Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Cortese, Giuliana (2008) Dynamic models for competing risks and relative survival. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The thesis concerns regression models related to the competing risks setting in survival analysis and deals with both the case of known specific causes and the case of unknown (even if present) specific causes of the event of interest.

In the first part, dealing with events whose specific cause is known, competing risks modelling has been applied to a breast cancer study and some of the dynamic aspects such as time-dependent variables are tackled within the context of the application. The aim of the application was to detect an optimal chemotherapy dosage for different typologies of patients with advanced breast cancer in order to control the risk of cardiotoxicity. The attention was concentrated on the cumulative incidence probability of getting cardiotoxicity in a well-defined time period, conditional on risk factors. This probability was estimated as a function of the time-dependent covariate dosage. Within the context of the application, some problems of goodness-of-fit related to time-dependent covariates are discussed.

The previous application gave rise to investigating the role of time-dependent covariates in competing risks regression models. There exist various types of time-dependent covariates, which differ in their random or deterministic development in time. For so-called internal covariates, predictions based on the model are not allowed, or they meet with difficulties.
We describe a general overview of the state of the art, problems and future directions.
Moreover, a possible extension of the competing risks model, that allows us to include a simple random binary time-dependent variable, in a multi-state framework, is presented. Inclusion of the sojourn time of an individual in a certain state as a time-dependent covariate into the model, is also studied.

In the second part of the thesis, dealing with events whose specific cause is unavailable, regression models for relative survival are discussed. We study the nonparametric additive excess hazards models,
where the excess hazard is on additive form. We show how recent developments
can be used to make inferential statements about this models, and especially to test the hypothesis that an excess risk effect is time-varying in contrast to being constant over time.
We also show how a semiparametric additive risk model can be considered in the excess risk setting.
These two additive models are easy to fit with estimators on explicit form and inference including tests for time-constant effects can be carried out based on a resampling scheme. We analyze a real dataset using different approaches and show the need for more flexible models in relative survival.

Finally, we describe a new suggestion for goodness-of-fit of the additive and proportional models for relative survival, which avoids some disadvantages of recent proposals in the literature.
The method consists of statistical and graphical tests based on cumulative martingale residuals and it is illustrated for testing the proportional hazards assumption in the semiparametric proportional excess hazards model.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Salvan , Alessandra and Andersen, Per K. and Scheike, Thomas H.
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE STATISTICHE
Data di deposito della tesi:February 2008
Anno di Pubblicazione:February 2008
Key Words:time-dependent covariates, competing risks, nonparametric and semiparametric additive models, time-varying coefficients
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:1015
Depositato il:06 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Aalen, O. O. (1975). Statistical Inference for a Family of Counting Processes. PhD thesis, Department of Statistics, University of California, Berkeley. Cerca con Google

2. Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 6:701–726. Cerca con Google

3. Aalen, O. O. (1980). A model for non-parametric regression analysis of counting processes. In Klonecki, W., Kozek, A., and Rosinski, J., editors, Lecture Notes in Statistics-2: Mathematical Statistics and Probability Theory, pages 1–25. Springer- Verlag, New York. Cerca con Google

4. Aalen, O. O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907–925. Cerca con Google

5. Aalen, O. O. (1993). Further results on the non-parametric linear regression model in survival analysis. Statistics in Medicine, 12:1535–1649. Cerca con Google

6. Aalen, O. O. and Johansen, S. (1978). An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scandinavian Journal of Statistics, 5:141–150. Cerca con Google

7. Andersen, P. K. (1998). Censored data. Encyclopedia of Biostatistics, 1:578–584. Cerca con Google

8. Andersen, P. K., Abilstrom, S. Z., and Rosthøj, S. (2002). Competing risks as a multistate model. Statistical Methods in Medical Research, 11:203–215. Cerca con Google

9. Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer-Verlag, New York. Cerca con Google

10. Andersen, P. K. and Keiding, N. (2002). Multi-state models for event history analysis. Statistical Methods in Medical Research, 11:91–115. Cerca con Google

11. Andersen, P. K., Klein, J. P., and Rosthøj, S. (2003). Generalised linear models for correlated pseudo-observations, with applications to multi-state models. Biometrika, 90:15–27. Cerca con Google

12. Andersen, P. K. and Væth, M. (1989). Simple parametric and nonparametric models for excess and relative mortality. Biometrics, 45:523–535. Cerca con Google

13. Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. Cerca con Google

14. Bolard, P., Quantin, C., Abrahamowicz, M., Estève, J., Giorgi, R., Chadha-Boreham, H., Binquet, C., and Faivre, J. (2002). Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions: application to colon cancer. Journal of Cancer Epidemiology and Prevention, 7:113–122. Cerca con Google

15. Bolard, P., Quantin, C., Estève, J., Faivre, J., and Abrahamowicz, M. (2001). Modelling time-dependent hazard ratios in relative survival: application to colon cancer. Journal of Clinical Epidemiology, 54:986–996. Cerca con Google

16. Borgan, Ø. (1998). Aalen-Johansen estimator. Encyclopedia of Biostatistics, 1:578– 584. Cerca con Google

17. Brambilla, C., Rossi, A., Bonefante, V., Ferrari, L., Villiana, F., Crippa, F., and Bonadonna, G. (1986). Phase II study of doxorubicin versus epirubicin in advanced breast cancer. Cancer Treatment Reports, 70:261–266. Cerca con Google

18. Commenges, D. (1999). Multi-state models in epidemiology. Lifetime Data Analysis, 5:315–327. Cerca con Google

19. Cortese, G. and Scheike, T. (2008). Dynamic regression models for relative survival. Statistics in Medicine. In press. Cerca con Google

20. Courgeau, D. and Lelièvre, E. (1992). Event History Analysis in Demography. Clarendon, Oxford. Cerca con Google

21. Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, Series B, 34:187–220. Cerca con Google

22. De Gruttola, V. and Liao, Q. (1998). Truncated survival times. Encyclopedia of Biostatistics, 1. Cerca con Google

23. Dickman, P. W., Sloggett, A., Hills, M., and Hakulinen, T. (2004). Regression models for relative survival. Statistics in Medicine, 23:51–64. Cerca con Google

24. Ederer, F. and Heise, H. (1959). Instructions to IBM 650 programmers in processing survival computations. Methodological note No. 10, End Results section, Bethesda, MD: National Cancer Institute. Cerca con Google

25. Efron, B. (1977). The efficiency Cox’s likelihood function for censored data. Journal n of the American Statistical Association, 72:557–565. Cerca con Google

26. Estève, J., Benhamou, E., Croasdale, M., and Raymond, L. (1990). Relative survival and the estimation of net survival: elements for further discussion. Statistics in Medicine, 9:529–538. Cerca con Google

27. Fine, J. P. (2001). Regression modeling of competing crude failure probabilities. Biostatistics, 2:85–97. Cerca con Google

28. Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94:496–509. Cerca con Google

29. Fisher, L. D. and Lin, D. Y. (1999). Time-dependent covariates in the Cox proportional-hazards regression model. Annual Review of Public Health, 20:145– 157. Cerca con Google

30. Fix, E. and Neyman, J. (1951). A simple stochastic model of recovery, relapse, death and loss of patients. Human Biology, 23:205–241. Cerca con Google

31. Fleming, T. R. (1978a). Asymptotic distribution results in competing risks estimation. Annals of Statistics, 6:1071–1079. Cerca con Google

32. Fleming, T. R. (1978b). Nonparametric estimation for nonhomogeneous Markov processes in the problem of competing risks. Annals of Statistics, 6:1057–1070. Cerca con Google

33. Fleming, T. R. and Harrington, D. P. (1993). Counting Processes and Survival Analysis. Wiley, New York. Cerca con Google

34. Gandy, A., Therneau, T. M., and Aalen, O. O. (2007). Global tests in the additive hazards regression model. Statistics in Medicine, 27:831–844. Cerca con Google

35. Giorgi, R., Abrahamowicz, M., Quantin, C., Bolard, P., Estève, J., Gouvernet, J., and Faivre, J. (2003). A relative survival regression model using B-spline functions to model non-proportional hazards. Statistics in Medicine, 22:2767–2784. Cerca con Google

36. Goldin, A., Vendini, J. M., and Geran, R. (1985). The effectiveness of of the anthracycline analog 4’-epidoxorubicin in the treatment of experimental tumours: A review. Investigational New Drugs, 3:3–21. Cerca con Google

37. Grambsch, P. M. and Therneau, T. M. (1994). Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81:515–526. Cerca con Google

38. Gray, R. J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics, 16:1141–1154. Cerca con Google

39. Greenwood, P. E. and Wefelmeyer, W. (1990). Efficiency of estimator for partially specified filtered models. Stochastic Processes and their Applications, 36:353–370. Cerca con Google

40. Greenwood, P. E. and Wefelmeyer, W. (1991). Efficient estimating equations for nonparametric filtered models. In Prabhu, N. U. and Basawa, I. V., editors, Statistical Inference in Stochastic Processes, pages 107–141. Marcel Dekker, New York. Cerca con Google

41. Grønnesby, J. K. and Borgan, Ø. (1996). A method for checking regression models in survival analysis based on the risk score. Lifetime Data Analysis, 2:315–328. Cerca con Google

42. Hakulinen, T. (1982). Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics, 38:933–942. Cerca con Google

43. Hakulinen, T. and Tenkanen, L. (1987). Regression analysis of relative survival rates. Applied Statistics, 36:309–317. Cerca con Google

44. Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London. Cerca con Google

45. Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1:465–480. Cerca con Google

46. Hougaard, P. (1999). Multi-state models: A review. Lifetime Data Analysis, 5:239– 264. Cerca con Google

47. Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer, New York. Cerca con Google

48. Huffer, F. W. and McKeague, I. W. (1991). Weighted least squares estimation for Aalen’s additive risk model. Journal of the American Statistical Association, 86:114–129. Cerca con Google

49. Jensen, G. V. H., Torp-Pedersen, C., Hildebrandt, P., Kober, L., Nielsen, F. E., Melchior, T., Joen, T., and Andersen, P. K. (1997). Does in-hospital ventricular fibrillation affect prognosis after myocardial infarction? European Heart Journal, 18:919–924. Cerca con Google

50. Jeong, J.-H. and Fine, J. (2006). Direct parametric inference for the cumulative incidence functions. Journal of the Royal Statistical Society, Series C: Applied Statistics, 55:187–200. Cerca con Google

51. Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. Wiley, New York. Cerca con Google

52. Kaplan, E. L. and Meier, P. (1958). Non-parametric estimation from incomplete observations. Journal of the American Statistical Association, 53:457–481. Cerca con Google

53. Klein, J. P. and Andersen, P. K. (2005). Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics, 61:223– 229. Cerca con Google

54. Klein, J. P. and Shu, Y. (2002). Multi-state models for bone marrow transplantation studies. Statistical Methods in Medical Research, 11:117–139. Cerca con Google

55. Kober, L., Torp-Pedersen, C., Carlsen, J., Bagger, H., Eliasen, P., and Lyngborg, K. (1995). A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. New England Journal of Medicine, 333:1670–1676. Cerca con Google

56. Lambert, P. C., Smith, L. K., Jones, D. R., and Botha, J. L. (2005). Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects. Statistics in Medicine, 24:3871–3885. Cerca con Google

57. Lin, D. Y., Wei, L., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society Series B, 62:711–730. Cerca con Google

58. Lin, D. Y., Wei, L. J., and Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika, 80:557–572. Cerca con Google

59. Lin, D. Y. and Ying, Z. (1995). Semiparametric analysis of general additivemultiplicative hazard models for counting processes. Annals of Statistics, 23:1712– 1734. Cerca con Google

60. Martinussen, T. and Scheike, T. H. (2002). A flexible additive multiplicative hazard model. Biometrika, 89:283–298. Cerca con Google

61. Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data. Springer, New York. Cerca con Google

62. McKeague, I. W. and Sasieni, P. D. (1994). A partly parametric additive risk model. Biometrika, 81:501–514. Cerca con Google

63. Meira-Machado, L., de Una-Alvarez, J., Cardarso-Suarez, C., and Andersen, P. K. (2007). Multi-state models for the analysis of time to event data. Research Report, Department of Biostatistics, University of Copenhagen, 07/1:1–45. Cerca con Google

64. Pohar, M. and Stare, J. (2006). Relative survival analysis in R. Computer Methods and Programs in Biomedicine, 81:272–278. Cerca con Google

65. Rebolledo, R. (1980). Central limit theorems for local martingales. Z. Wahrsch. verw. Geb., 51:269–286. Cerca con Google

66. Ryberg, M., Nielsen, D., Cortese, G., Nielsen, G., Andersen, P. K., and Skovsgaard, T. (2008). New insight in epirubicin cardiac toxicity. competing risks analysis of 1097 breast cancer patients. Journal of National Cancer Institute., page In revision. Cerca con Google

67. Ryberg, M., Nielsen, D., Skovsgaard, T., Hansen, J., Jensen, B. V., and Dombernowsky, P. (1998). Epirubicin cardiotoxicity: An analysis of 469 patients with metastatic breast cancer. Journal of Clinical Oncology, 16:3502–3508. Cerca con Google

68. Sasieni, P. D. (1992). Information bounds for the additive and multiplicative intensity models. In Klein, J. and Goel, P., editors, Survival Analysis: State of the Art, pages 249–263. Kluwer, Dordrecht. Cerca con Google

69. Sasieni, P. D. (1996). Proportional excess hazards. Biometrika, 83:127–141. Cerca con Google

70. Scheike, T. H. (2002). The additive nonparametric and semiparametric Aalen model as the rate function for a counting process. Lifetime Data Analysis, 8:247–262. Cerca con Google

71. Scheike, T. H. (2004). Time-varying effects in survival analysis. In Balakrishnan, N. and Rao, C. R., editors, Handbook of Statistics 23, pages 61–85. Elsevier B.V., North Holland. Cerca con Google

72. Scheike, T. H. and Martinussen, T. (2004). On efficient estimation and tests of timevarying effects in the proportional hazards model. Scandinavian Journal of Statistics, 31:51–62. Cerca con Google

73. Scheike, T. H. and Zhang, M.-J. (2002). An additive-multiplicative Cox-Aalen model. Scandinavian Journal of Statistics, 28:1328–1355. Cerca con Google

74. Scheike, T. H. and Zhang, M.-J. (2004). Predicting cumulative incidence probability: Marginal and cause-specific modelling. Research Report, Department of Biostatistics, University of Copenhagen, 04/3. Cerca con Google

75. Scheike, T. H. and Zhang, M.-J. (2007). Direct modelling of regression effects for transition probabilities in multistate models. Scandinavian Journal of Statistics, 34:17–32. Cerca con Google

76. Scheike, T. H., Zhang,M.-J., and Gerds, T. A. (2007). Predicting cumulative incidence probability by direct binomial regession. Biometrika. In Press. Cerca con Google

77. Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69:239–241. Cerca con Google

78. Sidney, I. (1992). Adventures in Stochastic Processes. Birkhäuser, Boston. Cerca con Google

79. Stare, J., Pohar, M., and Henderson, R. (2005). Goodness of fit of relative survival models. Statistics in Medicine, 24:3911–3925. Cerca con Google

80. Sverdrup, E. (1965). Estimates and tests procedures in connection with stochastic models for deaths, recoveries and transfers between different states of health. Skandinavisk Aktuarietidsskrift, 48:184–211. Cerca con Google

81. Swain, S. M., Whaley, S. F., and Ewer, S. M. (2003). Congestive heart failure in patients treated with doxorubicin. Cancer, 97:2869–2879. Cerca con Google

82. Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. Springer, New York. Cerca con Google

83. Therneau, T. M., Grambsch, P. M., and Fleming, T. R. (1990). Martingale based residuals for survival models. Biometrika, 77:147–160. Cerca con Google

84. Tormeys, D. C. (1975). Adriamycin (NSC-123 127) in breast cancer: An overview of studies. Cancer Chemotherapy Reports, 6:319–327. Cerca con Google

85. Tsiatis, A. A. (1975). A nonidentifiability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences in USA, 72:20–22. Cerca con Google

86. Tsiatis, A. A. (1998). Competing risks. Encyclopedia of Biostatistics, 1:5–10. Cerca con Google

87. Wei, L. J. (1984). Testing goodness of fit for proportional hazards model with censored observations. Journal of the American Statistical Association, 79:649–652. Cerca con Google

88. Zahl, P.-H. (1995). A proportional regression model for 20 year survival of colon cancer in Norway. Statistics in Medicine, 14:1249–1261. Cerca con Google

89. Zahl, P.-H. (1996). A linear non-parametric regression model for the excess intensity. Scandinavian Journal of Statistics, 23:353–364. Cerca con Google

90. Zahl, P.-H. and Tretli, S. (1997). Long-term survival of breast cancer in Norway by age and clinical stage. Statistics in Medicine, 16:1435–1449. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record