Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Toninelli, Paolo (2017) Two-phase heat transfer in minichannels: modeling and heat pump applications. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF (Formato PDF/A)
Tesi non accessible fino a 31 Gennaio 2020 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

9Mb

Abstract (inglese)

Nowadays there is an increasing demand for compact devices with high performance in heating and cooling applications; a compact geometry permits to have a lower charge of refrigerant as compared to conventional HX.
The present research activity is focused on the analysis of condensation phenomena inside a single minichannel and on the application of minichannels technology for condensers and evaporators in heating and cooling systems.
When the inner diameter decreases, new parameters can influence in a significant way the two-phase heat transfer. Nowadays powerful numerical tools permit to obtain a detailed analysis of two-phase heat transfer mechanisms inside channels and to model the interaction between the phases without using any empirical closure law. In this way it is possible to have a numerical approach that can be applied for different fluids and operating conditions being independent from the empirical correlations found in the literature. In particular the Volume Of Fluid (VOF) method is used to have investigate the main features of condensation phenomena inside a single minichannel and the numerical results have been validated against experimental data.
Since the low mass flux conditions are the least investigated due to the high experimental uncertainly when the heat flow rate is in the order of few watts, numerical simulations have been performed to get an insight into the condensation process at these operating conditions, focusing the investigation on the effect of fluid properties, channel shape, channel size and channel orientation.
The VOF simulations were then extended to the study of interfacial instabilities during the R134a annular-wavy downflow condensation inside a vertical 3.4 mm i.d. minichannel. Computational results about the evolution in time of the vapour-liquid interface along the channel have been validated against experimental visualizations and the influence of the waves on heat transfer has been analyzed.
Besides the numerical analysis of the heat transfer, the application of minichannel technology in heating and cooling systems has also been investigated. The use of minichannels in heat exchangers allows to significantly decrease the refrigerant charge as compared to conventional finned coil heat exchangers. This is particularly useful in a reversible heat pump when the same heat exchanger can work as a condenser or as an evaporator and it is particularly useful when the refrigerant is flammable or middly flammable.
The development of physical models are necessary to the prediction of the performance and the design of completely innovative systems. Computational procedures have been thus developed to evaluate the performance of a reversible water-to-water and air-to-water heat pump using minichannels in the heat transfer with air, considering both the air and the ground as possible heat sources.
This work has been possible thanks to the financial support of Riello SpA.

Abstract (italiano)

Attualmente vi è una crescente domanda di dispositivi compatti con prestazioni elevate in applicazioni di riscaldamento e raffreddamento; una geometria compatta consente di avere una carica ridotta di refrigerante rispetto agli scambiatori convenzionali.
L'attività di ricerca è focalizzata sull'analisi del fenomeni di condensazione all'interno di un singolo minicanale e sull'applicazione della tecnologia a minicanali per condensatori ed evaporatori in sistemi di riscaldamento e raffreddamento. Quando il diametro interno diminuisce, nuovi parametri possono influenzare in modo significativo il trasferimento di calore in deflusso bifase. Oggigiorno potenti strumenti numerici permettono di ottenere un'analisi dettagliata dei meccanismi di trasferimento di calore in deflusso bifase all'interno di canali e di modellare l'interazione tra le fasi senza utilizzare alcuna legge empirica di chiusura. In questo modo è possibile avere un approccio puramente numerico che può essere applicato per diversi fluidi e diverse condizioni operative, risultando indipendente dalle correlazioni empiriche in letteratura. In particolare, il metodo VOF è stato utilizzato per studiare le caratteristiche principali dei
fenomeni di condensazione all'interno di un singolo minicanale ed i risultati numerici sono stati poi convalidati con i dati sperimentali. Poiché le condizioni a bassa portata specifica sono le meno indagate a causa della elevata incertezza sperimentale quando il flusso termico è dell'ordine di pochi watt, simulazioni numeriche sono state effettuate allo scopo di ottenere una panoramica del processo di condensazione in tali condizioni operative, concentrando l'indagine sugli effetti della proprietà del fluido, la forma, le dimensioni e l'’inclinazione del canale. Le simulazioni VOF sono state poi estese allo studio delle instabilità all’interfaccia durante il processo di condensazione di R134a per un deflusso anulare-ondoso all'interno di un minicanale verticale con un diametro interno di 3.4 mm. I risultati numerici sull'evoluzione
dell’interfaccia liquido-vapore nel tempo sono stati convalidati con visualizzazioni sperimentali e l'influenza delle onde sullo scambio termico è stata analizzata.
Oltre all'analisi numerica del trasferimento di calore, l'applicazione della tecnologia a minicanali è stata anche investigata in sistemi di riscaldamento e raffreddamento. L'uso di minicanali negli scambiatori di calore permette di ridurre in modo significativo la carica di refrigerante rispetto ai tradizionali scambiatori di calore a batteria alettata. Questo è particolarmente utile in una pompa di calore reversibile quando lo stesso scambiatore di calore può funzionare come un condensatore o come evaporatore ed è particolarmente utile quando il refrigerante è infiammabile o mediamente infiammabile.
Lo sviluppo di modelli fisici è necessario per la previsione delle prestazioni e per la progettazione di sistemi completamente innovativi. Procedure di calcolo sono state così implementate per valutare le prestazioni di una pompa
di calore reversibile acqua-acqua e aria-acqua utilizzando i minicanali nel trasferimento di calore con l'aria, considerando sia l'aria che il terreno come possibili fonti di calore.
Questo lavoro è stato possibile grazie al sostegno finanziario di Riello SpA .

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Del Col, Davide
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:31 Gennaio 2017
Anno di Pubblicazione:31 Gennaio 2017
Parole chiave (italiano / inglese):Condensation; Minichannels; VOF simulations; Experiments; Heat Pumps
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/10 Fisica tecnica industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10196
Depositato il:02 Nov 2017 16:08
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] A. Cavallini, D. Del Col, L. Doretti, M. Matkovic, L. Rossetto, C. Zilio, G. Censi, Cerca con Google

Condensation in horizontal smooth tubes: A new heat transfer model for heat exchanger Cerca con Google

design, 27 (2006) 31-38. Cerca con Google

[2] K.W. Moser, R.L. Webb, B. Na, A new equivalent Reynolds number model for Cerca con Google

condensation in smooth tubes, Journal of Heat Transfer. 120 (1998) 410-417. Cerca con Google

[3] J.W. Coleman, S. Garimella, Characterization of two-phase flow patterns in small Cerca con Google

diameter round and rectangular tubes, Int. J. Heat Mass Transf. 42 (1999) 2869-2881. Cerca con Google

[4] J.W. Coleman, S. Garimella, Two-phase flow regimes in round, square and rectangular Cerca con Google

tubes during condensation of refrigerant R 134a, Int. J. Refrig. 26 (2003) 117-128. Cerca con Google

[5] G. Nema, S. Garimella, B.M. Fronk, Flow regime transitions during condensation in Cerca con Google

microchannels, Int. J. Refrig. 40 (2014) 227-240. Cerca con Google

[6] J. El Hajal, J.R. Thome, A. Cavallini, Condensation in horizontal tubes, part 1: Two- Cerca con Google

phase flow pattern map, Int. J. Heat Mass Transfer. 46 (2003) 3349-3363. Cerca con Google

[7] M. Azzolin, Experimental study of phase change heat transfer in minichannels for Cerca con Google

ground and space applications, PhD Thesis (2016). Cerca con Google

[8] M. Azzolin, S. Bortolin, D. Del Col, Measurements and visualization during Cerca con Google

condensation inside a 3 mm diameter channel, 9th International Conference on Multiphase Cerca con Google

Flow, ICMF-2016. (2016). Cerca con Google

[9] M. Zhang, R.L. Webb, Correlation of two-phase friction for refrigerants in small- Cerca con Google

diameter tubes, Exp. Therm. Fluid Sci. 25 (2001) 131-139. Cerca con Google

[10] M.M. Shah, An improved and extended general correlationfor heat transfer during Cerca con Google

condensationin plain tubes, HVAC and R Research. 15 (2009) 889-913. Cerca con Google

[11] A. Cavallini, S. Bortolin, D. Del Col, M. Matkovic, L. Rossetto, Condensation heat Cerca con Google

transfer and pressure losses of high- and low-pressure refrigerants flowing in a single Cerca con Google

circular minichannel, 32 (2011) 90-98. Cerca con Google

[12] D. Del Col, S. Bortolin, A. Cavallini, M. Matkovic, Effect of cross sectional shape during Cerca con Google

condensation in a single square minichannel, Int. J. Heat Mass Transfer. 54 (2011) 3909- Cerca con Google

3920. Cerca con Google

[13] D. Del Col, M. Bortolato, M. Azzolin, S. Bortolin, Condensation heat transfer and two- Cerca con Google

phase frictional pressure drop in a single minichannel with R1234ze(E) and other Cerca con Google

refrigerants, Int. J. Refrig. 50 (2015) 87-103. Cerca con Google

[14] T.M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of Cerca con Google

condensation heat transfer coefficients in circular microchannels, Journal of Heat Transfer. Cerca con Google

128 (2006) 1050-1059. Cerca con Google

[15] M. Matkovic, A. Cavallini, D. Del Col, L. Rossetto, Experimental study on condensation Cerca con Google

heat transfer inside a single circular minichannel, Int. J. Heat Mass Transfer. 52 (2009) Cerca con Google

2311-2323. Cerca con Google

[16] N. Liu, J.M. Li, J. Sun, H.S. Wang, Heat transfer and pressure drop during Cerca con Google

condensation of R152a in circular and square microchannels, Exp. Therm. Fluid Sci. 47 Cerca con Google

(2013) 60-67. Cerca con Google

[17] K. Sakamatapan, J. Kaew-On, A.S. Dalkilic, O. Mahian, S. Wongwises, Condensation Cerca con Google

heat transfer characteristics of R-134a flowing inside the multiport minichannels, Int. J. Cerca con Google

Heat Mass Transfer. 64 (2013) 976-985. Cerca con Google

[18] S. Bortolin, E. Da Riva, D. Del Col, Condensation in a square minichannel: Application Cerca con Google

of the VOF method, 35 (2014) 193-203. Cerca con Google

[19] D. Del Col, M. Bortolato, M. Azzolin, S. Bortolin, Effect of inclination during Cerca con Google

condensation inside a square cross section minichannel, Int. J. Heat Mass Transfer. 78 Cerca con Google

(2014) 760-777. Cerca con Google

[20] E. Da Riva, D. Del Col, Effect of gravity during condensation of R134a in a circular Cerca con Google

minichannel: VOF simulation of annular condensation, Microgravity Sci Technol. 23 (2011) Cerca con Google

S87-S97. Cerca con Google

[21] I. Marchuk, Y. Lyulin, O.A. Kabov, Theoretical and experimental study of convective Cerca con Google

condensation inside a circular tube, Interfacial Phenomena and Heat Transfer. 1 (2013). Cerca con Google

[22] S. Nebuloni, J.R. Thome, D. Del Col, Conjugate heat transfer in annular laminar film Cerca con Google

condensation in microchannels: Comparison of numerical model to experiemental results, Cerca con Google

2 (2010) 245-252. Cerca con Google

[23] B.M. Fronk, S. Garimella, Heat transfer and pressure drop during condensation of Cerca con Google

ammonia in microchannels, (2012) 399-409. Cerca con Google

[24] D. Del Col, M. Bortolato, S. Bortolin, Comprehensive experimental investigation of Cerca con Google

two-phase heat transfer and pressure drop with propane in a minichannel, Int. J. Refrig. 47 Cerca con Google

(2014) 66-84. Cerca con Google

[25] T. Boeck, J. Li, E. Lopez-Pages, P. Yecko, S. Zaleski, Ligament formation in sheared Cerca con Google

liquid-gas layers, Theor. Comput. Fluid Dyn. 21 (2007) 59-76. Cerca con Google

[26] J. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface Cerca con Google

tension, Journal of computational physics. 100 (1992) 335-354. Cerca con Google

[27] E. Da Riva, D. Del Col, S.V. Garimella, A. Cavallini, The importance of turbulence Cerca con Google

during condensation in a horizontal circular minichannel, Int. J. Heat Mass Transfer. 55 Cerca con Google

(2012) 3470-3481. Cerca con Google

[28] H.S. Wang, J.W. Rose, Film condensation in horizontal circular section Cerca con Google

microchannels, International Journal of Engineering Systems Modelling and Simulation. 1 Cerca con Google

(2009) 115-121. Cerca con Google

[29] H.S. Wang, J.W. Rose, Theory of heat transfer during condensation in microchannels, Cerca con Google

Int. J. Heat Mass Transfer. 54 (2011) 2525-2534. Cerca con Google

[30] H.S. Wang, J.W. Rose, A theory of film condensation in horizontal noncircular section Cerca con Google

microchannels, Journal of Heat Transfer. 127 (2005) 1096-1105. Cerca con Google

[31] S. Nebuloni, J.R. Thome, Numerical modeling of laminar annular film condensation Cerca con Google

for different channel shapes, Int. J. Heat Mass Transfer. 53 (2010) 2615-2627. Cerca con Google

[32] D.C. Wilcox, Turbulence Modeling for CFD, DCW industries La Canada, CA, 1998. Cerca con Google

[33] E. Da Riva, D. Del Col, Numerical simulation of laminar liquid film condensation in a Cerca con Google

horizontal circular minichannel, Journal of heat transfer. 134 (2012) 051019. Cerca con Google

[34] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering Cerca con Google

applications, AIAA J. 32 (1994) 1598-1605. Cerca con Google

[35] P. Bradshaw, D. Ferriss, N. Atwell, Calculation of boundary-layer development using Cerca con Google

the turbulent energy equation, J. Fluid Mech. 28 (1967) 593-616. Cerca con Google

[36] W.H. Lee, Pressure iteration scheme for two-phase flow modeling, IEEE/Engineering Cerca con Google

in Medicine and Biology Society Annual Conference. 1 (1980) 407-431. Cerca con Google

[37] L.D. Berman, On the effect of molecular-kinetic resistance upon heat transfer with Cerca con Google

condensation, Int. J. Heat Mass Transfer. 10 (1967) 1463. Cerca con Google

[38] H.S. Wang, J.W. Rose, Effect of interphase matter transfer on condensation on low- Cerca con Google

finned tubes - a theoretical investigation, Int. J. Heat Mass Transfer. 47 (2004) 179-184. Cerca con Google

[39] Y. Zhang, A. Faghri, M.B. Shafii, Capillary blocking in forced convective condensation Cerca con Google

in horizontal miniature channels, Journal of Heat Transfer. 123 (2001) 501-511. Cerca con Google

[40] H. Wu, X. Peng, P. Ye, Y.E. Gong, Simulation of refrigerant flow boiling in serpentine Cerca con Google

tubes, Int. J. Heat Mass Transfer. 50 (2007) 1186-1195. Cerca con Google

[41] Z. Yang, X. Peng, P. Ye, Numerical and experimental investigation of two phase flow Cerca con Google

during boiling in a coiled tube, Int. J. Heat Mass Transfer. 51 (2008) 1003-1016. Cerca con Google

[42] S.W. Welch, J. Wilson, A volume of fluid based method for fluid flows with phase Cerca con Google

change, Journal of computational physics. 160 (2000) 662-682. Cerca con Google

[43] D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, Cerca con Google

Numerical methods for fluid dynamics. 24 (1982) 273-285. Cerca con Google

[44] H. Ganapathy, A. Shooshtari, K. Choo, S. Dessiatoun, M. Alshehhi, M. Ohadi, Volume Cerca con Google

of fluid-based numerical modeling of condensation heat transfer and fluid flow Cerca con Google

characteristics in microchannels, Int. J. Heat Mass Transfer. 65 (2013) 62-72. Cerca con Google

[45] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free Cerca con Google

boundaries, Journal of Computational Physics. 39 (1981) 201-225. Cerca con Google

[46] R. Gupta, D.F. Fletcher, B.S. Haynes, On the CFD modelling of Taylor flow in Cerca con Google

microchannels, Chemical Engineering Science. 64 (2009) 2941-2950. Cerca con Google

[47] A. Cioncolini, J.R. Thome, Algebraic turbulence modeling in adiabatic and evaporating Cerca con Google

annular two-phase flow, Int J Heat Fluid Flow. 32 (2011) 805-817. Cerca con Google

[48] O. Baker, Simultaneus flow of oil and gas, Oil Gas J. 53 (1954) 185-190. Cerca con Google

[49] J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas—liquid flow in Cerca con Google

horizontal pipes, Int. J. Multiphase Flow. 1 (1974) 537-553. Cerca con Google

[50] Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and Cerca con Google

near horizontal gas-liquid flow, AIChE J. 22 (1976) 47-55. Cerca con Google

[51] J. Weisman, D. Duncan, J. Gibson, T. Crawford, Effects of fluid properties and pipe Cerca con Google

diameter on two-phase flow patterns in horizontal lines, Int. J. Multiph. Flow. 5 (1979) 437- Cerca con Google

462. Cerca con Google

[52] H. Ide, A. Kariyasaki, T. Fukano, Fundamental data on the gas-liquid two-phase flow Cerca con Google

in minichannels{star, open}{star, open}A preliminary version of this paper was presented Cerca con Google

at ICMMO5: Third International Conference on Microchannels and Minichannels, held at Cerca con Google

University of Toronto, June 13-15, 2005, organized by S.G. Kandlikar and M. Kawaji, CD- Cerca con Google

ROM Proceedings, ISBN: 0-7918-3758-0, ASME, New York, International Journal of Cerca con Google

Thermal Sciences. 46 (2007) 519-530. Cerca con Google

[53] J.R. Thome, J. El Hajal, A. Cavallini, Condensation in horizontal tubes, part 2: New Cerca con Google

heat transfer model based on flow regimes, Int. J. Heat Mass Transfer. 46 (2003) 3365- Cerca con Google

3387. Cerca con Google

[54] A. Cioncolini, D. Del Col, J.R. Thome, An indirect criterion for the laminar to turbulent Cerca con Google

flow transition in shear-driven annular liquid films, Int. J. Multiphase Flow. 75 (2015) 26- Cerca con Google

38. Cerca con Google

[55] E. Da Riva, D. Del Col, Numerical simulation of churn flow in a vertical pipe, Chemical Cerca con Google

Engineering Science. 64 (2009) 3753-3765. Cerca con Google

[56] M.H. Kebriaee, H. Karabi, S. Khorsandi, M.H. Saidi, Two phase gas-liquid bubbly flow Cerca con Google

modeling in vertical mini pipe, 3 (2010) 947-956. Cerca con Google

[57] G. Qiu, Z. Wu, Y. Jiang, S. Li, W. Cai, Numerical simulation of condensation of upward Cerca con Google

flow in a vertical pipe, 1D (2014) Fluids Engineering Division. Cerca con Google

[58] A.O. Adelaja, J. Dirker, J.P. Meyer, Convective condensation heat transfer of R134a in Cerca con Google

tubes at different inclination angles, International Journal of Green Energy. 13 (2016) 812- Cerca con Google

821. Cerca con Google

[59] G.F. Hewitt, D. Roberts, Studies of two-phase flow patterns by simultaneous x-ray and Cerca con Google

flash photography. (1969). Cerca con Google

[60] M. Magnini, J.R. Thome, Computational Study of Saturated Flow Boiling Within a Cerca con Google

Microchannel in the Slug Flow Regime, Journal of Heat Transfer. 138 (2016). Cerca con Google

[61] J.F. Urchueguia, M. Zacares, J.M. Corberan, A. Montero, J. Martos, H. Witte, Cerca con Google

Comparison between the energy performance of a ground coupled water to water heat Cerca con Google

pump system and an air to water heat pump system for heating and cooling in typical Cerca con Google

conditions of the European Mediterranean coast, Energy Conversion and Management. 49 Cerca con Google

(2008) 2917-2923. Cerca con Google

[62] N. Pardo, A. Montero, J. Martos, J.F. Urchueguia, Optimization of hybrid - ground Cerca con Google

coupled and air source - heat pump systems in combination with thermal storage, Appl. Cerca con Google

Therm. Eng. 30 (2010) 1073-1077. Cerca con Google

[63] N. Kuzmic, Y.L.E. Law, S.B. Dworkin, Numerical heat transfer comparison study of Cerca con Google

hybrid and non-hybrid ground source heat pump systems, Appl. Energy. 165 (2016) 919- Cerca con Google

929. Cerca con Google

[64] D. Del Col, A. Cavallini, E. Da Riva, S. Mancin, G. Censi, Shell-and-tube minichannel Cerca con Google

condenser for low refrigerant charge, Heat Transfer Eng. 31 (2010) 509-517. Cerca con Google

[65] R.L. Amalfi, F. Vakili-Farahani, J.R. Thome, Flow boiling and frictional pressure Cerca con Google

gradients in plate heat exchangers. Part 1: Review and experimental database, Int. J. Refrig. Cerca con Google

61 (2016) 166-184. Cerca con Google

[66] R.L. Amalfi, F. Vakili-Farahani, J.R. Thome, Flow boiling and frictional pressure Cerca con Google

gradients in plate heat exchangers. Part 2: Comparison of literature methods to database Cerca con Google

and new prediction methods, Int. J. Refrig. 61 (2016) 185-203. Cerca con Google

[67] I. Kim, J. Park, Y. Kwon, Y. Kim, Experimental study on R-410a evaporation heat Cerca con Google

transfer characteristics in oblong shell and plate heat exchanger, Heat Transfer Eng. 28 Cerca con Google

(2007) 633-639. Cerca con Google

[68] J. Huang, T.J. Sheer, M. Bailey-McEwan, Heat transfer and pressure drop in plate heat Cerca con Google

exchanger refrigerant evaporators, Int. J. Refrig. 35 (2012) 325-335. Cerca con Google

[69] Y.Y. Hsieh, T.F. Lin, Evaporation heat transfer and pressure drop of refrigerant R- Cerca con Google

410A flow in a vertical plate heat exchanger, Journal of Heat Transfer. 125 (2003) 852-857. Cerca con Google

[70] Y.Y. Hsieh, T.F. Lin, Saturated flow boiling heat transfer and pressure drop of Cerca con Google

refrigerant R-410A in a vertical plate heat exchanger, Int. J. Heat Mass Transfer. 45 (2002) Cerca con Google

1033-1044. Cerca con Google

[71] G.N. Danilova, V.M. Azarskov, B.B. Zemskov, V. Teploobmen, Plastinchatihispariteljan Cerca con Google

razichnole geometri – heat transfer in plate evaporators of different geometry, Kholod Tek. Cerca con Google

4 (1981) 25-31. Cerca con Google

[72] D. Han, K. Lee, Y. Kim, Experiments on the characteristics of evaporation of R410A in Cerca con Google

brazed plate heat exchangers with different geometric configurations, Appl. Therm. Eng. 23 Cerca con Google

(2003) 1209-1225. Cerca con Google

[73] G.A. Longo, G. Righetti, C. Zilio, A new model for refrigerant condensation inside a Cerca con Google

brazed plate heat exchanger (BPHE), Proceedings of the 15th International Heat Transfer Cerca con Google

Conference, IHTC-15. (2014). Cerca con Google

[74] G.A. Longo, G. Righetti, C. Zilio, A new computational procedure for refrigerant Cerca con Google

condensation inside herringbone-type Brazed Plate Heat Exchangers, Int. J. Heat Mass Cerca con Google

Transfer. 82 (2015) 530-536. Cerca con Google

[75] Z.H. Ayub, Plate heat exchanger literature survey and new heat transfer and pressure Cerca con Google

drop correlations for refrigerant evaporators, Heat Transfer Eng. 24 (2003) 3-16. Cerca con Google

[76] R. Eldeeb, V. Aute, R. Radermacher, A survey of correlations for heat transfer and Cerca con Google

pressure drop for evaporation and condensation in plate heat exchangers, Int. J. Refrig. 65 Cerca con Google

(2016) 12-26. Cerca con Google

[77] H. Martin, A theoretical approach to predict the performance of chevron-type plate Cerca con Google

heat exchangers, Chem. Eng. Process. 35 (1996) 301-310. Cerca con Google

[78] R. Shah, W. Focke, Plate heat exchangers and their design theory, Heat Transfer Cerca con Google

Equipment Design. 227 (1988) 254. Cerca con Google

[79] Y. Yan, H. Lio, T. Lin, Condensation heat transfer and pressure drop of refrigerant R- Cerca con Google

134a in a plate heat exchanger, Int. J. Heat Mass Transfer. 42 (1999) 993-1006. Cerca con Google

[80] S. Mancin, D. Del Col, L. Rossetto, Condensation of superheated vapour of R410A and Cerca con Google

R407C inside plate heat exchangers: Experimental results and simulation procedure, Int. J. Cerca con Google

Refrig. 35 (2012) 2003-2013. Cerca con Google

[81] S. Mancin, D. Del Col, L. Rossetto, R32 partial condensation inside a brazed plate heat Cerca con Google

exchanger, 36 (2013) 601-611. Cerca con Google

[82] W.S. Kuo, Y.M. Lie, Y.Y. Hsieh, T.F. Lin, Condensation heat transfer and pressure drop Cerca con Google

of refrigerant R-410A flow in a vertical plate heat exchanger, Int. J. Heat Mass Transfer. 48 Cerca con Google

(2005) 5205-5220. Cerca con Google

[83] M.M. Shah, A general correlation for heat transfer during film condensation inside Cerca con Google

pipes, International Journal of Heat and Mass Transfer. 22 (1979) 547-556. Cerca con Google

[84] W. Nusselt, Die Oberflächenkondensation des Wasserdampfes, Zeit Ver. Deut. Ing Cerca con Google

(VDI). 60 (1919). Cerca con Google

[85] R. Webb, Convective condensation of superheated vapor, Transactions-american Cerca con Google

society of mechanical engineers journal of heat transfer. 120 (1998) 418-421. Cerca con Google

[86] R.W. Hyland, A.W. Wexler, Formulations for the thermodynamic properties of the Cerca con Google

saturated phases of H2O from 173.15 K to 473.15 K, ASHRAE Trans. 89 (1983) 500-519. Cerca con Google

[87] D.G. Kröger, Air-Cooled Heat Exchangers and Cooling Towers, PennWell Books, 2004. Cerca con Google

[88] V.W. Peppers, A new psychrometric relation for the dewpoint temperature, Unpubl. Cerca con Google

Available from ASHRAE. (1988). Cerca con Google

[89] R.J. Myers, The effect of dehumidification on the air side heat transfer coefficient for a Cerca con Google

finned-tube coil, (1967). Cerca con Google

[90] J.L. Threlkeld, T.H. Kuehn, J.W. Ramsey, Thermal Environmental Engineering, 3rd Cerca con Google

ed. Pearson. (1988). Cerca con Google

[91] A.H. Hassan, J. Gonzálvez-Maciá, S. Martínez-Ballester, J.R. García-Cascales, Cerca con Google

Development and Validation of a Minichannel Evaporator Model under Different Cerca con Google

Dehumidifying Conditions, (2016). Cerca con Google

[92] F.C. McQuinston, Fin efficiency with combined heat and mass transfer, ASHRAE Cerca con Google

Trans. 82 (1975) 87-105. Cerca con Google

[93] C. Davenport, Heat transfer and flow friction characteristics of louvred heat exchanger Cerca con Google

surfaces, (1983). Cerca con Google

[94] Yu-Juei Chang, Chi-Chuan Wang, A generalized heat transfer correlation for louver fin Cerca con Google

geometry, Int. J. Heat Mass Transfer. 40 (1997) 533-544. Cerca con Google

[95] M. Kim, C.W. Bullard, Air-side thermal hydraulic performance of multi-louvered fin Cerca con Google

aluminum heat exchangers, Int. J. Refrig. 25 (2002) 390-400. Cerca con Google

[96] M. Kim, C.W. Bullard, Erratum: Air-side thermal hydraulic performance of multi- Cerca con Google

louvered fin aluminum heat exchangers (International Journal of Refrigeration (2002) 25 Cerca con Google

(390-400) DOI: 10.1016/S0140-7007(01)00025-1), Int. J. Refrig. 28 (2005) 967-968. Cerca con Google

[97] M. Kim, C.W. Bullard, Air-side performance of brazed aluminum heat exchangers Cerca con Google

under dehumidifying conditions, 25 (2002) 924-934. Cerca con Google

[98] W.H. McAdams, Heat transmission, McGraw-Hill. 2nd edn (1942). Cerca con Google

[99] B.S. Petukhov, V.N. Popov, Theoretical calculation of heat exchange and frictional Cerca con Google

resistance in turbulent flow in tubes of an incompressible fluid with variable physical Cerca con Google

properties, High. Temp. 1 (1963) 69-83. Cerca con Google

[100] V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and Cerca con Google

channel flow, International Chemical Engineer. 16 (1976) 359-368. Cerca con Google

[101] Z. Liu, R.H.S. Winterton, General correlation for saturated and subcooled flow boiling Cerca con Google

in tubes and annuli, based on a nucleate pool boiling equation, Int. J. Heat Mass Transfer. Cerca con Google

34 (1991) 2759-2766. Cerca con Google

[102] G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat Cerca con Google

flux in a small vertical tube with R-113, Int. J. Heat Mass Transfer. 25 (1982) 945-960. Cerca con Google

[103] P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in Cerca con Google

small-diameter channels, Appl. Therm. Eng. 17 (1997) 705-715. Cerca con Google

[104] L. Sun, K. Mishima, An evaluation of prediction methods for saturated flow boiling Cerca con Google

heat transfer in mini-channels, Int. J. Heat Mass Transfer. 52 (2009) 5323-5329. Cerca con Google

[105] D. Del Col, A. Cavallini, S. Bortolin, M. Matkovic, L. Rossetto, Dryout during flow Cerca con Google

boiling in a single circular minichannel: Experimentation and modelling, 2 (2009) 447-456. Cerca con Google

[106] A. Cavallini, D. Del Col, M. Matkovic, L. Rossetto, Frictional pressure drop during Cerca con Google

vapour-liquid flow in minichannels: Modelling and experimental evaluation, Int J Heat Cerca con Google

Fluid Flow. 30 (2009) 131-139. Cerca con Google

[107] R. Yun, Y. Kim, C. Park, Numerical analysis on a microchannel evaporator designed Cerca con Google

for CO2 air-conditioning systems, Appl. Therm. Eng. 27 (2007) 1320-1326. Cerca con Google

[108] E. Navarro-Peris, J.M. Corberan, L. Falco, I. Martinez-Galvan, New non-dimensional Cerca con Google

performance parameters for the characterization of refrigeration compressors, Int. J. Cerca con Google

Refrig. 36 (2013) 1951-1964. Cerca con Google

[109] C.P. Remund, Borehole thermal resistance: laboratory and field studies, ASHRAE Cerca con Google

Trans. 105 (1999) 439. Cerca con Google

[110] G. Hellström, Ground Heat Storage: Thermal Analyses of Duct Storage Systems, . Cerca con Google

[111] M.H. Sharqawy, H.M. Badr, E.M. Mokheimer, Investigation of buoyancy effects on Cerca con Google

heat transfer between a vertical borehole heat exchanger and the ground, Geothermics. 48 Cerca con Google

(2013) 52-59. Cerca con Google

[112] M.H. Sharqawy, E.M. Mokheimer, H.M. Badr, Effective pipe-to-borehole thermal Cerca con Google

resistance for vertical ground heat exchangers, Geothermics. 38 (2009) 271-277. Cerca con Google

[113] D. Bauer, W. Heidemann, H. Muller-Steinhagen, H.-.G. Diersch, Thermal resistance Cerca con Google

and capacity models for borehole heat exchangers, Int. J. Energy Res. 35 (2011) 312-320. Cerca con Google

[114] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Cerca con Google

Reference Fluid Thermodynamic and Transport Properties - REFPROP, Version 9.0, Cerca con Google

(2010). Cerca con Google

[115] A. Melinder, E. Granryd, Secondary refrigerants for heat pumps and low temperature Cerca con Google

refrigeration - A comparison of thermodynamic properties of aqueous solutions and non- Cerca con Google

aqueous liquids, Dept. of Applied Thermodynamics and Refrigeration. (1992). Cerca con Google

[116] M. De Carli, M. Tonon, A. Zarrella, R. Zecchin, A computational capacity resistance Cerca con Google

model (CaRM) for vertical ground-coupled heat exchangers, Renewable Energy. 35 (2010) Cerca con Google

1537-1550. Cerca con Google

[117] W. Yang, X. Liang, M. Shi, Z. Chen, A Numerical Model for the Simulation of a Cerca con Google

Vertical U-Bend Ground Heat Exchanger Used in a Ground-Coupled Heat Pump, Cerca con Google

International Journal of Green Energy. 11 (2014) 761-785. Cerca con Google

[118] S. Yoon, S. Lee, G. Go, A numerical and experimental approach to the estimation of Cerca con Google

borehole thermal resistance in ground heat exchangers, Energy. 71 (2014) 547-555. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record