Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Romano, Matteo (2017) Development of metal/ceramic membranes for hydrogen purification at medium/high temperatures. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 01 February 2020 for intellectual property related reasons.
Visibile to: nobody

15Mb

Abstract (english)

The aim of the PhD activity (completely developed at CNR-ICMATE, Padova Research Area) was the development of planar and thin membranes for hydrogen separation for high temperature processes (400°C, metal membranes) and medium temperature processes (< 150°C, zeolite membranes), supported by porous ceramic substrates. Metallic membranes were deposited by PVD processes and zeolite membranes were grown onto ceramic substrate by hydrothermal synthesis. Advantages of PVD techniques are exposed in the PVD chapter of the thesis. PVD deposition is particularly useful in case of metal alloys, since co-sputtering of metals can hinder the inter-metallics formation in the alloy and allows a fine tuning of the chosen stoichiometry.
A goal of the work was to develop new composite membranes combining porous substrates, having fine pore size and smooth surfaces, with a new deposition technique, HiPIMS (High Power Impulse Magnetron Sputtering), to deposit very thin and dense palladium-based membranes (Pd-Ag 77-23 wt%) to reduce the thickness and thus the palladium content, in order to fulfil the targets of the U.S. Department of Energy (DoE), in term of costs of membranes and hydrogen flux.
A further goal of the activity was the investigation of new and promising alloys, mainly palladium-free alloys, with a focus on vanadium based alloys, to meet the new guidelines established by European Community about critical elements. We studied a binary alloy (V90Pd10) and a ternary alloy (V84.2Ni10.5Ti5.3, an alloy whose properties have been predicted by a computational screening approach), both prepared for the first time by PVD processes (the main preparation process involve arc melting).
In order to compare different membranes and flow mechanism, a parallel research activity involved the preparation of thin membranes of zeolites, grown directly onto a porous ceramic substrate. Among the various zeolite structures available, hydroxy-sodalite is the best choice to prepare hydrogen separation membranes, thanks to the pore size compatible with the size of hydrogen molecule. Hydroxy-sodalite membranes are already reported in literature, but our aim was the preparation of reliable zeolite membranes in only one hydrothermal step, simplifying the synthetic approach.
Once membranes were prepared, hydrogen permeation measurements were performed in test station entirely developed at CNR-ICMATE (experimental layout and Labview interface), to gather information about the hydrogen permeance and H2/N2 selectivity of membranes.

Abstract (italian)

Lo scopo dell’attività di ricerca (completamente sviluppata presso il CNR-ICMATE, Area della Ricerca di Padova) era lo sviluppo di membrane sottili e planari per la separazione di idrogeno in processi ad alta temperatura (400°C, membrane metalliche) e processi a media temperatura (< 150°C, membrane di zeolite), supportate da substrati porosi ceramici. Le membrane metalliche sono state depositate mediante processi PVD e le membrane di zeolite sono state cresciute su substrati ceramici mediante sintesi idrotermale. I vantaggi dell’utilizzo delle tecniche PVD sono esposti nel capitolo inerente all’interno della tesi. La deposizione PVD è particolarmente utile nel caso di leghe metalliche, dal momento che il co-sputtering di metalli puri può sopprimere la formazione di intermetallici e permettere un fine controllo sulla stechiometria finale.
Un obiettivo del lavoro era inerente lo sviluppo di nuove membrane composite combinando substrati porosi, aventi limitate dimensioni dei pori e superfici lisce, con una nuova tecnica di deposizione, l’HiPIMS (High power Impulse Magnetron Sputtering), per depositare membrane strati densi e molto sottili di leghe a base di palladio (Pd-Ag 77-23 wt%), per ridurre lo spessore finale e quindi il contenuto in palladio, in moda da rispettare i target fissati dal Dipartimento dell’Energia statunitense (DoE) in termini di costo e flusso di idrogeno.
In aggiunta l’attività si è dedicata allo studio di nuove e promettenti leghe, soprattutto leghe prive di palladio, ponendo l’attenzione su leghe a base di vanadio, in modo da adempiere alle recenti linee guida stabilite dalla Comunità Europea in merito agli elementi critici. Si è studiata una lega binaria (V90Pd10) e una lega ternaria (V84,2Ni10,5Ti5,3), entrambe preparate per la prima mediante tecniche PVD (vengono preparate principalmente mediante arc melting).
Allo scopo di confrontare diverse membrane e i meccanismi di flusso coinvolti, è stata intrapresa un’attività di ricerca parallela inerente la preparazione di membrane sottili di zeoliti, cresciute direttamente su supporti ceramici porosi. Tra le varie strutture zeolitiche disponibili, l’idrossi-sodalite rappresenta la scelta migliore per preparare membrane per la separazione di idrogeno, grazie ai canali compatibili con la dimensione della molecola di idrogeno. Membrane di idrossi-sodalite sono già documentate in letteratura, ma lo scopo della ricerca coinvolgeva l’obiettivo di preparare membrane di zeolite in un unico processo idrotermale, semplificando di molto l’approccio alla sintesi.
Le misure di permeabilità in idrogeno sono state eseguite in una stazione di test completamente sviluppata da competenze del CNR-ICMATE (sia per quanto riguarda il layout sperimentale sia per l’interfaccia Labview) per raccogliere i dati relativi alla permeanza e alla selettività H2/N2 delle membrane prodotte.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Armelao, Lidia
Supervisor:Barison, Simona
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:30 January 2017
Key Words:leghe di palladio / palladium alloys leghe di vanadio / vanadium alloys separazione idrogeno / hydrogen separation tecniche PVD / PVD techniques zeoliti / zeolites
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/09 Sistemi per l'energia e l'ambiente
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10182
Depositato il:24 Nov 2017 10:16
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Chapter 1: Cerca con Google

1. Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D. D.; Potter, S. D.; Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. L.; Wuebbles, D. J., Energy implications of future stabilization of atmospheric CO2 content. Nature 1998, 395 (6705), 881-884. Cerca con Google

2. Turner, J. A., Sustainable hydrogen production. Science 2004, 305 (5686), 972-974. Cerca con Google

3. Wietschel, M.; Ball, M., The hydrogen economy: Opportunities and challenges. 2009. Cerca con Google

4. Gupta, R. B., Hydrogen Fuel - Production, Transport and Storage. CRC Press: 2009. Cerca con Google

5. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y., An overview of hydrogen production technologies. Catalysis Today 2009, 139 (4), 244-260. Cerca con Google

6. (a) Hydrogen Production. In Lecture Notes in Energy, 2013; Vol. 3, pp 89-111; (b) Abbas, H. F.; Wan Daud, W. M. A., Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy 2010, 35 (3), 1160-1190; (c) Iulianelli, A.; Liguori, S.; Wilcox, J.; Basile, A., Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catalysis Reviews - Science and Engineering 2016, 58 (1), 1-35; (d) Moon, D. J., Hydrogen production by catalytic reforming of gaseous hydrocarbons (methane & LPG). Catalysis Surveys from Asia 2008, 12 (3), 188-202; (e) Qi, X.; Dong, X.; Lin, W., Steam reforming and partial oxidation of methane to produce syngas. Tianranqi Gongye/Natural Gas Industry 2005, 25 (6), 125-127+17-18. Cerca con Google

7. Steinberg, M.; Cheng, H. C., Modern and prospective technologies for hydrogen production from fossil fuels. International Journal of Hydrogen Energy 1989, 14 (11), 797-820. Cerca con Google

8. (a) Hosseini, S. E.; Abdul Wahid, M.; Jamil, M. M.; Azli, A. A. M.; Misbah, M. F., A review on biomass-based hydrogen production for renewable energy supply. International Journal of Energy Research 2015, 39 (12), 1597-1615; (b) Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866; (c) Navarro, R. M.; Peña, M. A.; Fierro, J. L. G., Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chemical Reviews 2007, 107 (10), 3952-3991; (d) Ni, M.; Leung, D. Y. C.; Leung, M. K. H.; Sumathy, K., An overview of hydrogen production from biomass. Fuel Processing Technology 2006, 87 (5), 461-472. Cerca con Google

9. (a) Demirbas, A., Biohydrogen generation from organic waste. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2008, 30 (5), 475-482; (b) Demirbas, A., Hydrogen production from carbonaceous solid wastes by steam reforming. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2008, 30 (10), 924-931. Cerca con Google

10. (a) Rioche, C.; Kulkarni, S.; Meunier, F. C.; Breen, J. P.; Burch, R., Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B: Environmental 2005, 61 (1-2), 130-139; (b) Huber, G. W.; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews 2006, 106 (9), 4044-4098. Cerca con Google

11. Werther, J.; Saenger, M.; Hartge, E. U.; Ogada, T.; Siagi, Z., Combustion of agricultural residues. Progress in Energy and Combustion Science 2000, 26 (1), 1-27. Cerca con Google

12. Mohanty, P.; Pant, K. K.; Mittal, R., Hydrogen generation from biomass materials: Challenges and opportunities. Wiley Interdisciplinary Reviews: Energy and Environment 2015, 4 (2), 139-155. Cerca con Google

13. Ball, M.; Weindorf, W.; Bunger, U., Hydrogen distribution. In The Hydrogen Economy: Opportunities and Challenges, 2009; pp 322-347. Cerca con Google

14. (a) Ritter, J. A.; Ebner, A. D., State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Separation Science and Technology 2007, 42 (6), 1123-1193; (b) Step, G. K.; Petrovichev, M. V., Pressure swing adsorption for air separation and purification. Chemical and Petroleum Engineering 2002, 38 (3-4), 154-158. Cerca con Google

15. (a) Adhikari, S.; Fernando, S., Hydrogen membrane separation techniques. Industrial and Engineering Chemistry Research 2006, 45 (3), 875-881; (b) Al-Mufachi, N. A.; Rees, N. V.; Steinberger-Wilkens, R., Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews 2015, 47, 540-551. Cerca con Google

16. Helen McCay, M., Hydrogen. An Energy Carrier. In Future Energy: Improved, Sustainable and Clean Options for our Planet, 2013; pp 495-510. Cerca con Google

17. Grashoff, G. J.; Pilkington, C. E.; Corti, C. W., PURIFICATION OF HYDROGEN. Platinum Metals Review 1983, 27 (4), 157-169. Cerca con Google

18. Phair, J. W.; Donelson, R., Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation. Industrial and Engineering Chemistry Research 2006, 45 (16), 5657-5674. Cerca con Google

Chapter 2 Cerca con Google

1. Al-Mufachi, N. A.; Rees, N. V.; Steinberger-Wilkens, R., Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews 2015, 47, 540-551. Cerca con Google

2. Basile, A.; Blasi, A.; Fiorenza, G.; Iulianelli, A.; Longo, T.; Calabrò, V., Membrane and membrane reactor technologies in the treatment of syngas streams produced from gasification processes. In Gasification: Chemistry, Processes and Applications, 2011; pp 139-174. Cerca con Google

3. Tsuru, T.; Igi, R.; Kanezashi, M.; Yoshioka, T.; Fujisaki, S.; iwamoto, Y., Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures. AIChE Journal 2011, 57 (3), 618-629. Cerca con Google

4. Tsuru, T.; Lee, H. R.; Kanezashi, M., Controlling silica networks using bridged alkoxides for hydrogen separation membranes. In The Sol-Gel Process: Uniformity, Polymers and Applications, 2011; pp 827-834. Cerca con Google

5. Nagano, T.; Sato, K., Degradation mechanism of an H2-permselective amorphous silica membrane. Journal of Materials Science 2014, 49 (11), 4115-4120. Cerca con Google

6. Ismail, A. F.; David, L. I. B., A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science 2001, 193 (1), 1-18. Cerca con Google

7. Mahajan, R.; Koros, W. J., Factors controlling successful formation of mixed-matrix gas separation materials. Industrial and Engineering Chemistry Research 2000, 39 (8), 2692-2696. Cerca con Google

8. Lu, G. Q.; Diniz da Costa, J. C.; Duke, M.; Giessler, S.; Socolow, R.; Williams, R. H.; Kreutz, T., Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science 2007, 314 (2), 589-603. Cerca con Google

9. Hong, M.; Falconer, J. L.; Noble, R. D., Modification of zeolite membranes for H 2 separation by catalytic cracking of methyldiethoxysilane. Industrial and Engineering Chemistry Research 2005, 44 (11), 4035-4041. Cerca con Google

10. McLeary, E. E.; Jansen, J. C.; Kapteijn, F., Zeolite based films, membranes and membrane reactors: Progress and prospects. Microporous and Mesoporous Materials 2006, 90 (1-3 SPEC. ISS.), 198-220. Cerca con Google

11. Lin, Y. S.; Kanezashi, M., Gas permeation and diffusion in small and intermediate pore zeolite membranes. In Studies in Surface Science and Catalysis, 2007; Vol. 170, pp 847-854. Cerca con Google

12. Scholes, C. A.; Smith, K. H.; Kentish, S. E.; Stevens, G. W., CO2 capture from pre-combustion processes - Strategies for membrane gas separation. International Journal of Greenhouse Gas Control 2010, 4 (5), 739-755. Cerca con Google

13. Balachandran, U.; Lee, T. H.; Park, C. Y.; Emerson, J. E.; Picciolo, J. J.; Dorris, S. E., Dense cermet membranes for hydrogen separation. Separation and Purification Technology 2014, 121, 54-59. Cerca con Google

14. Hung, I. M.; Chiang, Y. J.; Jang, J. S. C.; Lin, J. C.; Lee, S. W.; Chang, J. K.; Hsi, C. S., The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3-δ ceramic separation membrane. Journal of the European Ceramic Society 2015, 35 (1), 163-170. Cerca con Google

15. Polfus, J. M.; Li, Z.; Xing, W.; Sunding, M. F.; Walmsley, J. C.; Fontaine, M. L.; Henriksen, P. P.; Bredesen, R., Chemical stability and H2 flux degradation of cercer membranes based on lanthanum tungstate and lanthanum chromite. Journal of Membrane Science 2016, 503, 42-47. Cerca con Google

16. Rosensteel, W. A.; Ricote, S.; Sullivan, N. P., Hydrogen permeation through dense BaCe0.8Y0.2O3-δ - Ce0.8Y0.2O2-δ composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy 2016, 41 (4), 2598-2606. Cerca con Google

17. Zhu, Z.; Hou, J.; He, W.; Liu, W., High-performance Ba(Zr0.1Ce0.7Y0.2)O3-δ asymmetrical ceramic membrane with external short circuit for hydrogen separation. Journal of Alloys and Compounds 2016, 660, 231-234. Cerca con Google

18. Zhu, Z.; Liu, B.; Shen, J.; Lou, Y.; Ji, Y., La2Ce2O7: A promising proton ceramic conductor in hydrogen economy. Journal of Alloys and Compounds 2016, 659, 232-239. Cerca con Google

19. Higuchi, T.; Tsukamoto, T.; Sata, N.; Hattori, T.; Yamaguchi, S.; Shin, S., Electronic structure of protonic conductor SrCeO3 by soft-X-ray spectroscopy. Solid State Ionics 2004, 175 (1-4), 549-552. Cerca con Google

20. Higuchi, T.; Tsukamoto, T.; Sata, N.; Yamaguchi, S.; Shin, S.; Hattori, T., Electronic structure of proton conducting SrCeO3-SrZrO 3 thin films. Solid State Ionics 2005, 176 (39-40), 2963-2966. Cerca con Google

21. Song, S. J.; Wachsman, E. D.; Dorris, S. E.; Balachandran, U., Defect structure and n-type electrical properties of SrCe0.95Eu0.05O3-δ. Journal of the Electrochemical Society 2003, 150 (11), A1484-A1490. Cerca con Google

22. Yoon, H.; Song, S. J.; Oh, T.; Li, J.; Duncan, K. L.; Wachsman, E. D., Fabrication of thin-film SrCe0.9Eu0.1O 3-δ hydrogen separation membranes on Ni-SrCeO3 porous tubular supports. Journal of the American Ceramic Society 2009, 92 (8), 1849-1852. Cerca con Google

23. Takeuchi, K.; Loong, C. K.; Richardson Jr, J. W.; Guan, J.; Dorris, S. E.; Balachandran, U., Crystal structures and phase transitions in Y-doped BaCeO3: Their dependence on Y concentration and hydrogen doping. Solid State Ionics 2000, 138 (1-2), 63-77. Cerca con Google

24. Ma, G.; Matsumoto, H.; Iwahara, H., Ionic conduction and nonstoichiometry in non-doped BaxCeO3-α. Solid State Ionics 1999, 122 (1-4), 237-247. Cerca con Google

25. Ma, G.; Shimura, T.; Iwahara, H., Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3 - α. Solid State Ionics 1998, 110 (1-2), 103-110. Cerca con Google

26. Wang, W. B.; Liu, J. W.; Li, Y. D.; Wang, H. T.; Zhang, F.; Ma, G. L., Microstructures and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature. Solid State Ionics 2010, 181 (15-16), 667-671. Cerca con Google

27. Hooshyari, K.; Javanbakht, M.; Shabanikia, A.; Enhessari, M., Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. Journal of Power Sources 2015, 276, 62-72. Cerca con Google

28. Sammes, N.; Phillips, R.; Smirnova, A., Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO3 ceramic electrolytes. Journal of Power Sources 2004, 134 (2), 153-159. Cerca con Google

29. a: Shima, D.; Haile, S. M., The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics 1997, 97 (1-4), 443-455; b: Shimura T, Fujimoto S, Iwahara H., Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics 2001, 143, 117–23; c: Uno, M., Kosuga, A., Okui, M., Horisaka, K., Yamanaka, S., Photoelectrochemical study of lanthanide titanium oxides, Ln2Ti2O7 (Ln = La, Sm, and Gd). Jour¬nal of Alloys and Compounds 2005, 400 (1-2), 270-275. Cerca con Google

30. Balachandran, U.; Lee, T. H.; Chen, L.; Song, S. J.; Dorris, S. E. In Development of dense cermet membranes for hydrogen separation, 2006 AIChE Spring Annual Meeting, 2006. Cerca con Google

31. Balachandran, U.; Lee, T. H.; Chen, L.; Song, S. J.; Dorris, S. E. In Dense cermet membranes for hydrogen separation from mixed gas streams, 23rd Annual International Pittsburgh Coal Conference, PCC - Coal-Energy, Environment and Sustainable Development, 2006. Cerca con Google

32. Song, S. J.; Wachsman, E. D.; Lee, T. H.; Chen, L.; Dorris, S. E.; Balachandran, U., Annealing effect of cermet membranes on hydrogen permeability. Chemistry Letters 2006, 35 (12), 1378-1379. Cerca con Google

33. Park, S. J.; Eom, T. W.; Oh, J. E.; Yang, H. K.; Kim, K. H. In Preparation of high surface area Ni-SDC cermets using a surfactant-assisted co-precipitation method, Materials Research Society Symposium Proceedings, 2006; pp 77-81. Cerca con Google

34. Rebollo, E.; Mortalò, C.; Escolástico, S.; Boldrini, S.; Barison, S.; Serra, J. M.; Fabrizio, M., Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y- or Gd-doped ceria. Energy and Environmental Science 2015, 8 (12), 3675-3686. Cerca con Google

35. Zhang, Q.; Wang, H.; Fan, X.; Chen, S.; Yu, H.; Quan, X., A controlled wet-spinning and dip-coating process for preparation of high-permeable TiO2 hollow fiber membranes. Water Science and Technology 2016, 73 (4), 725-733. Cerca con Google

36. Zhang, X.; Cheng, J.; Li, S.; Wang, Y., Preparation and modification of Ba0.5Sr0.5Co0.8Fe0.2O3-δ hollow fiber membranes for oxygen permeation by wet spinning process. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society 2016, 44 (3), 392-396. Cerca con Google

37. Dejang, N.; Limpichaipanit, A.; Watcharapasorn, A.; Wirojanupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S., Fabrication and properties of plasma-sprayed Al 2O 3/ZrO 2 composite coatings. Journal of Thermal Spray Technology 2011, 20 (6), 1259-1268. Cerca con Google

38. Kassner, H.; Siegert, R.; Hathiramani, D.; Vassen, R.; Stoever, D., Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. Journal of Thermal Spray Technology 2008, 17 (1), 115-123. Cerca con Google

39. Huang, Y.; Dittmeyer, R., Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion. Journal of Membrane Science 2006, 282 (1-2), 296-310. Cerca con Google

40. Ruder, A.; Buchkremer, H. P.; Jansen, H.; Malléner, W.; Stöver, D., Wet powder spraying-a process for the production of coatings. Surface and Coatings Technology 1992, 53 (1), 71-74. Cerca con Google

41. Zhao, L.; Bram, M.; Buchkremer, H. P.; Stöver, D.; Li, Z., Preparation of TiO 2 composite microfiltration membranes by the wet powder spraying method. Journal of Membrane Science 2004, 244 (1-2), 107-115. Cerca con Google

42. Adhikari, S.; Fernando, S., Hydrogen membrane separation techniques. Industrial and Engineering Chemistry Research 2006, 45 (3), 875-881. Cerca con Google

43. Koros, W. J.; Fleming, G. K., Membrane-based gas separation. Journal of Membrane Science 1993, 83 (1), 1-80. Cerca con Google

44. Li, P.; Wang, Z.; Qiao, Z.; Liu, Y.; Cao, X.; Li, W.; Wang, J.; Wang, S., Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science 2015, 495, 130-168. Cerca con Google

45. Dolan, M. D., Non-Pd BCC alloy membranes for industrial hydrogen separation. Journal of Membrane Science 2010, 362 (1-2), 12-28. Cerca con Google

46. Darby, M. I.; Read, M. N., Energy of hydrogen in b.c.c. transition metals. Journal of The Less-Common Metals 1983, 91 (2), 209-215. Cerca con Google

47. Companion, A. L.; Liu, F.; Onwood, D. P., On the location of a hydrogen atom in body-centered cubic 3d transition metal lattices. Journal of The Less-Common Metals 1985, 107 (1), 131-138. Cerca con Google

48. Latgé, A.; Ribeiro-Teixeira, R. M.; Iglesias, J. R., Binding energy of a hydrogen impurity in an f.c.c. lattice. Solid State Communications 1984, 52 (2), 87-91. Cerca con Google

49. Khan, M. A.; Parlebas, J. C.; Demangeat, C., Electronic structure and ordering of hydrogen in f.c.c. transition metals. Journal of The Less-Common Metals 1981, 77 (1), P1-P8. Cerca con Google

50. Graham, T., On the absorption and dialytic separation of gases by colloid septa. Journal of the Franklin Institute 1867, 83 (1), 39-41. Cerca con Google

51. Yukawa, H.; Nambu, T.; Matsumoto, Y.; Watanabe, N.; Zhang, G.; Morinaga, M., Alloy design of Nb-based hydrogen permeable membrane with strong resistance to hydrogen embrittlement. Materials Transactions 2008, 49 (10), 2202-2207. Cerca con Google

52. Yukawa, H.; Zhang, G. X.; Watanabe, N.; Morinaga, M.; Nambu, T.; Matsumoto, Y., Hydrogen diffusion coefficient during hydrogen permeation through Nb-based hydrogen permeable membranes. In Defect and Diffusion Forum, 2008; Vol. 283-286, pp 225-230. Cerca con Google

53. Busnyuk, A. O.; Notkin, M. E.; Grigoriadi, I. P.; Alimov, V. N.; Lifshitz, A. I., Thermal degradation of a palladium coating on hydrogen-tight niobium membranes. Technical Physics 2010, 55 (1), 117-124. Cerca con Google

54. Rothenberger, K. S.; Cugini, A. V.; Howard, B. H.; Killmeyer, R. P.; Ciocco, M. V.; Morreale, B. D.; Enick, R. M.; Bustamante, F.; Mardilovich, I. P.; Ma, Y. H., High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating. Journal of Membrane Science 2004, 244 (1-2), 55-68. Cerca con Google

55. Bosko, M. L.; Miller, J. B.; Lombardo, E. A.; Gellman, A. J.; Cornaglia, L. M., Surface characterization of Pd-Ag composite membranes after annealing at various temperatures. Journal of Membrane Science 2011, 369 (1-2), 267-276. Cerca con Google

56. Gallucci, F.; Fernandez, E.; Corengia, P.; van Sint Annaland, M., Recent advances on membranes and membrane reactors for hydrogen production. Chemical Engineering Science 2013, 92, 40-66. Cerca con Google

57. Wise, M. L. H.; Farr, J. P. G.; Harris, I. R., X-ray studies of the α/β miscibility gaps of some palladium solid solution-hydrogen systems. Journal of The Less-Common Metals 1975, 41 (1), 115-127. Cerca con Google

58. O'Brien, C. P.; Howard, B. H.; Miller, J. B.; Morreale, B. D.; Gellman, A. J., Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 °C. Journal of Membrane Science 2010, 349 (1-2), 380-384. Cerca con Google

59. Ali, J. K.; Newson, E. J.; Rippin, D. W. T., Deactivation and regeneration of PdAg membranes for dehydrogenation reactions. Journal of Membrane Science 1994, 89 (1-2), 171-184. Cerca con Google

60. (a) Ackerman, F. J.; Koskinas, G. J., Permeation of hydrogen and deuterium through palladium-silver alloys. Journal of Chemical and Engineering Data 1972, 17 (1), 51-55; (b) Ackerman, F. J.; Koskinas, G. J., A model for predicting the permeation of hydrogen-deuterium-inert gas mixtures through palladium tubes. Industrial and Engineering Chemistry Fundamentals 1972, 11 (3), 332-338; (c) Serra, E.; Kemali, M.; Perujo, A.; Ross, D. K., Hydrogen and deuterium in Pd-25 Pct Ag alloy: Permeation, diffusion, solubilization, and surface reaction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 1998, 29 (13), 1023-1028. Cerca con Google

61. Knapton, A. G., PALLADIUM ALLOYS FOR HYDROGEN DIFFUSION MEMBRANES. Platinum Metals Review 1977, 21 (2), 44-50. Cerca con Google

62. Paglieri, S. N.; Way, J. D., Innovations in palladium membrane research. Separation and Purification Methods 2002, 31 (1), 1-169. Cerca con Google

63. Karakaya, I.; Thompson, W. T., The Ag-Pd (Silver-Palladium) system. Bulletin of Alloy Phase Diagrams 1988, 9 (3), 237-243. Cerca con Google

64. McKinley, D. L., Metal alloy for hydrogen separation and purification. Union Carbide Corp. 1967. Cerca con Google

65. McKinley, D. L., Metal alloy for hydrogen separation and purification. US Patent 1967, 3. Cerca con Google

66. Nam, S. E.; Lee, K. H., Hydrogen separation by Pd alloy composite membranes: Introduction of diffusion barrier. Journal of Membrane Science 2001, 192 (1-2), 177-185. Cerca con Google

67. Hughes, D. T.; Harris, I. R., A comparative study of hydrogen permeabilities and solubilities in some palladium solid solution alloys. Journal of The Less-Common Metals 1978, 61 (2), P9-P21. Cerca con Google

68. Baranowski, B.; Majchrzak, S.; Flanagan, T. B., The volume increase of fcc metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents. Journal of Physics F: Metal Physics 1971, 1 (3), 258-261. Cerca con Google

69. Lewis, F. A., The palladium-hydrogen system: Structures near phase transition and critical points. International Journal of Hydrogen Energy 1995, 20 (7), 587-592. Cerca con Google

70. Ward, T. L.; Dao, T., Model of hydrogen permeation behavior in palladium membranes. Journal of Membrane Science 1999, 153 (2), 211-231. Cerca con Google

71. Wert, C.; Zener, C., Interstitial atomic diffusion coefficients. Physical Review 1949, 76 (8), 1169-1175. Cerca con Google

72. Vargas, P.; Miranda, L.; Rodriguez, L.; Lagos, M.; Rogan, J., Quantum diffusion in transition metals. Journal of The Less-Common Metals 1991, 172-174 (PART B), 557-571. Cerca con Google

73. Kehr, K. W., Theory of the diffusion of hydrogen in metals. In Hydrogen in Metals I: Basic Properties, Alefeld, G.; Völkl, J., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1978; pp 197-226. Cerca con Google

74. Fukai, Y.; Sugimoto, H., Diffusion of hydrogen in metals. Advances in Physics 1985, 34 (2), 263-326. Cerca con Google

75. Fletcher, S., THIN FILM PALLADIUM – YTTRIUM MEMBRANES FOR HYDROGEN SEPARATION. PhD Thesis, University of Birmingham 2010. Cerca con Google

76. Barlag, H.; Opara, L.; Züchner, H., Hydrogen diffusion in palladium based f.c.c. alloys. Journal of Alloys and Compounds 2002, 330-332, 434-437. Cerca con Google

77. Holleck, G. L., Diffusion and solubility of hydrogen in palladium and palladium-silver alloys. Journal of Physical Chemistry 1970, 74 (3), 503-511. Cerca con Google

78. (a) Nishimura, C.; Komaki, M.; Hwang, S.; Amano, M., V-Ni alloy membranes for hydrogen purification. Journal of Alloys and Compounds 2002, 330-332, 902-906; (b) Phair, J. W.; Donelson, R., Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation. Industrial and Engineering Chemistry Research 2006, 45 (16), 5657-5674. Cerca con Google

79. (a) Alimov, V. N.; Hatano, Y.; Busnyuk, A. O.; Livshits, D. A.; Notkin, M. E.; Livshits, A. I., Hydrogen permeation through the Pd–Nb–Pd composite membrane: Surface effects and thermal degradation. International Journal of Hydrogen Energy 2011, 36 (13), 7737-7746; (b) Moss, T. S.; Peachey, N. M.; Snow, R. C.; Dye, R. C., Multilayer metal membranes for hydrogen separation. International Journal of Hydrogen Energy 1998, 23 (2), 99-106; (c) Livshits, A. I.; Sube, F.; Solovyev, M. N.; Notkin, M. E.; Bacal, M., Plasma driven superpermeation of hydrogen through group Va metals. Journal of Applied Physics 1998, 84 (5), 2558-2564. Cerca con Google

80. Alimov, V. N.; Busnyuk, A. O.; Notkin, M. E.; Livshits, A. I., Pd–V–Pd composite membranes: Hydrogen transport in a wide pressure range and mechanical stability. Journal of Membrane Science 2014, 457, 103-112. Cerca con Google

81. Yukawa, H.; Nambu, T.; Matsumoto, Y., V–W alloy membranes for hydrogen purification. Journal of Alloys and Compounds 2011, 509, Supplement 2, S881-S884. Cerca con Google

82. (a) Adibhatla, A.; Dolan, M. D.; Chien, W. M.; Chandra, D. In A H2-D2 exchange study on Ni-based binary-ternary amorphous and crystalline membranes for hydrogen separation, Materials Science and Technology Conference and Exhibition 2013, MS and T 2013, 2013; pp 2146-2153; (b) El Naggar, A. M. A.; Kazak, C., Preparation and characterization of novel nano-structured porous nickel alloy composite induced by electroless deposition and its performance in the hydrogen separation. Separation and Purification Technology 2016, 160, 73-80; (c) Santucci, A.; Tosti, S.; Basile, A., Alternatives to palladium in membranes for hydrogen separation: Nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes. In Handbook of Membrane Reactors, 2013; Vol. 1, pp 183-217. Cerca con Google

83. (a) Alimov, V. N.; Busnyuk, A. O.; Notkin, M. E.; Livshits, A. I., Pd-V-Pd composite membranes: Hydrogen transport in a wide pressure range and mechanical stability. Journal of Membrane Science 2014, 457, 103-112; (b) Dolan, M. D.; Kellam, M. E.; McLennan, K. G.; Liang, D.; Song, G., Hydrogen transport properties of several vanadium-based binary alloys. International Journal of Hydrogen Energy 2013, 38 (23), 9794-9799; (c) Dolan, M. D.; McLennan, K. G.; Chandra, D.; Kochanek, M. A.; Song, G., Suppression of the critical temperature in binary vanadium hydrides. Journal of Alloys and Compounds 2014, 586, 385-391; (d) Ko, W. S.; Oh, J. Y.; Shim, J. H.; Suh, J. Y.; Yoon, W. Y.; Lee, B. J., Design of sustainable V-based hydrogen separation membranes based on grain boundary segregation. International Journal of Hydrogen Energy 2014, 39 (23), 12031-12044; (e) Shim, J. H.; Ko, W. S.; Kim, K. H.; Lee, H. S.; Lee, Y. S.; Suh, J. Y.; Cho, Y. W.; Lee, B. J., Prediction of hydrogen permeability in V-Al and V-Ni alloys. Journal of Membrane Science 2013, 430, 234-241; (f) Viano, D. M.; Dolan, M. D.; Weiss, F.; Adibhatla, A., Asymmetric layered vanadium membranes for hydrogen separation. Journal of Membrane Science 2015, 487, 83-89. Cerca con Google

84. Yang, J. Y.; Nishimura, C.; Komaki, M., Preparation and characterization of Pd–Cu/V–15Ni composite membrane for hydrogen permeation. Journal of Alloys and Compounds 2007, 431 (1–2), 180-184. Cerca con Google

85. Dolan, M. D.; Song, G.; Liang, D.; Kellam, M. E.; Chandra, D.; Lamb, J. H., Hydrogen transport through V85Ni10M5 alloy membranes. Journal of Membrane Science 2011, 373 (1-2), 14-19. Cerca con Google

86. (a) Zhang, Y.; Ozaki, T.; Komaki, M.; Nishimura, C., Hydrogen permeation of Pd-Ag alloy coated V-15Ni composite membrane: Effects of overlayer composition. Journal of Membrane Science 2003, 224 (1-2), 81-91; (b) Zhang, Y.; Ozaki, T.; Komaki, M.; Nishimura, C., Hydrogen permeation characteristics of V-15Ni membrane with Pd/Ag overlayer by sputtering. Journal of Alloys and Compounds 2003, 356-357, 553-556; (c) Ozaki, T.; Zhang, Y.; Komaki, M.; Nishimura, C., Hydrogen permeation characteristics of V-Ni-Al alloys. International Journal of Hydrogen Energy 2003, 28 (11), 1229-1235. Cerca con Google

87. (a) Paglieri, S. N.; Wermer, J. R.; Buxbaum, R. E.; Ciocco, M. V.; Howard, B. H.; Morreale, B. D., Development of membranes for hydrogen separation: Pd coated V-10Pd. Energy Materials: Materials Science and Engineering for Energy Systems 2008, 3 (3), 169-176; (b) Alimov, V. N.; Busnyuk, A. O.; Notkin, M. E.; Peredistov, E. Y.; Livshits, A. I., Substitutional V-Pd alloys for the membranes permeable to hydrogen: Hydrogen solubility at 150-400 °C. International Journal of Hydrogen Energy 2014, 39 (34), 19682-19690; (c) Alimov, V. N.; Busnyuk, A. O.; Notkin, M. E.; Peredistov, E. Y.; Livshits, A. I., Hydrogen transport through V-Pd alloy membranes: Hydrogen solution, permeation and diffusion. Journal of Membrane Science 2015, 481, 54-62. Cerca con Google

88. (a) Hao, S.; Sholl, D. S., Using first-principles calculations to accelerate materials discovery for hydrogen purification membranes by modeling amorphous metals. Energy and Environmental Science 2008, 1 (1), 175-183; (b) Kang, S. G.; Coulter, K. E.; Gade, S. K.; Way, J. D.; Sholl, D. S., Identifying metal alloys with high hydrogen permeability using high throughput theory and experimental testing. Journal of Physical Chemistry Letters 2011, 2 (24), 3040-3044; (c) Kamakoti, P.; Sholl, D. S., Towards first principles-based identification of ternary alloys for hydrogen purification membranes. Journal of Membrane Science 2006, 279 (1-2), 94-99; (d) Semidey-Flecha, L.; Sholl, D. S., Combining density functional theory and cluster expansion methods to predict H2 permeance through Pd-based binary alloy membranes. Journal of Chemical Physics 2008, 128 (14). Cerca con Google

89. Ockwig, N. W.; Nenoff, T. M., Membranes for hydrogen separation. Chemical Reviews 2007, 107 (10), 4078-4110. Cerca con Google

90. Pauling, L., Location of hydrogen atoms in tetragonal and monoclinic modifications of β1-V2H. Journal of Solid State Chemistry 1989, 79 (1), 63-64. Cerca con Google

91. Reilly, J. J.; Wiswall Jr, R. H., The higher hydrides of vanadium and niobium. Inorganic Chemistry 1970, 9 (7), 1678-1682. Cerca con Google

92. (a) Duś, R.; Nowicka, E.; Wolfram, Z., Surface phenomena in the process of vanadium hydride formation. Journal of Alloys and Compounds 1997, 253-254, 496-499; (b) Troev, T.; Markovski, A.; Petrova, M.; Peneva, S.; Yoshiie, T., Positron lifetime calculations of defects in vanadium containing hydrogen. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 2006, 248 (2), 297-304; (c) Golubkov, A. N.; Yukhimchuk, A. A., Synthesis of the dihydride phase of vanadium. Journal of Alloys and Compounds 2005, 404-406 (SPEC. ISS.), 35-37. Cerca con Google

93. Schober, T., Vanadium-deuterium: Calorimetry and phase diagram. Scripta Metallurgica 1978, 12 (6), 549-554. Cerca con Google

94. Yukawa, H.; Ito, S.; Yamashita, D.; Morinaga, M., Local electronic structures of hydrogen and phase stability of Cerca con Google

vanadium hydride, V2H. In Advances in Quantum Chemistry, 2003; Vol. 42, pp 263-273. Cerca con Google

95. Dolan, M. D.; Kochanek, M. A.; Munnings, C. N.; McLennan, K. G.; Viano, D. M., Hydride phase equilibria in V–Ti–Ni alloy membranes. Journal of Alloys and Compounds 2015, 622, 276-281. Cerca con Google

96. (a) Seo, C. Y.; Kim, J. H.; Lee, P. S.; Lee, J. Y., Hydrogen storage properties of vanadium-based b.c.c. solid solution metal hydrides. Journal of Alloys and Compounds 2003, 348 (1-2), 252-257; (b) Cauceglia, D.; Hampton, M. D.; Lomness, J. K.; Slattery, D. K.; Resan, M., Hydrogen uptake characteristics of mechanically alloyed TiVNi. Journal of Alloys and Compounds 2006, 417 (1–2), 159-163; (c) Yukawa, H.; Takagi, M.; Teshima, A.; Morinaga, M., Alloying effects on the stability of vanadium hydrides. Journal of Alloys and Compounds 2002, 330-332, 105-109. Cerca con Google

97. Matumura, T.; Yukawa, H.; Morinaga, M., Alloying effects on the electronic structures of VH2 and V2H. Journal of Alloys and Compounds 1999, 284 (1-2), 82-88. Cerca con Google

98. Martin, M.; Gommel, C.; Borkhart, C.; Fromm, E., Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds 1996, 238 (1-2), 193-201. Cerca con Google

99. Evtimova, J.; Drioli, E.; De Luca, G., A density functional theory study of hydrogen occupation in VNiTi alloys used for dense metal membranes. Journal of Alloys and Compounds 2016, 665, 225-230. Cerca con Google

100. Lynch, J. F.; Reilly, J. J.; Millot, F., The absorption of hydrogen by binary vanadium-chromium alloys. Journal of Physics and Chemistry of Solids 1978, 39 (8), 883-890. Cerca con Google

101. Dolan, M. D., Non-Pd BCC alloy membranes for industrial hydrogen separation. Journal of Membrane Science 2010, 362 (1–2), 12-28. Cerca con Google

102. Edlund, D. J.; McCarthy, J., The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime. Journal of Membrane Science 1995, 107 (1), 147-153. Cerca con Google

103. Zeitschrift für Physikalische Chemie. 1887. Cerca con Google

104. Handbook of Ternary Alloy Phase Diagrams, ASM International, Russell Township. 1995. Cerca con Google

105. (a) Nishimura, C.; Komaki, M.; Amano, M., Hydrogen Permeation Characteristics of Vanadium-Nickel Alloys. Materials Transactions, JIM 1991, 32 (5), 501-507; (b) Dolan, M. D.; McLennan, K. G.; Way, J. D., Diffusion of Atomic Hydrogen through V–Ni Alloy Membranes under Nondilute Conditions. The Journal of Physical Chemistry C 2012, 116 (1), 1512-1518. Cerca con Google

106. (a) Mundschau, M. V., Hydrogen separation using dense composite membranes: Part 1 fundamentals. In Inorganic Membranes for Energy and Environmental Applications, 2009; pp 125-153; (b) Dolan, M. D.; McLennan, K. G.; Song, G.; Liang, D.; Kellam, M. E., The effect of Ti on hydrogen absorption and diffusivity in V–Ti–Al alloy membranes. Journal of Membrane Science 2013, 446, 405-409; (c) Dolan, M. D.; Song, G.; McLennan, K. G.; Kellam, M. E.; Liang, D., The effect of Ti on the microstructure, hydrogen absorption and diffusivity of V–Ni alloy membranes. Journal of Membrane Science 2012, 415–416, 320-327. Cerca con Google

107. (a) Jiang, P.; Yu, Y.; Song, G.; Liang, D.; Kellam, M.; Dolan, M., Effect of heat treatment on microstructure, hardness and rollability of V55Ti30Ni15 alloy membranes. Materials & Design 2014, 63, 136-141; (b) Song, G.; Dolan, M. D.; Kellam, M. E.; Liang, D.; Zambelli, S., V–Ni–Ti multi-phase alloy membranes for hydrogen purification. Journal of Alloys and Compounds 2011, 509 (38), 9322-9328. Cerca con Google

108. Hashi, K.; Ishikawa, K.; Matsuda, T.; Aoki, K., Hydrogen permeation characteristics of (V, Ta)–Ti–Ni alloys. Journal of Alloys and Compounds 2005, 404–406, 273-278. Cerca con Google

109. Adams, T. M.; Mickalonis, J., Hydrogen permeability of multiphase V–Ti–Ni metallic membranes. Materials Letters 2007, 61 (3), 817-820. Cerca con Google

110. (a) Watanabe, K.; Saito, Y.; Fukai, Y., International Symposium on the Properties and Applications of Metal Hydrides Effects of substitutional impurities on the phase diagrams of V-H and V-D systems. Journal of the Less Common Metals 1982, 88 (1), 43-47; (b) Griffiths, R.; Pryde, J. A.; Righini-Brand, A., Phase diagram and thermodynamic data for the hydrogen/vanadium system. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1972, 68 (0), 2344-2349. Cerca con Google

111. Jung, J.-H.; Lee, H.-H.; Yu, J.-S.; Jang, K.-J.; Lee, J.-Y., Self-discharge mechanism of vanadium-titanium metal hydride electrodesfor Ni-MH rechargeable battery. Metals and Materials 1997, 3 (3), 178-182. Cerca con Google

112. San-Martin, A.; Manchester, F. D., The H−Ti (Hydrogen-Titanium) system. Bulletin of Alloy Phase Diagrams 1987, 8 (1), 30-42. Cerca con Google

113. Jiang, P.; Yu, Y.; Song, G.; Liang, D.; Kellam, M.; Dolan, M., Effect of heat treatment on microstructure, hardness and rollability of V55Ti30Ni15 alloy membranes. Materials and Design 2014, 63, 136-141. Cerca con Google

114. Song, G.; Dolan, M. D.; Kellam, M. E.; Liang, D.; Zambelli, S., V-Ni-Ti multi-phase alloy membranes for hydrogen purification. Journal of Alloys and Compounds 2011, 509 (38), 9322-9328. Cerca con Google

115. Adams, T. M.; Mickalonis, J., Hydrogen permeability of multiphase V-Ti-Ni metallic membranes. Materials Letters 2007, 61 (3), 817-820. Cerca con Google

116. (a) Al-Mufachi, N. A.; Nayebossadri, S.; Speight, J. D.; Bujalski, W.; Steinberger-Wilckens, R.; Book, D., Effects of thin film Pd deposition on the hydrogen permeability of Pd<inf>60</inf>Cu<inf>40</inf> wt% alloy membranes. Journal of Membrane Science 2015, 493, 580-588; (b) Fernandez, E.; Medrano, J. A.; Melendez, J.; Parco, M.; Viviente, J. L.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D. A., Preparation and characterization of metallic supported thin Pd-Ag membranes for hydrogen separation. Chemical Engineering Journal 2015; (c) Haydn, M.; Ortner, K.; Franco, T.; Schafbauer, W.; Behrens, A.; Dittmar, B.; Hummel, S.; Sulik, M.; Rüttinger, M.; Venskutonis, A.; Sigl, L. S., Metal-supported palladium membranes for hydrogen separation. Powder Metallurgy 2015, 58 (4), 250-253; (d) Hemra, K.; Atong, D., Characteristic of thin palladium membrane on Al<inf>2</inf>O<inf>3</inf> and YSZ supports for hydrogen separation prepared by electroless plating technique. Research Journal of Chemistry and Environment 2014, 18 (7), 28-32; (e) Lee, T. H.; Park, C. Y.; Lee, G.; Dorris, S. E.; Balu Balachandran, U., Hydrogen transport properties of palladium film prepared by colloidal spray deposition. Journal of Membrane Science 2012, 415-416, 199-204; (f) Medrano, J. A.; Fernandez, E.; Melendez, J.; Parco, M.; Tanaka, D. A. P.; van Sint Annaland, M.; Gallucci, F., Pd-based metallic supported membranes: High-temperature stability and fluidized bed reactor testing. International Journal of Hydrogen Energy 2015; (g) Pereira, A. I.; Pérez, P.; Rodrigues, S. C.; Mendes, A.; Madeira, L. M.; Tavares, C. J., Deposition of Pd-Ag thin film membranes on ceramic supports for hydrogen purification/separation. Materials Research Bulletin 2015, 61, 528-533. Cerca con Google

117. (a) Roa, F.; Douglas Way, J.; McCormick, R. L.; Paglieri, S. N., Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chemical Engineering Journal 2003, 93 (1), 11-22; (b) Sun, G. B.; Hidajat, K.; Kawi, S., Ultra thin Pd membrane on α-Al2O3 hollow fiber by electroless plating: High permeance and selectivity. Journal of Membrane Science 2006, 284 (1-2), 110-119. Cerca con Google

118. Pan, X. L.; Xiong, G. X.; Sheng, S. S.; Stroh, N.; Brunner, H., Thin dense Pd membranes supported on α-Al2O3 hollow fibers. Chemical Communications 2001, (24), 2536-2537. Cerca con Google

119. (a) Gao, H.; Lin, J. Y. S.; Li, Y.; Zhang, B., Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel. Journal of Membrane Science 2005, 265 (1-2), 142-152; (b) Nam, S. E.; Lee, K. H., Preparation and characterization of palladium alloy composite membranes with a diffusion barrier for hydrogen separation. Industrial and Engineering Chemistry Research 2005, 44 (1), 100-105. Cerca con Google

120. Okazaki, J.; Ikeda, T.; Pacheco Tanaka, D. A.; Llosa Tanco, M. A.; Wakui, Y.; Sato, K.; Mizukami, F.; Suzuki, T. M., Importance of the support material in thin palladium composite membranes for steady hydrogen permeation at elevated temperatures. Physical Chemistry Chemical Physics 2009, 11 (38), 8632-8638. Cerca con Google

121. Anderson, D. H.; Evenson Iv, C. R.; Harkins, T. H.; Jack, D. S.; Mackay, R.; Mundschau, M. V., Hydrogen separation using dense composite membranes part 2: Process integration and scale-up for H2 production and CO2 sequestration. In Inorganic Membranes for Energy and Environmental Applications, 2009; pp 155-171. Cerca con Google

122. Pinacci, P.; Basile, A., Palladium-based composite membranes for hydrogen separation in membrane reactors. In Handbook of Membrane Reactors, 2013; Vol. 1, pp 149-182. Cerca con Google

Chapter 3 Cerca con Google

1. Dolan, M. D., Non-Pd BCC alloy membranes for industrial hydrogen separation. Journal of Membrane Science 2010, 362 (1-2), 12-28. Cerca con Google

2. Tong, J.; Matsumura, Y.; Suda, H.; Haraya, K., Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Separation and Purification Technology 2005, 46 (1-2), 1-10. Cerca con Google

3. Jayaraman, V.; Lin, Y. S., Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. Journal of Membrane Science 1995, 104 (3), 251-262. Cerca con Google

4. (a) McCool, B.; Xomeritakis, G.; Lin, Y. S., Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes. Journal of Membrane Science 1999, 161 (1-2), 67-76; (b) Xomeritakis, G.; Lin, Y. S., Fabrication of thin metallic membranes by MOCVD and sputtering. Journal of Membrane Science 1997, 133 (2), 217-230; (c) Jayaraman, V.; Lin, Y. S.; Pakala, M.; Lin, R. Y., Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. Journal of Membrane Science 1995, 99 (1), 89-100; (d) Zhao, H. B.; Xiong, G. X.; Baron, G. V., Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering. Catalysis Today 2000, 56 (1-3), 89-96. Cerca con Google

5. Ma, Y. H.; Mardilovich, I. P.; Mardilovich, P. P., Effects of the porosity and pore size distribution of the porous stainless steel on the thickness and hydrogen flux of palladium membranes. American Chemical Society, Division of Petroleum Chemistry, Preprints 2001, 46 (2), 154-156. Cerca con Google

6. (a) Ryi, S. K.; Park, J. S.; Kim, S. H.; Hong, S. C.; Kim, D. W., Development of porous nickel membrane made by uniaxial pressing for hydrogen separation. Desalination 2006, 200 (1-3), 213-215; (b) Ryi, S. K.; Park, J. S.; Kim, S. H.; Hong, S. C.; Kim, D. W., The study of a new porous nickel support for palladium-based alloy membrane. Desalination 2006, 200 (1-3), 216-218. Cerca con Google

7. Mardilovich, I. P.; Engwall, E.; Ma, Y. H., Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes. Desalination 2002, 144 (1-3), 85-89. Cerca con Google

8. Keuler, J. N.; Lorenzen, L.; Miachon, S., Preparing and testing Pd films of thickness 1-2 micrometer with high selectivity and high hydrogen permeance. Separation Science and Technology 2002, 37 (2), 379-401. Cerca con Google

9. (a) Sun, G. B.; Hidajat, K.; Kawi, S., Ultra thin Pd membrane on α-Al2O3 hollow fiber by electroless plating: High permeance and selectivity. Journal of Membrane Science 2006, 284 (1-2), 110-119; (b) Keuler, J. N.; Lorenzen, L.; Sanderson, R. N.; Linkov, V., Optimizing Palladium Conversion in Electroless Palladium Plating of Alumina Membranes. Plating and Surface Finishing 1997, 84 (8), 34-40. Cerca con Google

10. (a) Shi, Z.; Wu, S.; Szpunar, J. A.; Roshd, M., An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science 2006, 280 (1-2), 705-711; (b) Huang, T. C.; Wei, M. C.; Chen, H. I., Preparation of hydrogen-permselective palladium-silver alloy composite membranes by electroless co-deposition. Separation and Purification Technology 2003, 32 (1-3), 239-245. Cerca con Google

11. Roa, F.; Way, J. D., The effect of air exposure on palladium-copper composite membranes. Applied Surface Science 2005, 240 (1-4), 85-104. Cerca con Google

12. Honma, H.; Kanemitsu, K., ELECTROLESS NICKEL PLATING ON ALUMINA CERAMICS. Plating and Surface Finishing 1987, 74 (9), 62-67. Cerca con Google

13. Tong, J.; Shirai, R.; Kashima, Y.; Matsumura, Y., Preparation of a pinhole-free Pd-Ag membrane on a porous metal support for pure hydrogen separation. Journal of Membrane Science 2005, 260 (1-2), 84-89. Cerca con Google

14. (a) Shu, J.; Grandjean, B. P. A.; Ghali, E.; Kaliaguine, S., Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating. Journal of Membrane Science 1993, 77 (2-3), 181-195; (b) Okazaki, J.; Tanaka, D. A. P.; Tanco, M. A. L.; Wakui, Y.; Mizukami, F.; Suzuki, T. M., Hydrogen permeability study of the thin Pd-Ag alloy membranes in the temperature range across the α-β phase transition. Journal of Membrane Science 2006, 282 (1-2), 370-374. Cerca con Google

15. (a) Keuler, J. N.; Lorenzen, L., Developing a heating procedure to optimise hydrogen permeance through Pd-Ag membranes of thickness less than 2.2 μm. Journal of Membrane Science 2002, 195 (2), 203-213; (b) Bosko, M. L.; Yepes, D.; Irusta, S.; Eloy, P.; Ruiz, P.; Lombardo, E. A.; Cornaglia, L. M., Characterization of Pd-Ag membranes after exposure to hydrogen flux at high temperatures. Journal of Membrane Science 2007, 306 (1-2), 56-65; (c) Uemiya, S.; Matsuda, T.; Kikuchi, E., Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. Journal of Membrane Science 1991, 56 (3), 315-325; (d) Yepes, D.; Cornaglia, L. M.; Irusta, S.; Lombardo, E. A., Different oxides used as diffusion barriers in composite hydrogen permeable membranes. Journal of Membrane Science 2006, 274 (1-2), 92-101; (e) Thoen, P. M.; Roa, F.; Way, J. D., High flux palladium-copper composite membranes for hydrogen separations. Desalination 2006, 193 (1-3), 224-229; (f) Roa, F.; Douglas Way, J.; McCormick, R. L.; Paglieri, S. N., Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chemical Engineering Journal 2003, 93 (1), 11-22. Cerca con Google

16. Ma, Y. H.; Akis, B. C.; Ayturk, M. E.; Guazzone, F.; Engwall, E. E.; Mardilovich, I. P., Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes. Industrial and Engineering Chemistry Research 2004, 43 (12), 2936-2945. Cerca con Google

17. Yang, J. Y.; Nishimura, C.; Komaki, M., Preparation and characterization of Pd-Cu/V-15Ni composite membrane for hydrogen permeation. Journal of Alloys and Compounds 2007, 431 (1-2), 180-184. Cerca con Google

18. Mejdell, A. L.; Klette, H.; Ramachandran, A.; Borg, A.; Bredesen, R., Hydrogen permeation of thin, free-standing Pd/Ag23% membranes before and after heat treatment in air. Journal of Membrane Science 2008, 307 (1), 96-104. Cerca con Google

19. (a) Zhang, Y.; Ozaki, T.; Komaki, M.; Nishimura, C., Hydrogen permeation of Pd-Ag alloy coated V-15Ni composite membrane: Effects of overlayer composition. Journal of Membrane Science 2003, 224 (1-2), 81-91; (b) Zhang, Y.; Maeda, R.; Komaki, M.; Nishimura, C., Hydrogen permeation and diffusion of metallic composite membranes. Journal of Membrane Science 2006, 269 (1-2), 60-65. Cerca con Google

20. Ryi, S. K.; Park, J. S.; Kim, S. H.; Cho, S. H.; Kim, D. W.; Um, K. Y., Characterization of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow on porous nickel support for hydrogen separation. Separation and Purification Technology 2006, 50 (1), 82-91. Cerca con Google

21. Hoang, H. T.; Tong, H. D.; Gielens, F. C.; Jansen, H. V.; Elwenspoek, M. C., Fabrication and characterization of dual sputtered Pd-Cu alloy films for hydrogen separation membranes. Materials Letters 2004, 58 (3-4), 525-528. Cerca con Google

22. Tong, H. D.; Vanden Berg, A. H. J.; Gardeniers, J. G. E.; Jansen, H. V.; Gielens, F. C.; Elwenspoek, M. C., Preparation of palladium - Silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane. Thin Solid Films 2005, 479 (1-2), 89-94. Cerca con Google

23. (a) Bryden, K. J.; Ying, J. Y., Nanostructured palladium membrane synthesis by magnetron sputtering. Materials Science and Engineering A 1995, 204 (1-2), 140-145; (b) Ying, J. Y., Structure and morphology of nanostructured oxides synthesized by thermal vaporization/magnetron sputtering and gas condensation. Journal of Aerosol Science 1993, 24 (3), 315-338. Cerca con Google

24. Pereira, A. I.; Pérez, P.; Rodrigues, S. C.; Mendes, A.; Madeira, L. M.; Tavares, C. J., Deposition of Pd-Ag thin film membranes on ceramic supports for hydrogen purification/separation. Materials Research Bulletin 2015, 61, 528-533. Cerca con Google

25. O'Brien, J.; Hughes, R.; Hisek, J., Pd/Ag membranes on porous alumina substrates by unbalanced magnetron sputtering. Surface and Coatings Technology 2001, 142-144, 253-259. Cerca con Google

26. Checchetto, R.; Bazzanella, N.; Patton, B.; Miotello, A., Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification. Surface and Coatings Technology 2004, 177-178, 73-79. Cerca con Google

27. Mattox, D. M., Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A 1989, 7 (3), 1105-1114. Cerca con Google

28. k., W., Handbook of Sputter Deposition Technology, 2nd Edition, Elsevier. 2012. Cerca con Google

29. (a) Thornton, J. A., MAGNETRON SPUTTERING: BASIC PHYSICS AND APPLICATION TO CYLINDRICAL MAGNETRONS. J Vac Sci Technol 1978, 15 (2), 171-177; (b) Waits, R. K., PLANAR MAGNETRON SPUTTERING. J Vac Sci Technol 1978, 15 (2), 179-187; (c) Thornton, J. A., RECENT DEVELOPMENTS IN SPUTTERING - MAGNETRON SPUTTERING. Met Finish 1979, 77 (5), 83-87. Cerca con Google

30. Window, B.; Savvides, N., Charged particle fluxes from planar magnetron sputtering sources. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 1986, 4 (2), 196-202. Cerca con Google

31. Movchan, B. A.; Demchishin, A. V., STUDY OF THE STRUCTURE AND PROPERTIES OF THICK VACUUM CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDE AND ZIRCONIUM DIOXIDE. Fiz Metallov i Metalloved 1969, 28 (4), 653-660. Cerca con Google

32. (a) Thornton, J. A., HIGH RATE THICK FILM GROWTH. Annual Review of Materials Science 1977, 7, 239-260; (b) Thornton, J. A., INFLUENCE OF APPARATUS GEOMETRY AND DEPOSITION CONDITIONS ON THE STRUCTURE AND TOPOGRAPHY OF THICK SPUTTERED COATINGS. J Vac Sci Technol 1974, 11 (4), 666-670. Cerca con Google

33. Dirks, A. G.; Leamy, H. J., Columnar microstructure in vapor-deposited thin films. Thin Solid Films 1977, 47 (3), 219-233. Cerca con Google

34. (a) Bland, R. D.; Kominiak, G. J.; Mattox, D. M., EFFECT OF ION BOMBARDMENT DURING DEPOSITION ON THICK METAL AND CERAMIC DEPOSITS. J Vac Sci Technol 1974, 11 (4), 671-674; (b) Mattox, D. M.; Kominiak, G. J., PHYSICAL PROPERTIES OF THICK SPUTTER-DEPOSITED GLASS FILMS. Journal of the Electrochemical Society 1973, 120 (11), 1535-1539. Cerca con Google

35. Hoffman, D. W.; Thornton, J. A., The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures. Thin Solid Films 1977, 45 (2), 387-396. Cerca con Google

36. Tominaga, K.; Iwamura, S.; Shintani, Y.; Tada, O., ENERGY ANALYSIS OF HIGH-ENERGY NEUTRAL ATOMS IN THE SPUTTERING OF ZNO AND BATIO//3. Jpn J Appl Phys Part 1 1982, V 21 (N 5), 688-692. Cerca con Google

37. Thornton, J. A., The influence of bias sputter parameters on thick copper coatings deposited using a hollow cathode. Thin Solid Films 1977, 40 (C), 335-344. Cerca con Google

38. (a) Hoffman, D. W.; Thornton, J. A., INTERNAL STRESSES IN Cr, Mo, Ta, AND Pt FILMS DEPOSITED BY SPUTTERING FROM A PLANAR MAGNETRON SOURCE. Journal of vacuum science & technology 1981, 20 (3), 355-358; (b) Sun, R. C.; Tisone, T. C.; Cruzan, P. D., The origin of internal stress in low-voltage sputtered tungsten films. Journal of Applied Physics 1975, 46 (1), 112-117. Cerca con Google

39. Hoffman, D. W.; Thornton, J. A., EFFECTS OF SUBSTRATE ORIENTATION AND ROTATION ON INTERNAL STRESSES IN SPUTTERED METAL FILMS. J Vac Sci Technol 1979, 16 (2), 134-137. Cerca con Google

40. Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 2010, 518 (15), 4087-4090. Cerca con Google

41. Christou, C.; Barber, Z. H., Ionization of sputtered material in a planar magnetron discharge. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 2000, 18 (6), 2897-2907. Cerca con Google

42. (a) Ricard, A.; Nouvellon, C.; Konstantinidis, S.; Dauchot, J. P.; Wautelet, M.; Hecq, M., Density and temperature in an inductively amplified magnetron discharge for titanium deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 2002, 20 (4), 1488-1491; (b) Konstantinidis, S.; Ricard, A.; Ganciu, M.; Dauchot, J. P.; Ranea, C.; Hecq, M., Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy. Journal of Applied Physics 2004, 95 (5), 2900-2905. Cerca con Google

43. Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A. P.; Gudmundsson, J. T., Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 2006, 513 (1-2), 1-24. Cerca con Google

44. Kaufman, H. R., TECHNOLOGY OF ION BEAM SOURCES USED IN SPUTTERING. J Vac Sci Technol 1978, 15 (2), 272-276. Cerca con Google

45. Bugaev, S. P.; Koval, N. N.; Sochugov, N. S.; Zakharov, A. N. In Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 1996; pp 1074-1076. Cerca con Google

46. Fetisov, I. K.; Filippov, A. A.; Khodachenko, G. V.; Mozgrin, D. V.; Pisarev, A. A., Impulse irradiation plasma technology for film deposition. Vacuum 1999, 53 (1-2), 133-136. Cerca con Google

47. Ochs, D., HIPIMS Power for Improved Thin Film Coatings. Vakuum in Forschung und Praxis 2008, 20 (4), 34-38. Cerca con Google

48. www.lesker.com/newweb/blog/post.cfm/high-power-impulse-magnetron-sputtering-hipims. Vai! Cerca con Google

49. Sarakinos, K.; Alami, J.; Konstantinidis, S., High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surface and Coatings Technology 2010, 204 (11), 1661-1684. Cerca con Google

50. Alami, J.; Persson, P. O. Å.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U., Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 2005, 23 (2), 278-280. Cerca con Google

51. Sarakinos, K.; Alami, J.; Wuttig, M., Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering. Journal of Physics D: Applied Physics 2007, 40 (7), 2108-2114. Cerca con Google

52. Sarakinos, K.; Alami, J.; Klever, C.; Wuttig, M., Growth of TiOx films by high power pulsed magnetron sputtering from a compound TiO1.8 target. Reviews on Advanced Materials Science 2007, 15 (1), 44-48. Cerca con Google

53. Konstantinidis, S.; Hemberg, A.; Dauchot, J. P.; Hecq, M., Deposition of zinc oxide layers by high-power impulse magnetron sputtering. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 2007, 25 (3), 19-21. Cerca con Google

54. Alami, J.; Eklund, P.; Andersson, J. M.; Lattemann, M.; Wallin, E.; Bohlmark, J.; Persson, P.; Helmersson, U., Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering. Thin Solid Films 2007, 515 (7-8), 3434-3438. Cerca con Google

55. 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters. 2004, 215. Cerca con Google

56. 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters. 2004. Cerca con Google

57. Vlček, J.; Pajdarová, A. D.; Musil, J., Pulsed dc magnetron discharges and their utilization in plasma surface engineering. Contributions to Plasma Physics 2004, 44 (5-6), 426-436. Cerca con Google

58. Lattemann, M.; Ehiasarian, A. P.; Bohlmark, J.; Persson, P. Å. O.; Helmersson, U., Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel. Surface and Coatings Technology 2006, 200 (22-23 SPEC. ISS.), 6495-6499. Cerca con Google

59. Ehiasarian, A. P.; Wen, J. G.; Petrov, I., Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. Journal of Applied Physics 2007, 101 (5). Cerca con Google

60. Proceedings of the 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters. 2004. Cerca con Google

61. Christie, D. J., Target material pathways model for high power pulsed magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 2005, 23 (2), 330-335. Cerca con Google

62. Christie, D. J.; Tomasel, F.; Sproul, W. D.; Carter, D. C., Power supply with arc handling for high peak power magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 2004, 22 (4), 1415-1419. Cerca con Google

63. Ortiz-Medina, J.; Kitano, H.; Morelos-Gomez, A.; Wang, Z.; Araki, T.; Kang, C. S.; Hayashi, T.; Takeuchi, K.; Kawaguchi, T.; Tanioka, A.; Cruz-Silva, R.; Terrones, M.; Endo, M., Nanostructured carbon-based membranes: Nitrogen doping effects on reverse osmosis performance. NPG Asia Materials 2016, 8. Cerca con Google

Chapter 4 Cerca con Google

1. (a) Sun, G. B.; Hidajat, K.; Kawi, S., Ultra thin Pd membrane on α-Al2O3 hollow fiber by electroless plating: High permeance and selectivity. Journal of Membrane Science 2006, 284 (1-2), 110-119; (b) Roa, F.; Douglas Way, J.; McCormick, R. L.; Paglieri, S. N., Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chemical Engineering Journal 2003, 93 (1), 11-22; (c) Jayaraman, V.; Lin, Y. S.; Pakala, M.; Lin, R. Y., Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. Journal of Membrane Science 1995, 99 (1), 89-100; (d) Li, A.; Xiong, G.; Hughes, R., Repair of Pd/α-Al2O3 composite membrane with defects. Science in China, Series B: Chemistry 1999, 42 (6), 612-616. Cerca con Google

2. (a) Wu, L. Q.; Xu, N.; Shi, J., Preparation of a palladium composite membrane by an improved electroless plating technique. Industrial and Engineering Chemistry Research 2000, 39 (2), 342-348; (b) Li, X.; Fan, Y.; Jin, W.; Huang, Y.; Xu, N., Improved photocatalytic deposition of palladium membranes. Journal of Membrane Science 2006, 282 (1-2), 1-6. Cerca con Google

3. Gao, H.; Lin, J. Y. S.; Li, Y.; Zhang, B., Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel. Journal of Membrane Science 2005, 265 (1-2), 142-152. Cerca con Google

4. Uemiya, S.; Sato, N.; Ando, H.; Kude, Y.; Matsuda, T.; Kikuchi, E., Separation of hydrogen through palladium thin film supported on a porous glass tube. Journal of Membrane Science 1991, 56 (3), 303-313. Cerca con Google

5. (a) Mardilovich, P. P.; She, Y.; Ma, Y. H.; Rei, M. H., Defect-Free Palladium Membranes on Porous Stainless-Steel Support. AIChE Journal 1998, 44 (2), 310-322; (b) Mardilovich, I. P.; Engwall, E.; Ma, Y. H., Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes. Desalination 2002, 144 (1-3), 85-89; (c) Tong, J.; Matsumura, Y.; Suda, H.; Haraya, K., Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Separation and Purification Technology 2005, 46 (1-2), 1-10. Cerca con Google

6. Jarosch, K.; De Lasa, H. I., Novel riser simulator for methane reforming using high temperature membranes. Chemical Engineering Science 1999, 54 (10), 1455-1460. Cerca con Google

7. (a) Ryi, S. K.; Park, J. S.; Kim, S. H.; Hong, S. C.; Kim, D. W., Development of porous nickel membrane made by uniaxial pressing for hydrogen separation. Desalination 2006, 200 (1-3), 213-215; (b) Ryi, S. K.; Park, J. S.; Choi, S. H.; Cho, S. H.; Kim, S. H., Fabrication and characterization of metal porous membrane made of Ni powder for hydrogen separation. Separation and Purification Technology 2006, 47 (3), 148-155. Cerca con Google

8. Starkov, V.; Vyatkin, A.; Volkov, V.; Presting, H.; Konle, J.; Konig, U. In Highly efficient to hydrogen permeability palladium membranes supported in porous silicon, Physica Status Solidi C: Conferences, 2005; pp 3457-3460. Cerca con Google

9. Gryaznov, V. M.; Serebryannikova, O. S.; Serov, Y. M.; Ermilova, M. M.; Karavanov, A. N.; Mischenko, A. P.; Orekhova, N. V., Preparation and catalysis over palladium composite membranes. Journal of Membrane Science 1993, 77 (2-3), 284. Cerca con Google

10. (a) Zhang, Y.; Gwak, J.; Murakoshi, Y.; Ikehara, T.; Maeda, R.; Nishimura, C., Hydrogen permeation characteristics of thin Pd membrane prepared by microfabrication technology. Journal of Membrane Science 2006, 277 (1-2), 203-209; (b) Zhang, Y.; Lu, J.; Ikehara, T.; Maeda, R.; Nishimura, C., Characterization and permeation of microfabricated palladium membrane. Materials Transactions 2006, 47 (2), 255-258. Cerca con Google

11. (a) Hou, K.; Hughes, R., The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. Journal of Membrane Science 2002, 206 (1-2), 119-130; (b) Hou, K.; Hughes, R., Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation. Journal of Membrane Science 2003, 214 (1), 43-55; (c) Uemiya, S.; Matsuda, T.; Kikuchi, E., Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. Journal of Membrane Science 1991, 56 (3), 315-325. Cerca con Google

12. (a) McCool, B.; Xomeritakis, G.; Lin, Y. S., Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes. Journal of Membrane Science 1999, 161 (1-2), 67-76; (b) Pereira, A. I.; Pérez, P.; Rodrigues, S. C.; Mendes, A.; Madeira, L. M.; Tavares, C. J., Deposition of Pd-Ag thin film membranes on ceramic supports for hydrogen purification/separation. Materials Research Bulletin 2015, 61, 528-533; (c) Jayaraman, V.; Lin, Y. S., Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. Journal of Membrane Science 1995, 104 (3), 251-262. Cerca con Google

13. Burggraaf, A. J., Chapter 9 Transport and separation properties of membranes with gases and vapours. In Membrane Science and Technology, 1996; Vol. 4, pp 331-433. Cerca con Google

14. Tosti, S.; Bettinali, L.; Castelli, S.; Sarto, F.; Scaglione, S.; Violante, V., Sputtered, electroless, and rolled palladium-ceramic membranes. Journal of Membrane Science 2002, 196 (2), 241-249. Cerca con Google

15. Paglieri, S. N.; Way, J. D., Innovations in palladium membrane research. Separation and Purification Methods 2002, 31 (1), 1-169. Cerca con Google

16. Huang, Y.; Dittmeyer, R., Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion. Journal of Membrane Science 2006, 282 (1-2), 296-310. Cerca con Google

17. (a) Deng, Z. Y.; Yang, J. F.; Beppu, Y.; Ando, M.; Ohji, T., Effect of agglomeration on mechanical properties of porous zirconia fabricated by partial sintering. Journal of the American Ceramic Society 2002, 85 (8), 1961-1965; (b) Jean, G.; Sciamanna, V.; Demuynck, M.; Cambier, F.; Gonon, M., Macroporous ceramics: Novel route using partial sintering of alumina-powder agglomerates obtained by spray-drying. Ceramics International 2014, 40 (7 PART A), 10197-10203; (c) Kalemtas, A.; Topates, G.; Özcoban, H.; Mandal, H.; Kara, F.; Janssen, R., Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering & starch addition. Journal of the European Ceramic Society 2013, 33 (9), 1507-1515. Cerca con Google

18. Fukushima, M.; Zhou, Y.; Miyazaki, H.; Yoshizawa, Y. I.; Hirao, K.; Iwamoto, Y.; Yamazaki, S.; Nagano, T., Microstructural characterization of porous silicon carbide membrane support with and without alumina additive. Journal of the American Ceramic Society 2006, 89 (5), 1523-1529. Cerca con Google

19. Scheffler, M.; Colombo, P., Cellular Ceramics: Structure, Manufacturing, Properties and Applications. 2006; p 1-645. Cerca con Google

20. Kang , S., Sintering, densification, grain growth and microstructure, Elsevier, 2004. Cerca con Google

21. (a) Colombo, P., Engineering porosity in polymer-derived ceramics. Journal of the European Ceramic Society 2008, 28 (7), 1389-1395; (b) Descamps, M.; Richart, O.; Hardouin, P.; Hornez, J. C.; Leriche, A., Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural. Ceramics International 2008, 34 (5), 1131-1137; (c) Kamitani, K.; Hyodo, T.; Shimizu, Y.; Egashira, M., Fabrication of porous alumina ceramics having cell windows with controlled size by PMMA template method. Journal of Materials Science 2010, 45 (13), 3602-3609. Cerca con Google

22. (a) Liu, B. T.; Luo, B.; Xu, Z. Z.; Liu, G. S., The preparation of porous alumina ceramics with directional pore channels structure by a camphene-based freeze-casting. Gongneng Cailiao/Journal of Functional Materials 2011, 42 (SUPPL. 1), 163-167; (b) Liu, L.; Geng, G., Preparing β-Si3N4 crystals by freeze-drying and using 10 wt% Ba0.75Sr0.25Al2Si2O8 as flux. Materials Letters 2016, 167, 109-111; (c) Marrero-Jerez, J.; Larrondo, S.; Rodríguez-Castellón, E.; Núñez, P., TPR, XRD and XPS characterisation of ceria-based materials synthesized by freeze-drying precursor method. Ceramics International 2014, 40 (5), 6807-6814; (d) Villanueva, R.; Gõmez, A.; Vie, D.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vila, J., Nanostructured solids from freeze-dried precursors: Multigram scale synthesis of TiO2-based powders. Journal of the American Ceramic Society 2013, 96 (4), 1324-1331. Cerca con Google

23. (a) Bucharsky, E. C.; Schell, K. G.; Oberacker, R.; Hoffmann, M. J., Preparation of transparent glass sponges via replica method using high-purity silica. Journal of the American Ceramic Society 2010, 93 (1), 111-114; (b) Lee, Y. J.; Kim, S. R.; Kim, Y. H.; Shin, D. G.; Won, J. Y.; Kwon, W. T., Characterization of microstructure on porous silicon carbide prepared by polymer replica template method. Journal of the Korean Ceramic Society 2014, 51 (6), 539-543. Cerca con Google

24. Brown, D. D.; Green, D. J., Investigation of strut crack formation in open cell alumina ceramics. Journal of the American Ceramic Society 1994, 77 (6), 1467-1472. Cerca con Google

25. (a) Barg, S.; Soltmann, C.; Andrade, M.; Koch, D.; Grathwohl, G., Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. Journal of the American Ceramic Society 2008, 91 (9), 2823-2829; (b) Zhang, L. Y.; Zhou, D. L.; Chen, Y.; Liang, B.; Zhou, J. B., Preparation of high open porosity ceramic foams via direct foaming molded and dried at room temperature. Journal of the European Ceramic Society 2014, 34 (10), 2443-2452. Cerca con Google

26. (a) Banno, T.; Yamada, Y.; Nagae, H., Fabrication of porous alumina ceramics by simultaneous thermal gas generating and thermal slurry solidification. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan 2009, 117 (1365), 713-716; (b) Song, H. Y.; Islam, S.; Lee, B. T., A novel method to fabricate unidirectional porous hydroxyapatite body using ethanol bubbles in a viscous slurry. Journal of the American Ceramic Society 2008, 91 (9), 3125-3127. Cerca con Google

Chapter 5 Cerca con Google

1. Ragaini, V.; Giannantonio, R.; Magni, P.; Lucarelli, L.; Leofanti, G., Dispersion measurement by the single introduction method coupled with the back-sorption procedure: A chemisorption and TPD study of the different chemisorbed hydrogen species. II. Pd on Alumina. Journal of Catalysis 1994, 146 (1), 116-125. Cerca con Google

2. Ward, T. L.; Dao, T., Model of hydrogen permeation behavior in palladium membranes. Journal of Membrane Science 1999, 153 (2), 211-231. Cerca con Google

3. Gillespie, L. J.; Galstaun, L. S., The palladium-hydrogen equilibrium and new palladium hydrides. Journal of the American Chemical Society 1936, 58 (12), 2565-2573. Cerca con Google

4. Buxbaum, R. E.; Marker, T. L., Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium. Journal of Membrane Science 1993, 85 (1), 29-38. Cerca con Google

5. (a) Paglieri, S. N.; Way, J. D., Innovations in palladium membrane research. Separation and Purification Methods 2002, 31 (1), 1-169; (b) Li, A.; Liang, W.; Hughes, R., The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. Journal of Membrane Science 2000, 165 (1), 135-141; (c) Nam, S. E.; Lee, K. H., A study on the palladium/nickel composite membrane by vacuum electrodeposition. Journal of Membrane Science 2000, 170 (1), 91-99. Cerca con Google

6. Gielens, F. C.; Knibbeler, R. J. J.; Duysinx, P. F. J.; Tong, H. D.; Vorstman, M. A. G.; Keurentjes, J. T. F., Influence of steam and carbon dioxide on the hydrogen flux through thin Pd/Ag and Pd membranes. Journal of Membrane Science 2006, 279 (1-2), 176-185. Cerca con Google

7. (a) Morreale, B. D.; Ciocco, M. V.; Howard, B. H.; Killmeyer, R. P.; Cugini, A. V.; Enick, R. M., Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. Journal of Membrane Science 2004, 241 (2), 219-224; (b) Iyoha, O.; Enick, R.; Killmeyer, R.; Morreale, B., The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd-Cu membranes. Journal of Membrane Science 2007, 305 (1-2), 77-92. Cerca con Google

8. (a) Mardilovich, I. P.; Engwall, E.; Ma, Y. H., Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes. Desalination 2002, 144 (1-3), 85-89; (b) Balachandra Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record