Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Tomasin, Marco (2017) Quantum information with polarization and temporal degrees of freedom. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 31 January 2020 for intellectual property related reasons.
Visibile to: nobody

7Mb

Abstract (english)

This work deals with creation, manipulation and detection of quantum photon states, in one and two degrees of freedom, encoded in polarization and time-bin basis. A particular quantum state, an entangled state, carries a wide range of implementations, that are impossible via classical tasks, such as teleportation, dense coding, and quantum communication protocols. One of these tasks, quantum cryptography, allows intrinsically secure transmission of information. Nowadays, quantum key distribution is implemented in intercity quantum networks, by using telecommunication fibers to connect nodes within the network. In future scenarios, photons could travel through greater distances, but, due to losses, fiber links need for quantum repeater, a very demanding engineering solution. An alternative way, is the use of free-space satellite quantum networks.
Here we focus on polarization and time bin degrees of freedom (DOFs) of the photons as a resource for quantum information. In particular we study the possibility to share an hyper-entangled state in polarization and time-bin DOFs between two spatially separated users. In addition we study a new tomographic method, based on compressed sensing, to recover the density matrix of a quantum state when prior information are available.
Typical implementation of time-bin photon source, based on Franson’s scheme, suffers on intrinsic loophole. To overcome that we experimentally demonstrated that with a time-bin source it is possible to obtain a very high visibility in order to violate a chained Bell inequality.
Interference at single photon level through satellite-ground channels is presented here, showing that, temporal encoding is preserved along turbulent channels. With this experiment we show that temporal encoding can be use for a future implementation of satellite quantum communication. Finally, to complete this work, we demonstrate a new method to certified the randomness of a source, useful in many task, such as quantum cryptography by using a polarization entangled photons source.

Abstract (italian)

Questo lavoro è incentrato sulla creazione, manipolazione e rivelazione di fotoni, in uno o due gradi di libertà, codificati nel dominio del tempo o della polarizzazione. L’entanglement quantistico può essere usato per una vasta gamma di applicazioni che non sono possibili classicamente, come il teletrasporto quantistico, il denscoding e la crittografia quantistica. Quest’ultima, fornisce un grado di sicurezza incondizionato, poichè basata su leggi fisiche. Attualmente, le reti di comunicazione quantistica sono state implementate a livello cittadino utilizzando fibre ottiche per le telecomunicazioni.
In uno scenario futuro, sarà necessario raggiungere distanze maggiori, ma a causa delle alte perdite, soluzioni basate su link in fibra saranno difficili da implementare. Un’alternativa è quella di utilizzare reti satellitari per le comunicazioni quantistiche.
In questo lavoro ci focalizziamo sulla realizzazione di una sorgente di fotoni hyper-entangled in tempo e polarizzazione. La particolarità di questa sorgente è la possibilità di condividere lo stato tra due utenti spazialmente separati. Inoltre, abbiamo sviluppato un algoritmo di tomografia quantistica basato sul compressed sensing, per la ricostruzione di uno stato con un numero molto limitato di misure. Per poter funzionare, questo algoritmo ha bisogno di informazioni sullo stato di partenza.
Successivamente, vedremo come il loophole dovuto alla postselezione in una sorgente di fotoni entangled in time-bin, può essere superato con una buona implementazione del setup ottico. Infatti nel nostro esperimento è stato possibile raggiungere una visibilità molto elevata, che ha permesso di violare le disuguaglianze di Bell concatenate.
Vedremo inoltre, la possibilità di utilizzare fotoni codificati nel dominio temporale in un canale satellite-terra. Infatti, abbiamo dimostrato che la turbolenza non rovina lo stato inviato, aprendo la strada a futuri sviluppi basati sulla codifica temporale.
Infine, per completare questo lavoro, una sorgente di fotoni entangled in polarizzazione è stata utilizzata per dimostrare un nuovo metodo per la certificazione della randomicità di una sorgente.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Villoresi, Paolo
Ph.D. course:Ciclo 29 > Corsi 29 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:Quantum information entanglement photon polarization time-bin
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:10123
Depositato il:02 Nov 2017 15:59
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Wikipedia, www.wikipedia.com. Vai! Cerca con Google

[2] Componentlibrary by alexander franzen, licensed under a creative commons Cerca con Google

attribution-noncommercial 3.0 unported license, www.gwoptics.org/componentlibrary, Vai! Cerca con Google

https://creativecommons.org/licenses/by-nc/3.0/. Vai! Cerca con Google

[3] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical Cerca con Google

reality be considered complete? Phys. Rev., 47:777–780, May 1935. Cerca con Google

[4] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, Cerca con Google

F. Steinlechner, J. Kofler, J. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, Cerca con Google

J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, Cerca con Google

and A. Zeilinger. Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Cerca con Google

Rev. Lett., 115:250401, Dec 2015. Cerca con Google

[5] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, Cerca con Google

T. Gerrits, S. Glancy, D. R. Hamel, M.l S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Cerca con Google

Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Cerca con Google

Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, Cerca con Google

M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam. Strong Cerca con Google

loophole-free test of local realism*. Phys. Rev. Lett., 115:250402, Dec 2015. Cerca con Google

[6] S. J. Freedman and J. F. Clauser. Experimental test of local hidden-variable theories. Phys. Rev.Lett., 28:938–941, Apr 1972. Cerca con Google

[7] A. Aspect, P. Grangier, and G. Roger. Experimental tests of realistic local theories via bell’s Cerca con Google

theorem. Phys. Rev. Lett., 47:460–463, Aug 1981. Cerca con Google

[8] B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Cerca con Google

Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, Cerca con Google

D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson. Loophole-free bell Cerca con Google

inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575):682– Cerca con Google

686, Oct 2015. Letter. Cerca con Google

[9] R. Jozsa. Fidelity for mixed quantum states. Journal of Modern Optics, 41(12):2315–2323, 1994. Cerca con Google

[10] A. Gerardo, A. Serafini, and F. Illuminati. Entanglement, purity, and information entropies in Cerca con Google

continuous variable systems. Open Systems and Information Dynamics, 12(02):189–205, 2005. Cerca con Google

[11] N. A. Peters, T. Wei, and P. G. Kwiat. Mixed-state sensitivity of several quantum-information Cerca con Google

benchmarks. Phys. Rev. A, 70:052309, Nov 2004. Cerca con Google

[12] N. Linden, S. Popescu, and S. Popescu. On multi-particle entanglement. Fortschritte der Cerca con Google

Physik, 46(4-5):567–578, 1998. Cerca con Google

[13] X. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger. Experimental Cerca con Google

delayed-choice entanglement swapping. Nat Phys, 8(6):479–484, Jun 2012. Cerca con Google

[14] J. Jin, M. Grimau Puigibert, L. Giner, J. A. Slater, M. R. E. Lamont, V. B. Verma, M. D. Shaw, Cerca con Google

F. Marsili, S. W. Nam, D. Oblak, and W. Tittel. Entanglement swapping with quantummemory- Cerca con Google

compatible photons. Phys. Rev. A, 92:012329, Jul 2015. Cerca con Google

[15] T. Vértesi, S. Pironio, and N. Brunner. Closing the detection loophole in bell experiments Cerca con Google

using qudits. Phys. Rev. Lett., 104:060401, Feb 2010. Cerca con Google

[16] A. Cabello. Bipartite bell inequalities for hyperentangled states. Phys. Rev. Lett., 97:140406, Cerca con Google

Oct 2006. Cerca con Google

[17] M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini. Polarization-momentum hyperentangled Cerca con Google

states: Realization and characterization. Phys. Rev. A, 72:052110, Nov 2005. Cerca con Google

[18] J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat. Generation of hyperentangled Cerca con Google

photon pairs. Phys. Rev. Lett., 95:260501, Dec 2005. Cerca con Google

[19] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. G¨uhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Cerca con Google

Chen, and J.-W. Pan. Experimental demonstration of a hyper-entangled ten-qubit schr¨odinger Cerca con Google

cat state. Nature Physics, 6:331–335, 2010. Cerca con Google

[20] S. Massar. Nonlocality, closing the detection loophole, and communication complexity. Phys. Cerca con Google

Rev. A, 65:032121, Mar 2002. Cerca con Google

[21] D. M. Greenberger, M. A. Horne, and A. Zeilinger. Going Beyond Bell’s Theorem, pages 69– Cerca con Google

72. Springer Netherlands, Dordrecht, 1989. Cerca con Google

[22] Mark Beck. Quantum Mechanics: Theory and Experiment. Oxford University Press, 2012. Cerca con Google

[23] Malvin Carl Teich Bahaa E. A. Saleh. Fundamentals of Photonics, 2nd Edition. Wiley, 2007. Cerca con Google

[24] I. L. Chuang M. A. Nielsen. Quantum Computation and Quantum Information. Cambridge, Cerca con Google

2010. Cerca con Google

[25] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with Cerca con Google

linear optics. Nature, 409:46–52, 2001. Cerca con Google

[26] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White. Measurement of qubits. Phys. Rev. Cerca con Google

A, 64:052312, Oct 2001. Cerca con Google

[27] I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin. Time-bin Cerca con Google

entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A, Cerca con Google

66:062308, Dec 2002. Cerca con Google

[28] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin. Distribution Cerca con Google

of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett., 93:180502, Oct 2004. Cerca con Google

[29] D. Grassani, M. Galli, and D. Bajoni. Active stabilization of a michelson interferometer at an Cerca con Google

arbitrary phase with subnanometer resolution. Opt. Lett., 39(8):2530–2533, Apr 2014. Cerca con Google

[30] K. Huang, H. Le Jeannic, J. Ruaudel, O. Morin, and J. Laurat. Microcontroller-based locking Cerca con Google

in optics experiments. Review of Scientific Instruments, 85(12), 2014. Cerca con Google

[31] G. Vallone and P. Mataloni. Generation and applications of n-qubit hyper-entangled photon Cerca con Google

states. Advances in Atomic Molecular and Optical Physics, pages vol. 60, pp. 291–314, 2011. Cerca con Google

[32] L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995. Cerca con Google

[33] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on Cerca con Google

einstein-podolsky-rosen states. Phys. Rev. Lett., 69:2881–2884, Nov 1992. Cerca con Google

[34] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger. Dense coding in experimental Cerca con Google

quantum communication. Phys. Rev. Lett., 76:4656–4659, Jun 1996. Cerca con Google

[35] M. Horodecki and M. Piani. On quantum advantage in dense coding. Journal of Physics A: Cerca con Google

Mathematical and Theoretical, 45(10):105306, 2012. Cerca con Google

[36] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting Cerca con Google

an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Cerca con Google

Lett., 70:1895–1899, Mar 1993. Cerca con Google

[37] D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu. Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 80:1121–1125, Feb 1998. Cerca con Google

[38] T. Jennewein, G. Weihs, J. Pan, and A. Zeilinger. Experimental nonlocality proof of quantum Cerca con Google

teleportation and entanglement swapping. Phys. Rev. Lett., 88:017903, Dec 2001. Cerca con Google

[39] R. Valivarthi, M. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Cerca con Google

Nam, D. Oblak, and W. Tittel. Quantum teleportation across a metropolitan fibre network. Cerca con Google

Nat Photon, 10(10):676–680, Oct 2016. Letter. Cerca con Google

[40] Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, Cerca con Google

H. Terai, X. Jiang, T. Chen, L. You, X. Chen, Z. Wang, J. Fan, Q. Zhang, and J. Pan. Quantum Cerca con Google

teleportation with independent sources and prior entanglement distribution over a network. Cerca con Google

Nat Photon, 10(10):671–675, Oct 2016. Letter. Cerca con Google

[41] J. Pan, D. Bouwmeester, H. Weinfurter, and A Zeilinger. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett., 80:3891–3894, May 1998. Cerca con Google

[42] F. Sciarrino, E. Lombardi, G. Milani, and F. De Martini. Delayed-choice entanglement swapping with vacuum one-photon quantum states. Phys. Rev. A, 66:024309, Aug 2002. Cerca con Google

[43] R. Jin, M. Takeoka, U. Takagi, R. Shimizu, and M. Sasaki. Highly efficient entanglement Cerca con Google

swapping and teleportation at telecom wavelength. Scientific Reports, 5:9333 EP –, Mar 2015. Cerca con Google

Article. Cerca con Google

[44] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. Mod. Phys., Cerca con Google

74:145–195, Mar 2002. Cerca con Google

[45] M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini. Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement. Phys. Rev. A, Cerca con Google

75:042317, Apr 2007. Cerca con Google

[46] Paul G. Kwiat and Harald Weinfurter. Embedded bell-state analysis. Phys. Rev. A, 58:R2623– Cerca con Google

R2626, Oct 1998. Cerca con Google

[47] C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter. Complete deterministic linear optics Cerca con Google

bell state analysis. Phys. Rev. Lett., 96:190501, May 2006. Cerca con Google

[48] S. P. Walborn, S. Pádua, and C. H. Monken. Hyperentanglement-assisted bell-state analysis. Cerca con Google

Phys. Rev. A, 68:042313, Oct 2003. Cerca con Google

[49] R. Blume-Kohout. Optimal, reliable estimation of quantum states. New Journal of Physics, Cerca con Google

12(4):043034, 2010. Cerca con Google

[50] R. Blume-Kohout. Hedged maximum likelihood quantum state estimation. Phys. Rev. Lett., Cerca con Google

105:200504, Nov 2010. Cerca con Google

[51] V. Bužek, R. Derka, G. Adam, and P.L. Knight. Reconstruction of quantum states of spin Cerca con Google

systems: From quantum bayesian inference to quantum tomography. Annals of Physics, Cerca con Google

266(2):454 – 496, 1998. Cerca con Google

[52] B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo. Quantum state tomography via linear Cerca con Google

regression estimation. Scientific Reports, 3:3496 EP –, Dec 2013. Article. Cerca con Google

[53] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi. Maximum-likelihood estimation Cerca con Google

of the density matrix. Phys. Rev. A, 61:010304, Dec 1999. Cerca con Google

[54] Z. Hradil. Quantum-state estimation. Phys. Rev. A, 55:R1561–R1564, Mar 1997. Cerca con Google

[55] T. Heinosaari, L. Mazzarella, and M. M. Wolf. Quantum tomography under prior information. Cerca con Google

Communications in Mathematical Physics, 318(2):355–374, 2013. Cerca con Google

[56] A. Kalev, R. L. Kosut, and I. H. Deutsch. Quantum tomography protocols with positivity are Cerca con Google

compressed sensing protocols. Npj Quantum Information, 1:15018 EP –, Dec 2015. Article. Cerca con Google

[57] D. Gross, Y. K. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomography via Cerca con Google

compressed sensing. Phys. Rev. Lett., 105:150401, Oct 2010. Cerca con Google

[58] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489–509, Feb 2006. Cerca con Google

[59] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289– Cerca con Google

1306, April 2006. Cerca con Google

[60] E. J. Candes and M. B. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2):21–30, March 2008. Cerca con Google

[61] M. Fazel. Matrix rank minimization with applications. PhD thesis, Stanford University, 2002. Cerca con Google

[62] S. T. Flammia, Gross. D., Liu. Y. K., and Eisert J. Quantum tomography via compressed Cerca con Google

sensing: error bounds, sample complexity and efficient estimators. New Journal of Physics, Cerca con Google

14(9):095022, 2012. Cerca con Google

[63] Y. K. Liu. Universal low-rank matrix recovery from pauli measurements. In J. Shawe-taylor, Cerca con Google

R.s. Zemel, P. Bartlett, F.c.n. Pereira, and K.q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 1638–1646. 2011. Cerca con Google

[64] W. Liu, T. Zhang, J. Y. Liu, P. X. Chen, and J. M. Yuan. Experimental quantum state tomography via compressed sampling. Phys. Rev. Lett., 108:170403, Apr 2012. Cerca con Google

[65] C. A. Riofrio, D. Gross, S. T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert. Experimental Cerca con Google

quantum compressed sensing for a seven-qubit system. arXiv:1608.02263. Cerca con Google

[66] M. Tomasin, E. Mantoan, J. Jogenfors, G. Vallone, J. Larsson, and P. Villoresi. High-visibility Cerca con Google

time-bin entanglement for testing chained bell inequalities. arXiv:1612.03602. Cerca con Google

[67] E. Candes and T. Tao. The dantzig selector: Statistical estimation when p is much larger than Cerca con Google

n. Ann. Statist., 35(6):2313–2351, 12 2007. Cerca con Google

[68] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. Technical report, IEEE Journal of Selected Topics in Signal Processing, 2007. Cerca con Google

[69] F. Tonolini, S. Chan, M. Agnew, A. Lindsay, and J. Leach. Reconstructing high-dimensional Cerca con Google

two-photon entangled states via compressive sensing. Scientific Reports, 4:6542 EP –, Oct 2014. Cerca con Google

Article. Cerca con Google

[70] Sdpt3, www.math.nus.edu.sg/ mattohkc/sdpt3.html. Vai! Cerca con Google

[71] Cvx, cvxr.com. Cerca con Google

[72] A. Ling, A. Lamas-Linares, and C. Kurtsiefer. Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes. Phys. Rev. A, 77:043834, Apr Cerca con Google

2008. Cerca con Google

[73] Devin Hugh Smith. An ultrafast source of polarization entangled photon pairs based on a Cerca con Google

sagnac interferometer, 2009. Cerca con Google

[74] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani. Device-independent Cerca con Google

security of quantum cryptography against collective attacks. Phys. Rev. Lett., 98:230501, Jun Cerca con Google

2007. Cerca con Google

[75] J. D. Franson. Bell inequality for position and time. Phys. Rev. Lett., 62:2205–2208, May 1989. Cerca con Google

[76] J. D. Franson. Inconsistency of local realistic descriptions of two-photon interferometer experiments. Phys. Rev. A, 61:012105, Dec 1999. Cerca con Google

[77] S. Aerts, P. Kwiat, J. Larsson, and M. Z˙ukowski. Two-photon franson-type experiments and Cerca con Google

local realism. Phys. Rev. Lett., 83:2872–2875, Oct 1999. Cerca con Google

[78] J. Larsson and R. D. Gill. Bell’s inequality and the coincidence-time loophole. EPL (Europhysics Letters), 67(5):707, 2004. Cerca con Google

[79] J. Larsson. Loopholes in bell inequality tests of local realism. Journal of Physics A: Mathematical and Theoretical, 47(42):424003, 2014. Cerca con Google

[80] G. Lima, G. Vallone, A. Chiuri, A. Cabello, and P. Mataloni. Experimental bell-inequality Cerca con Google

violation without the postselection loophole. Phys. Rev. A, 81:040101, Apr 2010. Cerca con Google

[81] A. Cabello, A. Rossi, G. Vallone, F. De Martini, and P. Mataloni. Proposed bell experiment Cerca con Google

with genuine energy-time entanglement. Phys. Rev. Lett., 102:040401, Jan 2009. Cerca con Google

[82] L. De Caro and A. Garuccio. Reliability of bell-inequality measurements using polarization Cerca con Google

correlations in parametric-down-conversion photon sources. Phys. Rev. A, 50:R2803–R2805, Cerca con Google

Oct 1994. Cerca con Google

[83] G. Carvacho, J. Cariñe, G. Saavedra, Á. Cuevas, J. Fuenzalida, F. Toledo, M. Figueroa, A. Cabello, J. Larsson, P. Mataloni, G. Lima, and G. B. Xavier. Postselection-loophole-free bell test Cerca con Google

over an installed optical fiber network. Phys. Rev. Lett., 115:030503, Jul 2015. Cerca con Google

[84] S. Aerts, P. Kwiat, and M. Zukowski. Two-Photon Franson-Type Experiments and Local Realism pages 1–4, 1999. Cerca con Google

[85] Philip M. Pearle. Hidden-variable example based upon data rejection. Phys. Rev. D, 2:1418– Cerca con Google

1425, Oct 1970. Cerca con Google

[86] J. Jogenfors and J. Larsson. Energy-time entanglement, elements of reality, and local realism. Cerca con Google

Journal of Physics A: Mathematical and Theoretical, 47(42):424032, 2014. Cerca con Google

[87] J. F. Clauser and M. A. Horne. Experimental consequences of objective local theories. Phys. Cerca con Google

Rev. D, 10:526–535, Jul 1974. Cerca con Google

[88] G. Vallone, I. Gianani, E. B. Inostroza, C. Saavedra, G. Lima, A. Cabello, and P. Mataloni. Testing hardy’s nonlocality proof with genuine energy-time entanglement. Phys. Rev. A, 83:042105, Apr 2011. Cerca con Google

[89] D. Boschi, S. Branca, F. De Martini, and L. Hardy. Ladder proof of nonlocality without inequalities: Theoretical and experimental results. Phys. Rev. Lett., 79:2755–2758, Oct 1997. Cerca con Google

[90] C. Holloway, E. Meyer-Scott, C. Erven, and T. Jennewein. Quantum entanglement distribution Cerca con Google

with 810 nm photons through active telecommunication fibers. Opt. Express, Cerca con Google

19(21):20597–20603, Oct 2011. Cerca con Google

[91] K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Cerca con Google

Shields. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Cerca con Google

Rev. X, 2:041010, Nov 2012. Cerca con Google

[92] N. Hosseinidehaj and R. Malaney. Gaussian entanglement distribution via satellite. Phys. Rev. Cerca con Google

A, 91:022304, Feb 2015. Cerca con Google

[93] W. Thacker and A. Gupta. Quantum controlled error-correction teleportation (qcect) scheme Cerca con Google

for satellite control and communication. arXiv:1512.00139, Dec 2015. Cerca con Google

[94] F. Gerlin, N. Laurenti, G. Naletto, G. Vallone, P. Villoresi, L. Bonino, S. Mottini, and Z. Sodnik. Cerca con Google

Design optimization for quantum communications in a gnss intersatellite network. In Cerca con Google

Localization and GNSS (ICL-GNSS), 2013 International Conference on, pages 1–6, June 2013. Cerca con Google

[95] Elizabeth Gibney. Chinese satellite is one giant step for the quantum internet, 2016. Cerca con Google

[96] K. Günthner and et al. Quantum-limited measurements of optical signals from a geostationary Cerca con Google

satellite. arXiv:1608.03511, Aug 2016. Cerca con Google

[97] P Villoresi, T Jennewein, F Tamburini, M Aspelmeyer, C Bonato, R Ursin, C Pernechele, Cerca con Google

V Luceri, G Bianco, A Zeilinger, and C Barbieri. Experimental verification of the feasibility Cerca con Google

of a quantum channel between space and earth. New Journal of Physics, 10(3):033038, 2008. Cerca con Google

[98] C Bonato, A Tomaello, V Da Deppo, G Naletto, and P Villoresi. Feasibility of satellite Cerca con Google

quantum key distribution. New Journal of Physics, 11(4):45017, 2009. Cerca con Google

[99] I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi. Impact Cerca con Google

of turbulence in long range quantum and classical communications. Phys. Rev. Lett., Cerca con Google

109:200502, Nov 2012. Cerca con Google

[100] G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi. Experimental satellite quantum communications. Phys. Rev. Lett., 115:040502, Jul 2015. Cerca con Google

[101] G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M. Schiavon, V. Luceri, G. Bianco, and Cerca con Google

P. Villoresi. Interference at the single photon level along satellite-ground channels. Phys. Rev. Cerca con Google

Lett., 116:253601, Jun 2016. Cerca con Google

[102] G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M. Schiavon, V. Luceri, G. Bianco, and Cerca con Google

P. Villoresi. Supplemental material:interference at the single photon level along satelliteground Cerca con Google

channels. Phys. Rev. Lett., 116:253601, Jun 2016. Cerca con Google

[103] Timothy C. Ralph Hans-A. Bachor. A Guide to Experiments in Quantum Optics, 2nd, Revised Cerca con Google

and Enlarged Edition. Wiley, 2004. Cerca con Google

[104] j. Degnan. Geodyn. Ser., 25(233), 1993. Cerca con Google

[105] D Holste, I Große, and H Herzel. Bayes’ estimators of generalized entropies. Journal of Physics A: Mathematical and General, 31(11):2551, 1998. Cerca con Google

[106] R. Konig, R. Renner, and C. Schaffner. The operational meaning of min- and max-entropy. Cerca con Google

IEEE Transactions on Information Theory, 55(9):4337–4347, Sept 2009. Cerca con Google

[107] M. Tomamichel and R. Renner. Uncertainty relation for smooth entropies. Phys. Rev. Lett., Cerca con Google

106:110506, Mar 2011. Cerca con Google

[108] J. M. Renes and J. Boileau. Conjectured strong complementary information tradeoff. Phys. Cerca con Google

Rev. Lett., 103:020402, Jul 2009. Cerca con Google

[109] M. Berta, M. Christandl, R. Colbeck, J. Renes, and R. Renner. The uncertainty principle in Cerca con Google

the presence of quantum memory. Nat Phys, 6(9):659–662, Sep 2010. Cerca con Google

[110] S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, Cerca con Google

S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe. Random numbers certified Cerca con Google

by bell’s theorem. Nature, 464(7291):1021–1024, Apr 2010. Cerca con Google

[111] C. Dhara, G.e Prettico, and A. Acín. Maximal quantum randomness in bell tests. Phys. Rev. Cerca con Google

A, 88:052116, Nov 2013. Cerca con Google

[112] R. Colbeck and A. Kent. Private randomness expansion with untrusted devices. Journal of Cerca con Google

Physics A: Mathematical and Theoretical, 44(9):095305, 2011. Cerca con Google

[113] U. Vazirani and T. Vidick. Certifiable quantum dice. Philosophical Transactions of the Royal Cerca con Google

Society of London A: Mathematical, Physical and Engineering Sciences, 370(1971):3432–3448, Cerca con Google

2012. Cerca con Google

[114] S. Pironio and S. Massar. Security of practical private randomness generation. Phys. Rev. A, Cerca con Google

87:012336, Jan 2013. Cerca con Google

[115] R. Gallego, L. Masanes, G. De La Torre, C. Dhara, L. Aolita, and A. Acín. Full randomness Cerca con Google

from arbitrarily deterministic events. Nature Communications, 4:2654 EP –, Oct 2013. Article. Cerca con Google

[116] R. Colbeck and R. Renner. Free randomness can be amplified. Nat Phys, 8(6):450–453, Jun Cerca con Google

2012. Cerca con Google

[117] Garcia-Escartin J.C. Herrero-Collantes M. Quantum random number generators. Cerca con Google

arXiv:1604.03304. Cerca con Google

[118] X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang. Quantum random number generation. Npj Cerca con Google

Quantum Information, 2:16021 EP –, Jun 2016. Review Article. Cerca con Google

[119] G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi. Quantum randomness certified Cerca con Google

by the uncertainty principle. Phys. Rev. A, 90:052327, Nov 2014. Cerca con Google

[120] M Peev, C Pacher, R Alléaume, C Barreiro, J Bouda, W Boxleitner, T Debuisschert, Cerca con Google

E Diamanti, M Dianati, J F Dynes, S Fasel, S Fossier, M Fürst, J-D Gautier, O Gay, N Gisin, Cerca con Google

P Grangier, A Happe, Y Hasani, M Hentschel, H Hübel, G Humer, T Länger, M Legré, Cerca con Google

R Lieger, J Lodewyck, T Lorünser, N Lütkenhaus, A Marhold, T Matyus, O Maurhart, Cerca con Google

L Monat, S Nauerth, J-B Page, A Poppe, E Querasser, G Ribordy, S Robyr, L Salvail, A W Cerca con Google

Sharpe, A J Shields, D Stucki, M Suda, C Tamas, T Themel, R T Thew, Y Thoma, A Treiber, Cerca con Google

P Trinkler, R Tualle-Brouri, F Vannel, N Walenta, H Weier, H Weinfurter, I Wimberger, Z L Cerca con Google

Yuan, H Zbinden, and A Zeilinger. The secoqc quantum key distribution network in vienna. Cerca con Google

New Journal of Physics, 11(7):075001, 2009. Cerca con Google

[121] F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zhao, H. Li, D. Liu, Z. Han, Cerca con Google

and G. Guo. Field experiment on a robust hierarchical metropolitan quantum cryptography Cerca con Google

network. Chinese Science Bulletin, 54(17):2991–2997, 2009. Cerca con Google

[122] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Cerca con Google

Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, Cerca con Google

T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, Cerca con Google

T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Cerca con Google

Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, Cerca con Google

G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger. Field Cerca con Google

test of quantum key distribution in the tokyo qkd network. Opt. Express, 19(11):10387–10409, Cerca con Google

May 2011. Cerca con Google

[123] D Stucki, M Legré, F Buntschu, B Clausen, N Felber, N Gisin, L Henzen, P Junod, G Litzistorf, Cerca con Google

P Monbaron, L Monat, J-B Page, D Perroud, G Ribordy, A Rochas, S Robyr, J Tavares, Cerca con Google

R Thew, P Trinkler, S Ventura, R Voirol, N Walenta, and H Zbinden. Long-term performance Cerca con Google

of the swissquantum quantum key distribution network in a field environment. New Journal Cerca con Google

of Physics, 13(12):123001, 2011. Cerca con Google

[124] Raffaelli Francesco. Quantum communications with hyper-entangled states between indipendent Cerca con Google

terminals, 2014. Cerca con Google

[125] Manton Elia. Entangled states on one or more degrees of freedom and their application to Cerca con Google

fundamental physics, 2015. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record