Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Zarantonello, Lisa (2017) Visuo-spatial working memory and ageing: behavioural, psychophysiological and hemodynamic correlates. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
5Mb

Abstract (english)

Working memory is a fundamental function that allows one to perform everyday actions, being involved in academics, professional and social lives. It is negatively influenced by aging. But despite large number of studies, less is know about the visuo-spatial store. In order to better understand this change three studies were carried out, two with healthy participants and one with Parkinson’s disease patients. The participants performed a visuo-spatial n back task with low and high cognitive load conditions as well as a control one. In the first one the behavioural data of participants aged from 20 to 80 years was collected in order to better understand the aging process, in particular to see when it starts to become visible and to observe if the cognitive reserve had a positive influence on it. In the second one behavioural, hemodynamic and electrophysiological data was collected from adult and elderly participants, with the same educational level and cognitive reserve. In the last one, behavioural data from a Parkinson’s group on medication was collected and they were paired with control participants; the groups had high educational level and cognitive reserve in order to see if these prevent cognitive decline. The results of the first study showed that reaction time started to decrease before accuracy (34 vs 57) and that ageing has a negative effect on both; in reaction time ageing showed an interaction with the high cognitive load condition. Cognitive reserve due to educational level had positive effects on both and the total cognitive reserve score was a positive factor on accuracy results. In the second study, healthy aging impaired both the selection of response and the working memory processes: inhibition, updating and maintenance. On the other hand, in the elderly group compensation was found in the attention process. Those changes were visible in behavioural, hemodynamic and electrophysiological correlates. In the last one, the patients showed no difference in behavioural results from the control group, showing that total cognitive reserve and cognitive reserve due to work had a positive effect on this. Visuo-spatial working memory is negatively affected by aging, but cognitive reserve and educational level can prevent this effect.

Abstract (italian)

La memoria di lavoro è una funzione cognitiva fondamentale che permette di compiere le azioni della vita quotidiana, sia in ambito accademico e professionale che sociale. Tale funzione è influenzata negativamente dall’invecchiamento. Nonostante l’ampio numero di studi presenti in letteratura relativi a tale cambiamento, la componente visuo-spaziale è stata poco studiata. Sono stati pertanto effettuati tre studi, due con partecipanti sani ed uno con pazienti con Parkinson. Il compito era un test n back visuo-spaziale, formato da tre condizioni: una di controllo, una con basso ed una con alto carico della memoria di lavoro. Nel primo studio sono stati raccolti dati comportamentali in partecipanti dai 20 agli 80 anni; tale studio aveva lo scopo di vedere quando l’età iniziava ad avere un’influenza nei dati e se la riserva cognitiva avesse invece un ruolo positivo nelle modificazioni della memoria di lavoro visuo-spaziale causate dall’invecchiamento. Nel secondo studio, invece, sono stati raccolti dati comportamentali, elettrofisiologici ed emodinamici in partecipanti adulti ed anziani sani, caratterizzati per avere la stessa riserva cognitiva e la stessa scolarità. Nell’ultimo studio, invece, sono stati raccolti dati comportamentali in pazienti con Parkinson che prendevano farmaci, appaiati per genere, età, scolarità e riserva cognitiva con i partecipanti del gruppo di controllo. Il primo studio ha messo in luce che l’età influenza prima i tempi di reazione e poi le accuratezze (34 vs 57 anni) e che l’età ha un effetto negativo in entrambi; nei tempi di reazione è stata trovata un’interazione tra età e condizione ad alto carico cognitivo. La riserva cognitiva data dalla scolarità aveva un’influenza positiva sia nei tempi di reazione che nelle accuratezze ed il punteggio totale nelle accuratezze. Nel secondo studio, l’età ha avuto un effetto negativo sia nel processo di selezione della risposta sia nelle parti che compongono il processo di memoria di lavoro: inibizione, aggiornamento e mantenimento. Tuttavia, nei partecipanti anziani si è visto un processo attentivo compensatorio. Tali cambiamenti dati dall’età erano visibili nei correlati comportamentali, emodinamici ed elettrofisiologici. Nell’ultimo studio, i pazienti non hanno mostrato differenze rispetto al gruppo di controllo; inoltre la riserva cognitiva totale e quella data dall’attività lavorativa hanno avuto un effetto positivo nei correlati comportamentali. In conclusione, la memoria di lavoro visuo-spaziale è influenzata negativamente dall’età, ma l’effetto può venire attenuato da alta scolarità e buona riserva cognitiva.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Bisiacchi, Patrizia
Supervisor:Amodio, Piero
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:memoria di lavoro visuo-spaziale/visuo-spatial working memory, invecchiamento/ageing
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:10230
Depositato il:02 Nov 2017 17:04
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Amenedo, E., & Dıaz, F. (1998). Aging-related changes in processing of non-target and target stimuli during an auditory oddball task. Biological psychology, 48(3), 235-267. Cerca con Google

Alain, C., McDonald, K. L., Kovacevic, N., & McIntosh, A. R. (2009). Spatiotemporal analysis of auditory “what” and “where” working memory. Cerebral Cortex, 19(2), 305-314. Cerca con Google

Anderson, C. W., & Sijercic, Z. (1996, June). Classification of EEG signals from four subjects during five mental tasks. In Solving engineering problems with neural networks: proceedings of the conference on engineering applications in neural networks (EANN’96) (pp. 407-414). Turkey. Cerca con Google

Appollonio, I., Leone, M., Isella, V., Piamarta, F., Consoli, T., Villa, M. L. et al. (2005). The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol.Sci., 26, 108-116. Cerca con Google

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. The psychology of learning and motivation, 2, 89-195. Cerca con Google

Atkinson, R. C., & Shiffrin, R. M. (1971). The control processes of short-term memory. Stanford: Stanford University. Cerca con Google

Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural brain research, 93(1), 185-190. 137 Cerca con Google

Ayaz, H., Izzetoglu, M., Bunce, S., Heiman-Patterson, T., & Onaral, B. (2007, May). Detecting cognitive activity related hemodynamic signal for brain computer interface using functional near infrared spectroscopy. In 2007 3rd International IEEE/EMBS Conference on Neural Engineering (pp. 342-345). IEEE. Cerca con Google

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of memory and language, 59(4), 390-412. Cerca con Google

Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in cognitive sciences, 4(11), 417-423. Cerca con Google

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature reviews neuroscience, 4(10), 829-839. Cerca con Google

Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. Cerca con Google

Beck, A. T. (1967). Depression: Clinical, experimental, and theoretical aspects. University of Pennsylvania Press. Cerca con Google

Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of statistics, 1165-1188. Cerca con Google

Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience letters, 521(2), 148-151. 138 Cerca con Google

Bolker, B. M. (2008). Ecological models and data in R. Princeton University Press. Cerca con Google

Bomba, M. D., & Singhal, A. (2010). ERP evidence of early cross-modal links between auditory selective attention and visuo-spatial memory. Brain and cognition, 74(3), 273-280. Cerca con Google

Bradley, V. A., Welch, J. L., & Dick, D. J. (1989). Visuospatial working memory in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 52(11), 1228-1235. Cerca con Google

Braver, T. S., & Cohen, J. D. (2001). Working memory, cognitive control, and the prefrontal cortex: Computational and empirical studies. Cognitive Processing, 2(1), 2555. Cerca con Google

Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49-62. Cerca con Google

Brouwer, A. M., Hogervorst, M. A., Van Erp, J. B., Heffelaar, T., Zimmerman, P. H., & Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of neural engineering, 9(4), 045008. Cerca con Google

Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., ... & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20-26. Cerca con Google

Carlson, S., Martinkauppi, S., Rämä, P., Salli, E., Korvenoja, A., & Aronen, H. J. (1998). Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral Cortex, 8(8), 743-752. 139 Cerca con Google

Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of experimental child psychology, 33(3), 386-404. Cerca con Google

Chaigneau, E., Tiret, P., Lecoq, J., Ducros, M., Knöpfel, T., & Charpak, S. (2007). The relationship between blood flow and neuronal activity in the rodent olfactory bulb. The Journal of neuroscience, 27(24), 6452-6460. Cerca con Google

Chen, Y. N., & Mitra, S. (2009). The spatial-verbal difference in the n-back task: an ERP study. Acta Neurologica Taiwanica, 18(3), 170-179. Cerca con Google

Chen, Y. N., Mitra, S., & Schlaghecken, F. (2008). Sub-processes of working memory in the N-back task: An investigation using ERPs. Clinical Neurophysiology, 119(7), 1546-1559. Cerca con Google

Coffey, E. B., Brouwer, A. M., & van Erp, J. B. (2012, September). Measuring workload using a combination of electroencephalography and near infrared spectroscopy. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 56, No. 1, pp. 1822-1826). SAGE Publications. Cerca con Google

Cools, R., & D'Esposito, M. (2011). Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biological psychiatry, 69(12), e113-e125. Cerca con Google

Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic bulletin & review, 12(5), 769-786. 140 Cerca con Google

Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in cognitive sciences, 7(12), 547-552. Cerca con Google

Corsi, P. M. (1973). Human memory and the medial temporal region of the brain (Doctoral dissertation, ProQuest Information & Learning). Cerca con Google

Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage, 54(4), 2808-2821. Cerca con Google

Dade, L. A., Zatorre, R. J., Evans, A. C., & Jones-Gotman, M. (2001). Working memory in another dimension: functional imaging of human olfactory working memory. Neuroimage, 14(3), 650-660. Cerca con Google

Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., & Holcomb, P. J. (2011). Mechanisms underlying age-and performance-related differences in working memory. Journal of cognitive neuroscience, 23(6), 1298-1314. Cerca con Google

Dalrymple-Alford, J. C., MacAskill, M. R., Nakas, C. T., Livingston, L., Graham, C., Crucian, G. P., ... & Porter, R. J. (2010). The MoCA well-suited screen for cognitive impairment in Parkinson disease. Neurology, 75(19), 1717-1725. Cerca con Google

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of verbal learning and verbal behavior, 19(4), 450-466. Cerca con Google

Dayton, C. M. (2003). Model comparisons using information measures. Journal of Modern Applied Statistical Methods, 2(2), 2. 141 Cerca con Google

D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 1-13. Cerca con Google

Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern span: a tool for unwelding visuo–spatial memory. Neuropsychologia, 37(10), 1189-1199. Cerca con Google

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. Cerca con Google

Dores, A. R., Barbosa, F., Carvalho, I. P., Almeida, I., Guerreiro, S., Rocha, B. M., ... & Castro‐Caldas, A. (2015). Study of behavioural and neural bases of visuo‐spatial working memory with an fMRI paradigm based on an n‐back task. Journal of neuropsychology. Cerca con Google

Druzgal, T. J., & D’Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10(3), 355-364. Cerca con Google

Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. F. A. B. (2000). The FAB A frontal assessment battery at bedside. Neurology, 55(11), 1621-1626. Cerca con Google

Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Fallon, P., Tyszczuk, L., ... & Delpy, D. T. (1996). Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatric research, 39(5), 889-894. 142 Cerca con Google

Engle, R. W. (2002). Working memory capacity as executive attention. Current directions in psychological science, 11(1), 19-23. Cerca con Google

Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2), 921-935. Cerca con Google

Finnigan, S., O'Connell, R. G., Cummins, T. D., Broughton, M., & Robertson, I. H. (2011). ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology, 48(5), 601-611. Cerca con Google

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘Mini-mental state.’ Journal of Psychiatric Research, 12, 189–198. Cerca con Google

Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170. Cerca con Google

Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated Parkinson's disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247. Cerca con Google

Friedman, N. P., & Miyake, A. (2004). The reading span test and its predictive power for reading comprehension ability. Journal of memory and language, 51(1), 136-158. Cerca con Google

Frtusova, J. B., Winneke, A. H., & Phillips, N. A. (2013). ERP evidence that auditory–visual speech facilitates working memory in younger and older adults. Psychology and aging, 28(2), 481. 143 Fujishima, M., Ibayashi, S., Fujii, K., & Mori, S. (1995). Cerebral blood flow and brain function in hypertension. Hypertension Research, 18(2), 111-117. Cerca con Google

Gajewski, P. D., & Falkenstein, M. (2014). Age-related effects on ERP and oscillatory EEG-dynamics in a 2-back task. Journal of Psychophysiology. Cerca con Google

Garcı́a-Larrea, L., & Cézanne-Bert, G. (1998). P3, positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(3), 260-273. Cerca con Google

Germine, L. T., Duchaine, B., & Nakayama, K. (2011). Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition, 118(2), 201-210. Cerca con Google

Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1-2), 113-131. Cerca con Google

Glatt, S. L., Hubble, J. P., Lyons, K., Paolo, A., Tröster, A. I., Hassanein, R. E. S., & Koller, W. C. (1995). Risk factors for dementia in Parkinson's disease: effect of education. Neuroepidemiology, 15(1), 20-25. Cerca con Google

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485. Cerca con Google

Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature neuroscience, 3(4), 404-408. 144 Cerca con Google

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711-1725. Cerca con Google

Haberecht, M. F., Menon, V., Warsofsky, I. S., White, C. D., Dyer‐Friedman, J., Glover, G. H., ... & Reiss, A. L. (2001). Functional neuroanatomy of visuo‐spatial working memory in turner syndrome. Human brain mapping, 14(2), 96-107. Cerca con Google

Hautzel, H., Mottaghy, F. M., Specht, K., Müller, H. W., & Krause, B. J. (2009). Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage, 47(4), 2073-2082. Cerca con Google

Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nature reviews neuroscience, 5(2), 87-96. Cerca con Google

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., & Schultz, T. (2014). Mental workload during n-back task—quantified in the prefrontal cortex using fNIRS. Frontiers in human neuroscience, 7, 935. Cerca con Google

Hockey, A., & Geffen, G. (2004). The concurrent validity and test–retest reliability of a visuospatial working memory task. Intelligence, 32(6), 591-605. Cerca con Google

Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta psychologica, 26, 107-129. 145 Cerca con Google

Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Reviews Neuroscience, 5(5), 347-360. Cerca con Google

IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Cerca con Google

Izzetoglu, M., Bunce, S. C., Izzetoglu, K., Onaral, B., & Pourrezaei, K. (2007). Functional brain imaging using near-infrared technology. IEEE Engineering in Medicine and Biology Magazine, 26(4), 38. Cerca con Google

Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E., & Greenough, W. T. (1992). Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. Journal of Cerebral Blood Flow & Metabolism, 12(1), 110-119. Cerca con Google

Ito, H., Yamauchi, H., Kaneko, H., Yoshikawa, T., Nomura, K., & Honjo, S. (2011). Prefrontal overactivation, autonomic arousal, and task performance under evaluative pressure: A near‐infrared spectroscopy (NIRS) study. Psychophysiology, 48(11), 1563-1571. Cerca con Google

Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394-412. Cerca con Google

Jennings, J. R., Muldoon, M. F., Ryan, C., Price, J. C., Greer, P., Sutton-Tyrrell, K., ... & Meltzer, C. C. (2005). Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology, 64(8), 1358-1365. Cerca con Google

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic bulletin & review, 9(4), 637-671. 146 Cerca con Google

Kim, J. J., Kim, M. S., Lee, J. S., Lee, D. S., Lee, M. C., & Kwon, J. S. (2002). Dissociation of working memory processing associated with native and second languages: PET investigation. NeuroImage, 15(4), 879-891. Cerca con Google

Kim, J. J., Kwon, J. S., Park, H. J., Youn, T., Kang, D. H., Kim, M. S., ... & Lee, M. C. (2003). Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a [15O] H2O PET study. American Journal of Psychiatry. Cerca con Google

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of experimental psychology, 55(4), 352. Cerca con Google

Klein, K., & Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working memory task. Behavior Research Methods, Instruments, & Computers, 31(3), 429-432. Cerca con Google

Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage, 46(1), 64-72. Cerca con Google

Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in human neuroscience, 8, 549. Cerca con Google

León-Domínguez, U., Martín-Rodríguez, J. F., & León-Carrión, J. (2015). Executive n-back tasks for the neuropsychological assessment of working memory. Behavioural brain research, 292, 167-173. 147 Lenartowicz, A., Escobedo-Quiroz, R., & Cohen, J. D. (2010). Updating of context in working memory: An event-related potential study. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 298-315. Cerca con Google

Leroi, I., Barraclough, M., McKie, S., Hinvest, N., Evans, J., Elliott, R., & McDonald, K. (2013). Dopaminergic influences on executive function and impulsive behaviour in impulse control disorders in Parkinson's disease. Journal of neuropsychology, 7(2), 306-325. Cerca con Google

Lloyd-Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269-284. Cerca con Google

Luck, S. J. (2005). An Introduction to Event-Related Potentials and their Neural Origins (Chapter 1). Cerca con Google

Luu, P., Caggiano, D. M., Geyer, A., Lewis, J., Cohn, J., & Tucker, D. M. (2014). Time-course of cortical networks involved in working memory. Frontiers in human neuroscience, 8. Cerca con Google

Mackworth, N. H., & Mackworth, J. F. (1959). Remembering advance cues during searching. British Journal of Psychology, 50(3), 207-222. Cerca con Google

MacPherson, S. E., Phillips, L. H., & Della Sala, S. (2002). Age, executive function and social decision making: A dorsolateral prefrontal theory of cognitive aging. Psychology and aging, 17(4), 598. Cerca con Google

Mammarella, I. C. (2008). La memoria di lavoro visuo-spaziale: Una rassegna di studi recenti. Giornale italiano di psicologia. 148 Cerca con Google

Masataka, N., Perlovsky, L., & Hiraki, K. (2015). Near-infrared spectroscopy (NIRS) in functional research of prefrontal cortex. Frontiers in human neuroscience, 9. Cerca con Google

Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., ... & Weinberger, D. R. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience letters, 392(1), 32-37. Cerca con Google

Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & de Peralta, R. G. (2004). EEG source imaging. Clinical neurophysiology, 115(10), 2195-2222. Cerca con Google

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81. Cerca con Google

Missonnier, P., Gold, G., Leonards, U., Costa-Fazio, L., Michel, J. P., Ibáñez, V., & Giannakopoulos, P. (2004). Aging and working memory: early deficits in EEG activation of posterior cortical areas. Journal of Neural Transmission, 111(9), 1141-1154. Cerca con Google

Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(2), 73-87. Cerca con Google

Molteni, E., Baselli, G., Bianchi, A. M., Caffini, M., Contini, D., Spinelli, L., ... & Cubeddu, R. (2009, February). Frontal brain activation during a working memory task: a time-domain fNIRS study. In SPIE BiOS: Biomedical Optics (pp. 71613N-71613N). International Society for Optics and Photonics. 149 Nakahachi, T., Ishii, R., Iwase, M., Canuet, L., Takahashi, H., Kurimoto, R., ... & Takeda, M. (2010). Frontal cortex activation associated with speeded processing of visuospatial working memory revealed by multichannel near-infrared spectroscopy during Advanced Trail Making Test performance. Behavioural brain research, 215(1), 21-27. Cerca con Google

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., ... & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699. Cerca con Google

Nielsen, A. N., & Lauritzen, M. (2001). Coupling and uncoupling of activity‐dependent increases of neuronal activity and blood flow in rat somatosensory cortex. The Journal of Physiology, 533(3), 773-785. Cerca con Google

Nyberg, L., Dahlin, E., Stigsdotter Neely, A., & Bäckman, L. (2009). Neural correlates of variable working memory load across adult age and skill: Dissociative patterns within the fronto‐parietal network. Scandinavian journal of psychology, 50(1), 41-46. Cerca con Google

Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage, 11(5), 424-446. Cerca con Google

Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging clinical and experimental research, 24(3), 218-226. 150 Cerca con Google

Owen, A. M., Beksinska, M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., ... & Robbins, T. W. (1993). Visuospatial memory deficits at different stages of Parkinson's disease. Neuropsychologia, 31(7), 627-644. Cerca con Google

Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain, 121(5), 949-965. Cerca con Google

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59. Cerca con Google

Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia, 20(3), 249-262. Cerca con Google

Pesonen, M., Hämäläinen, H., & Krause, C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain research, 1138, 171-177. Cerca con Google

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148. Cerca con Google

Possin, K. L., Filoteo, J. V., Song, D. D., & Salmon, D. P. (2008). Spatial and object working memory deficits in Parkinson's disease are due to impairment in different underlying processes. Neuropsychology, 22(5), 585. Cerca con Google

Psychology Software Tools, Inc. [E-Prime 2.0]. (2012) 151 Cerca con Google

Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A. S., McNamara, J. O., & Williams, S. M. (2001). The Premotor Cortex. Cerca con Google

Rämä, P., Paavilainen, L., Anourova, I., Alho, K., Reinikainen, K., Sipilä, S., & Carlson, S. (2000). Modulation of slow brain potentials by working memory load in spatial and nonspatial auditory tasks. Neuropsychologia, 38(7), 913-922. Cerca con Google

Rämä, P., Sala, J. B., Gillen, J. S., Pekar, J. J., & Courtney, S. M. (2001). Dissociation of the neural systems for working memory maintenance of verbal and nonspatial visual information. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 161-171. Cerca con Google

Ragland, J. D., Turetsky, B. I., Gur, R. C., Gunning-Dixon, F., Turner, T., Schroeder, L., ... & Gur, R. E. (2002). Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology, 16(3), 370. Cerca con Google

Rottschy, C., Kleiman, A., Dogan, I., Langner, R., Mirzazade, S., Kronenbuerger, M., ... & Reetz, K. (2013). Diminished activation of motor working-memory networks in Parkinson's disease. PLoS One, 8(4), e61786. Cerca con Google

Salthouse, T. A. (2009). When does age-related cognitive decline begin?. Neurobiology of aging, 30(4), 507-514. Cerca con Google

Sager, M. A., Hermann, B. P., La Rue, A., & Woodard, J. L. (2006). Screening for dementia in community-based memory clinics. WMJ-MADISON-, 105(7), 25. 152 Cerca con Google

Schall, J. D. (2009). Frontal eye fields. In Encyclopedia of neuroscience (pp. 1635-1638). Springer Berlin Heidelberg. Cerca con Google

Schmidt, H., Jogia, J., Fast, K., Christodoulou, T., Haldane, M., Kumari, V., & Frangou, S. (2009). No gender differences in brain activation during the N‐back task: An fMRI study in healthy individuals. Human brain mapping, 30(11), 3609-3615. Cerca con Google

Schmiedek, F., Li, S. C., & Lindenberger, U. (2009). Interference and facilitation in spatial working memory: age-associated differences in lure effects in the n-back paradigm. Psychology and aging, 24(1), 203. Cerca con Google

Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657-1661. Cerca con Google

Sperling, G. (1960). The information available in brief visual presentations. Psychological monographs: General and applied, 74(11), 1. Cerca con Google

Spronk, M., & Jonkman, L. M. (2012). Electrophysiological evidence for different effects of working memory load on interference control in adolescents than adults. International Journal of Psychophysiology, 83(1), 24-35. Cerca con Google

Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015-2028. Cerca con Google

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006-1012. 153 Cerca con Google

Suchan, B. (2008). Neuroanatomical correlates of processing in visual and visuospatial working memory. Cognitive processing, 9(1), 45-51. Cerca con Google

Takeuchi, H., Sugiura, M., Sassa, Y., Sekiguchi, A., Yomogida, Y., Taki, Y., & Kawashima, R. (2012). Neural correlates of the difference between working memory speed and simple sensorimotor speed: an fMRI study. PloS one, 7(1), e30579. Cerca con Google

Tanaka, M., Shigihara, Y., Ishii, A., Funakura, M., Kanai, E., & Watanabe, Y. (2012). Effect of mental fatigue on the central nervous system: an electroencephalography study. Behavioral and brain functions, 8(1), 1. Cerca con Google

Team, R. C. (2013). R: A language and environment for statistical computing. Cerca con Google

Tucsek, Z., Toth, P., Sosnowska, D., Gautam, T., Koller, A., Ballabh, P., ... & Csiszar, A. (2014). Aging exacerbates obesity-induced impairment of neurovascular coupling and cerebromicrovascular rarefaction: implications for the pathomechanism of vascular cognitive impairment (665.2). The FASEB Journal, 28(1 Supplement), 665-2. Cerca con Google

Turley-Ames, K. J., & Whitfield, M. M. (2003). Strategy training and working memory task performance. Journal of Memory and Language, 49(4), 446-468. Cerca con Google

Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent?. Journal of memory and language, 28(2), 127-154. 154 Cerca con Google

Valadao, D. F., Anderson, B., & Danckert, J. (2015). Examining the influence of working memory on updating mental models. The Quarterly Journal of Experimental Psychology, 68(7), 1442-1456. Cerca con Google

Van Gerven, P. W., Meijer, W. A., Prickaerts, J. H., & Van der Veen, F. M. (2008). Aging and focus switching in working memory: excluding the potential role of memory load. Experimental aging research, 34(4), 367-378. Cerca con Google

Van Ewijk, H., Weeda, W. D., Heslenfeld, D. J., Luman, M., Hartman, C. A., Hoekstra, P. J., ... & Oosterlaan, J. (2015). Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls. Psychiatry Research: Neuroimaging, 233(2), 233-242. Cerca con Google

Vaughan, L., Basak, C., Hartman, M., & Verhaeghen, P. (2008). Aging and working memory inside and outside the focus of attention: Dissociations of availability and accessibility. Aging, Neuropsychology, and Cognition, 15(6), 703-724. Cerca con Google

Vermeij, A., Van Beek, A. H., Rikkert, M. G. O., Claassen, J. A., & Kessels, R. P. (2012). Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study. PloS one, 7(9), e46210. Cerca con Google

Voelcker-Rehage, C., Stronge, A. J., & Alberts, J. L. (2006). Age-related differences in working memory and force control under dual-task conditions. Aging, Neuropsychology, and Cognition, 13(3-4), 366-384. Cerca con Google

Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic bulletin & review, 11(1), 192-196. 155 Cerca con Google

Watter, S., Geffen, G. M., & Geffen, L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38(06), 998-1003. Cerca con Google

Wechsler, D. (1945). A standardized memory scale for clinical use. The Journal of Psychology, 19(1), 87-95. Cerca con Google

West, R., Bowry, R., & Krompinger, J. (2006). The effects of working memory demands on the neural correlates of prospective memory. Neuropsychologia, 44(2), 197-207. Cerca con Google

West, R., & Covell, E. (2001). Effects of aging on event-related neural activity related to prospective memory. Neuroreport, 12(13), 2855-2858. Cerca con Google

Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Front Psychol, 2, 186. Cerca con Google

Wintink, A. J., Segalowitz, S. J., & Cudmore, L. J. (2001). Task complexity and habituation effects on frontal P300 topography. Brain and Cognition, 46(1), 307-311. Cerca con Google

Wirdefeldt, K., Gatz, M., Pawitan, Y., & Pedersen, N. L. (2005). Risk and protective factors for Parkinson's disease: a study in Swedish twins. Annals of neurology, 57(1), 27-33. Cerca con Google

Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record