. Landforms, vol. 40, no. 1, pp. 47–64 Cerca con Google

Yang X, Damen MCJ and Van Zuidam RA (1999) Satellite remote sensing and GIS for the analysis of channel migration changes in the active Yellow River Delta, China. JAG l vol 1(2): 146­57 Cerca con Google

Autorità di Bacino interregionale del Fiume Magra, 2006. Piano stralcio “Assetto Idrogeologico” del bacino del Fiume Magra e del Torrente Parmignola – Relazione Generale. Unpublished report, 209 p. (http://www.adbmagra.it/), Sarzana (Italy) (in Italian). Vai! Cerca con Google

Borga, M., Boscolo, P., Zanon, F., Sangati, M., 2007. Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps. Journal of Hydrometeorology 8 (5): 1049–1067. Cerca con Google

Borga, M., Gaume, E., Creutin, J.D., Marchi, L., 2008. Surveying flash floods: gauging the ungauged extremes. Hydrological Processes 22(18): 3883-3885. Cerca con Google

Borselli, L., Cassi, P., Torri, D., 2008. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75(3): 268-277. Cerca con Google

Brierley, G.J., Fryirs K.A., 2005. Geomorphology and River Management: Applications of the River Style Framework. Blackwell, Oxford, pp. 398. Cerca con Google

Buraas, E.M., Renshaw, C.E., Magilligan, F.J., Dade, W.B., 2014. Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surface Processes and Landforms 39: 1778–1789. Cerca con Google

Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31–41. Cerca con Google

Cenderelli, D.A., Wohl, E.E., 2003. Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surface Processes and Landforms 28: 385–407. Cerca con Google

Comiti F., Mao L. 2012. Recent advances in the dynamics of steep channels. In: Church, M., Biron, P.M., Roy, A.G. (Eds.), Gravel-bed Rivers: Processes, Tools, Environments. Chichester, Wiley, pp. 353-377. Cerca con Google

Costa, J.E., O'Connor, J.E., 1995. Geomorphically effective floods. In: Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P. (Eds.), Natural and Anthropogenic Influences in Fluvial Geomorphology. Monograph, vol. 89. American Geophysical Union, Washington, D.C., pp. 45–56. Cerca con Google

Crema, S., Schenato, L., Goldin, B., Marchi, L., Cavalli, M., 2015. Toward the development of a stand-alone application for the assessment of sediment connectivity. Rendiconti Online della Soc. Geol. Ital. 34: 58–61. Cerca con Google

Dean, D.J., Schmidt, J.C., 2013. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic response. Geomorphology 201, 183–198. Cerca con Google

Gaume, E., Borga, M., 2008. Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. Journal of Flood Risk Management 1(4): 175–189. Cerca con Google

Grimaldi, S., Petroselli, A., Romano, N., 2013. Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrological Processes 27 (8): 253-264. Cerca con Google

Gupta, A., Fox, H., 1974. Effects of high magnitude floods on channel form: a case study in the Maryland Piedmont. Water Resour. Res. 10: 499–509. Cerca con Google

Harvey, A.M. 1984. Geomorphological response to an extreme flood: a case from Southern Spain. Earth Surface Processes and Landforms 9: 267–279. Cerca con Google

Harvey, A.M., 2001. Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena 42: 225-250. Cerca con Google

Heritage, G.L., Large, A.R.G., Moon, B.P., Jewitt, G., 2004. Channel hydraulics and geomorphic effects of an extreme flood event on the Sabie River, South Africa. Catena 58: 151–181. Cerca con Google

Hooke, J.M., Mant, J.M., 2000. Geomorphological impacts of a flood event on ephemeral channels in SE Spain. Geomorphology 34(3-4): 163–180. Cerca con Google

Hungr, O., Evans, S.G., Bovis, M.J., Hutchinson, J.N., 2001. A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience 7: 221-238. Cerca con Google

Jansen, J.D., 2006. Flood magnitude–frequency and lithologic control on bedrock river incision in post-orogenic terrain. Geomorphology 82: 39–57. Cerca con Google

Johnson, R.M., Warburton, J., 2002. Flooding and geomorphic impacts in a mountain torrent: Raise Beck, central Lake District, England. Earth Surface Processes and Landforms 27: 945–969. Cerca con Google

Kale, V.S., 2007. Geomorphic effectiveness of extraordinary floods on three large rivers of the Indian Peninsula. Geomorphology 85: 306–316. Cerca con Google

Kale, V.S., Hire, P.S., 2004. Effectiveness of monsoon floods on the Tapi River, India: role of channel geometry and hydrologic regime. Geomorphology 57: 275–291. Cerca con Google

Krapesch, G., Hauer, C., Habersack, H., 2011. Scale orientated analysis of river width changes due to extreme flood hazard. Natural Hazards and Earth System Sciences 11: 2137–2147. Cerca con Google

Langhammer, L., 2010. Analysis of the relationship between the stream regulations and the geomorphologic effects of floods. Natural Hazards 54, 121–139. Cerca con Google

Lenzi, M.A., Mao, L., Comiti, F., 2006. Effective discharge for sediment transport in a mountain river: computational approaches and geomorphic effectiveness. Journal of Hydrology 326: 257-276. Cerca con Google

Lucía, A., Comiti, F., Borga, M., Cavalli, M., Marchi, L., 2015. Dynamics of large wood during a flash flood in two mountain catchments. Natural Hazards and Earth System Sciences, 15(8): 1741-1755. Cerca con Google

Magilligan, F.J., 1992. Thresholds and the spatial variability of flood power during extreme floods. Geomorphology 5: 373–390. Cerca con Google

Magilligan, F.J., Buraas, E.M., Renshaw, C.E., 2015. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175-188. Cerca con Google

Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L., Pogačnik, N., 2009. Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned. Hydrological Processes 23(26): 3761-3770. Cerca con Google

Marra, F., Nikolopoulos, E.I., Creutin, J.D., Borga, M., 2014. Radar rainfall estimation for the identification of debris-flow occurrence thresholds. Journal of Hydrology 519: 1607-1619. Cerca con Google

Martens, B., Cabus, P., De Jongh, I., Verhoest, N.E.C., 2013. Merging weather radar observations with ground-based measurements of rainfall using an adaptive multiquadric surface fitting algorithm. Journal of Hydrology 500: 84-96. Cerca con Google

Milan, D.J., 2012. Geomorphic impact and system recovery following an extreme flood in an upland stream: Thinhope Burn, northern England, UK. Geomorphology 13:, 319-328. Cerca con Google

Mondini, A.C., Viero, A., Cavalli, M., Marchi, L., Herrera, G., Guzzetti, F., 2014. Comparison of event landslide inventories: the Pogliaschina catchment test case, Italy. Natural Hazards Earth System Sciences 14: 1749–1759. Cerca con Google

Montgomery, R.D., Buffington, J.M., 1997. Channel-reach morphology in mountain drainage basin. Geol. Soc. Am. Bull. 109 (5): 596-611. Cerca con Google

Nardi, L., Rinaldi, M., 2015. Spatio-temporal patterns of channel changes in response to a major flood event: the case of the Magra River (central-northern Italy). Earth Surface Processes and Landforms 40: 326-339. Cerca con Google

Phillips, J.D., 2002. Geomorphic impacts of flash flooding in a forested headwater basin. Journal of Hydrology 269: 236–250. Cerca con Google

Pickup, G., Rieger W.A., 1979. A conceptual model of the relationship between channel characteristics and discharge. Earth Surface Processes 4: 37-42. Cerca con Google

Ponce, V.M., Hawkins, E.R.H., 1996. Runoff curve number: has it reached maturity? Journal of Hydrologic Engineering 1(1): 11–19. Cerca con Google

Reid, I., Laronne, J.B., Powell, D.M., 1998. Flash-flood and bedload dynamics of desert gravel-bed streams. Hydrological Processes 12: 543-557. Cerca con Google

Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2013. A method for the assessment and analysis of the hydromorphological condition of Italian streams: the Morphological Quality Index (MQI). Geomorphology 180-181: 96–108. Cerca con Google

Rinaldi, M., Amponsah, W., Benvenuti, M., Borga, M., Comiti, F., Lucìa, A., Marchi, L., Nardi, L., Righini, M., Surian, N., 2015. An integrated approach for investigating geomorphic response to extreme events: methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surface Processes and Landforms 41: 835–846. doi: 10.1002/esp.3902. Cerca con Google

Sloan, J., Miller, J.R., Lancaster, N., 2001. Response and recovery of the Eel River, California, and its tributaries to floods in 1955, 1964, and 1997. Geomorphology 36: 129-154. Cerca con Google

Surian, N., Mao, L., Giacomin M., Ziliani, L., 2009. Morphological effects of different channel forming discharges in a gravel-bed river. Earth Surface Processes and Landforms 34: 1093–1107. Cerca con Google

Thompson, C., Croke, J., 2013. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology 197: 156–169. Cerca con Google

Vocal Ferencevic, M.V., Ashmore, P., 2012. Creating and evaluating digital elevation model-based stream-power map as a stream assessment tool. River Research and Applications 28: 1394–1416. Cerca con Google

Wolman, M.G., Gerson, R.,1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes 3: 189–208. Cerca con Google

Wolman, M.G, Miller, J.P., 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54–74. Cerca con Google

Borga, M., Gaume, E., Creutin, J.D., Marchi, L., 2008. Surveying flash floods: gauging the ungauged extremes. Hydrol. Process. 22: 3883–3885. Cerca con Google

Costa, J.E., O'Connor, J.E., 1995. Geomorphically effective floods. In: Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P. (Eds.), Natural and Anthropogenic Influences in Fluvial Geomorphology. Monograph, vol. 89. American Geophysical Union, Washington, D.C., pp. 45–56. Cerca con Google

Dean, D.J., Schmidt, J.C., 2013. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic response. Geomorphology 201: 183–198. Cerca con Google

Destro, E., Marchi, L., Amponsah, W., Tarolli, P., Crema, S., Zoccatelli, D., Marra, F., Borga M., 2016. Hydrological analysis of the flash flood event of August 2, 2014 in a small basin of the Venetian Prealps. Quaderni di Idronomia Montana 34 (in Italian). Cerca con Google

Gaume, E., Borga, M., 2008. Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. J. Flood Risk Manage 1: 175–189. Cerca con Google

Hooke, J.M., 2016. Morphological impacts of flow events of varying magnitude on ephemeral channels in a semiarid region. Geomorphology 252: 128–143. Cerca con Google

Magilligan, F.J., Buraas, E.M., Renshaw, C.E., 2015. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175-188. Cerca con Google

Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L., Pogačnik, N., 2009. Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned. Hydrol. Process. 23 (26): 3761–3770. Cerca con Google

Marchi, L., Cavalli, M., Amponsah, W., Borga, M., Crema,S., 2016. Upper limits of flash flood stream power in Europe, Geomorphology 272: 68-77. doi.org/10.1016/j.geomorph.2015.11.005. Cerca con Google

Miller, A.J., 1987. What does it take to make a geomorphically effective flood? Some lessons from the November 1985 flood in West Virginia. In: Kite, J.S. (Ed.), Research on the Late Cenezoic of the Potomac Highlands, West Virginia. Open File Rep. OF8801.West Virginia Geol. and Econ. Survey, Morgantown,WV, 3–30. Cerca con Google

Nardi, L., Rinaldi, M., 2015. Spatio–temporal patterns of channel changes in response to a major flood event: the case of the Magra River (central–northern Italy). Earth Surface Processes and Landforms 40: 326 – 339. Cerca con Google

Regione del Veneto-Sezione Bacino idrografico Piave Livenza - Sezione di Treviso (2014). Stima della portata massima transitata sul fiume Lierza in occasione dell’evento di piena del 2 Agosto 2014, in località “Molinetto della Croda” (Comune di Refrontolo). Integrazione alla relazione idrologica e idraulica del 14 Agosto 2014. (in italian) Cerca con Google

Surian, N., Righini, M., Lucìa, A., Nardi, L., Amponsah, M., Benvenuti, M., Borga, M., Cavalli, M., Comiti, F., Marchi, L., Rinaldi, M., Viero, A., 2016. Channel response to extreme floods: insights on controlling factors from six mountain rivers in northern Apennines Italy. Geomorphology: 272, 78–91. doi:10.1016/j.geomorph.2016.02.002. Cerca con Google

Wohl, E., 2010. Mountain rivers revisited. AGU, Water Resources Monograph 19. Cerca con Google

Wolman, M.G., Gerson, R., 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189–208 Cerca con Google

Biron, P.M., Buffin-Bélanger, T., Larocque, M., Choné, G., Cloutier, C.A., Ouellet, M.A., Demers, S., Olsen, T., Desjarlais, C., Eyquem, J., 2014. Freedom space for rivers: a sustainable management approach to enhance river resilience. Environ. Manag. 54, 1056–1073. Cerca con Google

Arnaud-Fassetta, G., 2013. Dyke breaching and crevasse-splay sedimentary sequences of the Rhône Delta, France, caused by extreme river- flood of December 2003. Geografia Fisica e Dinamica Quaternaria, 36 (1): 7-26. Cerca con Google

Benito, G., 1997. Energy expenditure and geomorphic work of the cataclysmic Missoula flooding in the Columbia River Gorge, USA. Earth Surf. Process. Landf. 22: 457 – 472. Cerca con Google

Borga, M., Gaume, E., Creutin, J.D., Marchi, L., 2008. Surveying flash floods: gauging the ungauged extremes. Hydrological Processes, 22(18): 3883-3885, DOI: 10.1002/hyp.7111. Cerca con Google

Boudevillain, B., Delrieu, G., Galabertier, B., Bonnifait, L., Bouilloud, L., Kirstetter, P.E., Mosini, M.L., 2011. The Cévennes-Vivarais Mediterranean Hydrometeorological Observatory database. Water Resources Research, 47(7), W07701. Cerca con Google

Braud, I., Ayral, P.A., Bouvier, C., Branger, F., Delrieu, G., Le Coz, J., Nord, G., Vandervaere, J.P., Anquetin, S., Adamovic, M., Andrieu, J., Batiot, C., Boudevillain, B., Brunet, P., Carreau, J., Confoland, A., Didon-Lescot, J.F., Domergue, J.M., Douvinet, J., Dramais, G., Freydier, R., Gérard, S., Huza, J., Leblois, E., Le Bourgeois, O., Le Boursicaud, R., Marchand, P., Martin, P., Nottale, L., Patris, N., Renard, B., Seidel, J.L., Taupin, J.D., Vannier, O., Vincendon, B., Wijbrans, A., 2014. Multi-scale hydrometeorological observation and modelling for flash flood understanding. Hydrology and Earth System Sciences, 18 (9): 3733-3761. Cerca con Google

Brierley, G.J., Fryirs, K.A., 2005. Geomorphology and River Management: Applications of the River Style Framework. Blackwell, Oxford, UK, 398 pp. Cerca con Google

Carling, P.A., 1989. Hydrodynamic models of boulder berm deposition. Geomorphology, 2: 319-340. Cerca con Google

Flaounas, E., Drobinski, P., Vrac, M., Bastin, S., Lebeaupin-Brossier, C., Stéfanon, M., Borga, M., Calvet, J.C., 2013. Precipitation and temperature space-time variability and extremes in the Mediterranean region: evaluation of dynamical and statistical downscaling methods. Climate Dynamics, 40 (11-12): 2687-2705. Cerca con Google

Fuller, I.C., 2008. Geomorphic impacts of a 100-year flood: Kiwitea Stream, Manawatu catchment, New Zealand. Geomorphology 98: 84–95. Cerca con Google

Gaume E, Borga M. 2008. Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. Journal of Flood Risk Management 1(4): 175–189. Cerca con Google

Gaume, E., Livet, M., Desbordes, M., Villeneuve, J.P., 2004: Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999. Journal of Hydrology, 286 (1-4): 135-154. Cerca con Google

Giorgi, F., 2006. Climate change hot-spots, Geophys. Res. Lett., 33: L08707, doi:10.1029/2006GL025734. Cerca con Google

Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.T., 2012. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev., 112: 42–66. Cerca con Google

Harvey, A.M., 1984. Geomorphological response to an extreme flood: a case from Southern Spain. Earth Surface Processes and Landforms, 9: 267-279. Cerca con Google

Harvey, A.M., 2001. Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42: 225-250. Cerca con Google

Heritage, G.L., Large, A.R.G., Moon, B.P., Jewitt, G., 2004. Channel hydraulics and geomorphic effects of an extreme flood event on the Sabie River, South Africa. Catena 58: 151 – 181. Cerca con Google

Howard, A., Dolan, R., 1981. Geomorphology of the Colorado River in the Grand Canyon. J. Geol. 89: 269 – 298. Cerca con Google

Hungr, O., Evans, S.G., Bovis, M.J., Hutchinson, J.N., 2001. A review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7(3): 221-238. Cerca con Google

Krapesch, G., Hauer, C., Habersack, H., 2011. Scale orientated analysis of river width changes due to extreme flood hazard. Natural Hazards and Earth System Sciences 11: 2137–2147. Cerca con Google

Komar, P.D., 1989. Flow competence evaluation of the hydraulic parameters of floods: an assessment of the technique. In: Beven K, and Carling P. (eds), Floods: hydrological, sedimentological and geomorphological implications. Wiley, Chichester, UK, 107-134. Cerca con Google

Lapointe, M.F., Secretan, Y., Driscoll, S.N., Bergeron, N., Leclerc, M.. 1998. Response of the Ha! Ha! River to the flood of July 1996 in the Saguenay Region of Quebec: large scale avulsion in a glaciated valley. Water Resources Research 34: 2383–2392. Cerca con Google

Llasat, M.C., Llasat-Botija, M., Prat, M.A., Porcu, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., Nicolaides, K., 2010: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv. Geosci., 23: 47–55. Cerca con Google

Lucìa, A., Comiti, F., Borga, M., Cavalli, M., Marchi, L., 2015. Dynamics of large wood during a flash flood in two mountain catchments. Nat. Hazards Earth Syst. Sci., 3: 1643-1680. Cerca con Google

Macklin, M.G., Rumsby, B.T., Heap, M.T., 1992. Flood alluviation and entrenchment: Holocene valley-floor development and transformation in the British uplands. Geological Society of America Bulletin, 104: 631–43. Cerca con Google

Magilligan, F.J., Phillips, J.D., James, L.A., Gomez, B., 1998. Geomorphic and sedimentological controls on the effectiveness of an extreme flood. Journal of Geology 106: 87–95. Cerca con Google

Magilligan, F.J., Buraas, E.M., Renshaw, C.E., 2015. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175-188. Cerca con Google

Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L., Pogačnik, N., 2009. Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned. Hydrological Processes, 23(26): 3761-3770, DOI: 10.1002/hyp.7542. Cerca con Google

Milan, D.J., 2012. Geomorphic impact and system recovery following an extreme flood in an upland stream: Thinhope Burn, northern England, UK. Geomorphology, 138(1), 319-328. Cerca con Google

Miller, A.J., 1990. Flood hydrology and geomorphic effectiveness in the central Appalachians. Earth Surface Processes and Landforms 15, 119–134. Cerca con Google

Mondini, A.C., Viero, A., Cavalli, M., Marchi, L., Herrera, G., Guzzetti, F., 2014. Comparison of event landslide inventories: the Pogliaschina catchment test case, Italy. Nat. Hazards Earth Syst. Sci., 14: 1749-1759, doi:10.5194/nhess-14-1749-2014. Cerca con Google

Nardi, L., Rinaldi, M. 2015. Spatio-temporal patterns of channel changes in response to a major flood event: the case of the Magra River (central– northern Italy). Earth Surface Processes and Landforms, 40: 326-339, doi: 10.1002/esp.3636. Cerca con Google

Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2013. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology, 180-181: 96-108, doi: 10.1016/j.geomorph.2012.09.009. Cerca con Google

Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2015. A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology, doi:10.1016/j.geomorph.2015.05.010, Early View. Cerca con Google

Salvati, P., Bianchi, C., Rossi, M., Guzzetti, F., 2010. Societal landslide and flood risk in Italy. Nat. Hazards Earth Syst. Sci., 10 (3): 465–483. Cerca con Google

Surian, N., Righini, M., Lucìa, A.V., Nardi, L., Amponsah, W., Benvenuti, M., Borga, M., Cavalli, M., Comiti, F., Marchi, L., Rinaldi, M., Viero, A., 2015. Channel response to extreme floods: insights on controlling factors from six mountain rivers in northern Apennines, Italy. Geomorphology, 272: 78–91. doi:10.1016/j.geomorph.2016.02.002. Cerca con Google

Tarolli, P., Borga, M., Morin, E., Delrieu, G., 2012. Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions. Nat. Hazards Earth Syst. Sci., 12: 1255–1265. Cerca con Google

Thompson, C., Croke, J., 2013. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology 197: 156–169. Cerca con Google

Vocal Ferencevic, M.V., Ashmore, P., 2011. Creating and evaluating digital elevation model-based stream-power map as a stream assessment tool. River Res.Applic. 28:1394-1416. Cerca con Google

Wells, S.G., Harvey, A.M., 1987. Sedimentologic and geomorphic variations in storm-generated alluvial fans, Howgill Fells, northwest England. Geological Society of America Bulletin, 98: 182-198. Cerca con Google

Wheaton, J.M., Brasington, J., Darby, S.E., and Sear, D.A., 2010. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms 35: 136-156. Cerca con Google

Wohl, E.E., Greenbaum, N., Schick, A.P., Baker, V.R., 1994. Controls on bed- rock channel incision along Nahal Paran, Israel. Earth Surface Pro- cesses and Landforms 19: 1–13. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record