Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Busato, Laura (2017) Non-invasive monitoring and numerical modeling of the Soil-Plant continuum. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
7Mb

Abstract (inglese)

The Earth’s critical zone (ECZ) is the near-surface domain that regulates the availability of most life-sustaining resources. Among all the subdomains of the ECZ, a crucial role is played by the Soil-Plant continuum (SP), as it is a major performer of the exchanges of mass and energy between soil and plants (and then atmosphere). However, despite its importance and its strong interconnection with human activity, the characterization of this subdomain is still in an early stage, mainly because of the lack of spatial and temporal information regarding the occurring processes. To overcome this issue, we present the combination of geophysical measurements and hydrological modeling in the framework of a hydrogeophysical approach, with the aim of characterizing the active root zone, i.e. the portion of the root system involved in the water uptake. In fact, the water uptake is performed by root hair, the microscopic cell outgrowths whose location is difficult (if not impossible) also after the removal of the root system from the soil. Nevertheless, determining its position is fundamental not only for merely scientific purposes, but most of all for practical applications, as it affects the performing of precision irrigation. Therefore, in this work I propose the identification of the active root zone on the basis of its main effect, i.e. the reduction of soil water content over time. This is achieved by means of 3-D small-scale electrical resistivity tomography (ERT) carried out combining superficial and borehole electrodes. We monitored the processes occur-ring in the root zone of three orange trees located in south-eastern Sicily. These trees are drip irrigated according to different deficit irrigation techniques to improve the exploitation of the water resource, while the plants’ transpiration is monitored thanks to sap flow and eddy covariance measurements. More in detail, in the first case study ERT measurements before and after the cut of the tree are compared, while in the second case study the ERT monitoring is focused on two orange trees drip irrigated with different treatments (i.e. full irrigation and partial root drying). The datasets thus obtained provide interesting insights into the root system activity, given their abundance of information regarding both atmospheric and underground phenomena (i.e. transpiration and root water uptake, respectively). In particular, the ERT time-lapse approach well highlights the portions subject to a decrease in water content, which can be related to the water uptake put in place by the plants. Nevertheless, the interpretation of the resistivity patterns, although combined with agronomic information, can be rather intricate. A proper hydrological modeling provides a solution to this problem, even if choosing the most suitable approach requires a specific mathematical analysis. To do this, we developed a synthetic case study with two identical hydrological models, one of which describing also the activity of an orange tree. These models resemble the real datasets provided by the ERT measurements, without all the uncertainties introduced by the geophysical acquisition and the model calibration. The location of the active root zone is reconstructed from the combination of these two models by means of Taylor series expansion, with particular reference to the effects of the approximation thus introduced. The final aim is to evaluate the proposed numerical procedure for a future application on one of real case study presented in this work.

Abstract (italiano)

La Earth's critical zone (ECZ) rappresenta la porzione più esterna del pianeta Terra ed è sede di numerosi processi che regolano la disponibilità della maggior parte delle sostanze necessarie alla vita. Tra i vari sottodomini in cui essa può essere suddivisa, il continuum Suolo-Pianta (SP) svolge un ruolo cruciale, in quanto è uno dei maggiori regolatori degli scambi di massa ed energia tra suolo e piante (e quindi atmosfera). Nonostante la forte interconnessione con l'attività umana, la caratterizzazione del SP è ancora in una fase embrionale, principalmente legata alla mancanza di informazioni sia spaziali che temporali riguardo ai processi che lo caratterizzano. In questo lavoro presentiamo quindi una combinazione di tomografia di resistività elettrica (ERT) e modellazione idrologica secondo l'approccio idrogeofisico, con l'obiettivo di caratterizzare la "active root zone", ossia la porzione del sistema radicale coinvolta nel processo di assorbimento di acqua dal suolo. Più nel dettaglio, questo processo è messo in atto dai peli radicali, delle microscopiche estroflessioni la cui localizzazione è difficile (se non impossibile) anche in seguito alla rimozione del sistema radicale dal suolo. Ciononostante, la sua localizzazione è fondamentale soprattutto da un punto di vista agronomico, poiché necessaria per una corretta applicazione delle tecniche di irrigazione di precisione. In questo lavoro presento quindi due casi studio in cui l'active root zone è identificata sulla base del suo effetto principale, ossia la diminuzione di contenuto idrico del suolo. I casi studio presentati comprendono tre alberi d’arancio situati nel sud-est della Sicilia ed irrigati mediante diverse tecniche di microirrigazione (nota anche come "irrigazione a goccia"). In particolare, nel primo caso studio sono comparate misure ERT acquisite prima e dopo il taglio della pianta, mentre nel secondo caso studio il monitoraggio ERT è focalizzato su due aranci irrigati con diverse tecniche (piena irrigazione e disseccamento parziale delle radici). Il monitoraggio ERT dei processi in atto è effettuato sulla piccola scala (cioè sulla singola pianta) grazie alla combinazione di elettrodi superficiali ed in pozzo, permettendo così una acquisizione ed una rappresentazione tridimensionale del dato geofisico. Parallelamente ha luogo anche il monitoraggio agronomico, grazie al quale la traspirazione è determinata mediante misure di sap flow e di eddy covariance. I dati così ottenuti forniscono molte informazioni rispetto ai diversi processi in atto, sia atmosferici (traspirazione), che nel sottosuolo (assorbimento di acqua dal suolo). In particolare, il monitoraggio ERT in time-lapse è in grado di mostrare quali porzioni del dominio investigato siano soggette ad una diminuzione del contenuto idrico, la quale può essere collegata all’attività radicale. Nonostante la quantità e qualità dei dati a disposizione, l'interpretazione dei risultati (specialmente in termini quantitativi) risulta comunque piuttosto complessa. Una soluzione può essere fornita da un'appropriata modellazione idrologica, sebbene la scelta dell’approccio migliore richieda una specifica analisi matematica. Sotto quest’ottica abbiamo sviluppato un caso sintetico costituito da due modelli idrologici identici, dove uno quali descrive anche l'attività di una pianta d'arancio. Questi modelli hanno lo scopo di ricreare dei dataset riconducibili all'output delle misure ERT, senza però tutte le incertezze introdotte dall’acquisizione geofisica e dalla calibrazione del modello. La ricostruzione della "active root zone" è quindi ottenuta dalla combinazione di questi due modelli mediante l'espansione in serie di Taylor, con particolare attenzione alle approssimazioni così introdotte. L'obiettivo finale è quello di valutare questa procedura numerica per una futura applicazione ad uno dei casi studio reali presentati in questo lavoro.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cassiani, Giorgio
Correlatore:Boaga, Jacopo
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > SCIENZE DELLA TERRA
Data di deposito della tesi:31 Gennaio 2017
Anno di Pubblicazione:31 Gennaio 2017
Parole chiave (italiano / inglese):Soil-Plant continuum, electrical resistivity tomography, hydrogeophysics, CATHY, Soil-Plant continuum modeling
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/11 Geofisica applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:10255
Depositato il:17 Nov 2017 09:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aiello, R., V. Bagarello, S. Barbagallo, S. Consoli, S. Di Prima, G. Giordano, and M. Iovino, 2014. An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma, 235, 300-307, doi:10.1016/j.geoderma.2014.07.024. Cerca con Google

al Hagrey, S. A., 2007. Geophysical imaging of root–zone, trunk, and moisture heterogeneity. Journal of Experimental Botany, 58(4), 839-854. Cerca con Google

al Hagrey, S. A. and T. Petersen, 2011. Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography. Geophysics, 76(2), G25-G35. Cerca con Google

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56., 300(9), D05109. Cerca con Google

Allen, R. G., W. O. Pruitt, J. L. Wright, T. A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Ste- duto, J. Berengena, J. Baselga Yrisarry, M. Smith, L. S. Pereira, D. Raes, A. Perrier, I. Alves, and I. Walter, 2006. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 81(1), 1-22. Cerca con Google

Amato, M., B. Basso, G. Celano, G. Bitella, G. Morelli, and R. Rossi, 2008. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree physiology, 28(10), 1441-1448. Cerca con Google

Amato, M., G. Bitella, R. Rossi, J. A. Gómez, S. Lovelli, and J. J. F. Gomes, 2009. Multi-electrode 3d resistivity imaging of alfalfa root zone. European Journal of Agronomy, 31(4), 213-222. Cerca con Google

Amato, M., R. Rossi, G. Bitella, and S. Lovelli, 2010. Multielectrode geoelectrical tomography for the quantification of plant roots. Italian Journal of Agronomy, 5(3), 257-264. Cerca con Google

Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54-62. Cerca con Google

Aspinwall, M. J., J. S. King, J.-C. Domec, S. E. McKeand, and F. Isik, 2011. Genetic effects on transpiration, canopy conductance, stomatal sensitivity to vapour pressure deficit, and cavitation resistance in loblolly pine. Ecohydrology, 4(2), 168-182, doi:10.1002/eco.197. Cerca con Google

Aubinet, M., A. Grelle, A. Ibrom, Ü. Rannik, J. Moncrieff, T. Foken, A. Kowalski, P. Martin, P. Berbigier, C. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grünwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snjiders, R. Valentini, and T. Vesala, 1999. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in ecological research, 30, 113-175. Cerca con Google

Banwart, S. A., J. Chorover, J. Gaillardet, D. Sparks, T. White, S. Anderson, A. Aufdenkampe, S. Bernasconi, S. L. Brantley, O. Chadwick, W. E. Dietrich, C. Duffy, M. Goldhaber, and K. Lehnert, 2013. Sustaining Earth’s critical zone basic science and interdisciplinary solutions for global challenges. University of Sheffield, Sheffield, p. 47. Cerca con Google

Binley, A., 2013. R3t, version 1.8. http://www.es.lancs.ac.uk/people/amb/Freeware/R3t/R3t.htm. Vai! Cerca con Google

Binley, A., 2015. Tools and techniques: Electrical methods. In G. Schubert, editor, Treatise on Geophysics (Second Edition), chapter 11.08, pp. 233-259, Elsevier, Oxford, second edition, doi:http://dx.doi.org/10.1016/B978-0-444-53802-4.00192-5. Vai! Cerca con Google

Binley, A., G. Cassiani, and R. Deiana, 2010. Hydrogeophysics: Opportunities and challenges. Bollettino di Geofisica Teorica ed Applicata, 51(4), 267-284. Cerca con Google

Binley, A., G. Cassiani, R. Middleton, and P. Winship, 2002. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. Journal of Hydrology, 267(3), 147-159. Cerca con Google

Binley, A., S. S. Hubbard, J. A. Huisman, A. Revil, D. A. Robinson, K. Singha, and L. D. Slater, 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water resources research, 51(6), 3837-3866, doi:10.1002/2015WR017016. Cerca con Google

Binley, A. and A. Kemna, 2005. DC resistivity and induced polarization methods. In Y. Rubin and S. S. Hubbard, editors, Hydrogeophysics, chapter 5, pp. 129-156, Springer Science & Business Media, first edition. Cerca con Google

Binley, A., A. Ramirez, and W. Daily, 1995. Regularised image reconstruction of noisy electrical resistance tomography data. In Process Tomography - 1995, Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, pp. 6-8. Cerca con Google

Boaga, J., M. Rossi, and G. Cassiani, 2013. Monitoring soil–plant interactions in an apple orchard using 3D electrical resistivity tomography. Procedia Environmental Sciences, 19, 394-402. Cerca con Google

Brantley, S. L., M. B. Goldhaber, and K. V. Ragnarsdottir, 2007. Crossing disciplines and scales to understand the critical zone. Elements, 3(5), 307-314. Cerca con Google

Brooks, R. H. and A. T. Corey, 1964. Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE, 7(1), 26-0028. Cerca con Google

Brovelli, A. and G. Cassiani, 2011. Combined estimation of effective electrical conductivity and permittivity for soil monitoring. Water Resources Research, 47(8). Cerca con Google

Burdine, N. T., 1953. Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 5(03), 71-78, doi:10.2118/225-G. Cerca con Google

Busato, L., J. Boaga, L. Peruzzo, M. Himi, S. Cola, S. Bersan, and G. Cassiani, 2016. Combined geophysical surveys for the characterization of a reconstructed river embankment. Engineering Geology, 211, 74-84. Cerca con Google

Camporese, M., G. Cassiani, R. Deiana, P. Salandin, and A. Binley, 2015. Coupled and uncoupled hydrogeophysical inversions using ensemble kalman filter assimilation of ert-monitored tracer test data. Water Resources Research, 51(5), 3277-3291, doi:10.1002/2014WR016017. Cerca con Google

Camporese, M., C. Paniconi, M. Putti, and S. Orlandini, 2010. Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resources Research, 46, W02512, doi:10.1029/2008WR007536. Cerca con Google

Cassiani, G., J. Boaga, D. Vanella, M. T. Perri, and S. Consoli, 2015. Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences, 19(5), 2213-2225. Cerca con Google

Cassiani, G., V. Bruno, A. Villa, N. Fusi, and A. M. Binley, 2006. A saline trace test monitored via time-lapse surface electrical resistivity tomography. Journal of Applied Geophysics, 59(3), 244–259. Cerca con Google

Chapin, F. S., A. J. Bloom, C. B. Field, and R. H. Waring, 1987. Plant responses to multiple environmental factors. Bioscience, 37(1), 49–57. Cerca con Google

Chorover, J., R. Kretzschmar, F. Garcia-Pichel, and D. L. Sparks, 2007. Soil biogeochemical processes within the critical zone. Elements, 3(5), 321–326. Cerca con Google

Cohen, Y., M. Fuchs, and S. Cohen, 1983. Resistance to water uptake in a mature citrus tree. Journal of Experimental Botany, 34(4), 451-460. Cerca con Google

Consoli, S., F. Stagno, G. Roccuzzo, G. L. Cirelli, and F. Intrigliolo, 2014. Sustainable management of limited water resources in a young orange orchard. Agricultural Water Management, 132, 60-68. Cerca con Google

Constable, S. C., R. L. Parker, and C. G. Constable, 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300. Cerca con Google

Daily, W., A. Ramirez, A. Binley, and D. LeBrecque, 2004. Electrical resistance tomography. The Leading Edge, 23(5), 438-442. Cerca con Google

Daily, W., A. Ramirez, D. LaBrecque, and J. Nitao, 1992. Electrical resistivity tomography of vadose water movement. Water Resources Research, 28(5), 1429-1442. Cerca con Google

Dasberg, S. and D. Or, 1999. Practical Applications of Drip Irrigation. Springer. Cerca con Google

Deiana, R., G. Cassiani, A. Kemna, A. Villa, V. Bruno, and A. Bagliani, 2007. An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring. Near Surface Geophysics, 5(3), 183–194. Cerca con Google

Department of Agriculture and Food, Government of Western Australia, 2016. Citrus irrigation recommendations in Western Australia. https://agric.wa.gov.au/n/1551, accessed: August 2016. Vai! Cerca con Google

Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90. Cerca con Google

Fereres, E. and M. A. Soriano, 2007. Deficit irrigation for reducing agricultural water use. Journal of experimental botany, 58(2), 147-159. Cerca con Google

Friedman, S. P., 2005. Soil properties influencing apparent electrical conductivity: a review. Com- puters and electronics in agriculture, 46(1), 45-70. Cerca con Google

Garré, S., M. Javaux, J. Vanderborght, L. Pagès, and H. Vereecken, 2011. Three-dimensional electrical resistivity tomography to monitor root zone water dynamics. Vadose Zone Journal, 10(1), 412–424. Cerca con Google

Gee, G. W. and J. W. Bauder, 1986. Particle-size analysis. In A. Klute, editor, Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Agronomy Monograph No. 9, pp. 383-411, American Society of Agronomy/Soil Science Society of American, Madison, WI, second edition. Cerca con Google

Geuzaine, C. and J.-F. Remacle, 2009. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. Cerca con Google

Green, S., B. Clothier, and B. Jardine, 2003. Theory and practical application of heat pulse to measure sap flow. Agronomy Journal, 95(6), 1371-1379. Cerca con Google

Griffiths, D. H. and J. Turnbull, 1985. A multi-electrode array for resistivity surveying. First break, 3(7), 16-20. Cerca con Google

Hallof, P. G., 1957. On the interpretation of resistivity and induced polarization field measurements. Ph.D. thesis, Massachusetts Institute of Technology. Cerca con Google

Hinnell, A. C., T. P. A. Ferré, J. A. Vrugt, J. A. Huisman, S. Moysey, J. Rings, and M. B. Kowalsky, 2010. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water resources research, 46(4), doi:10.1029/2008WR007060. Cerca con Google

Huyakorn, P. S., S. D. Thomas, and B. M. Thompson, 1984. Techniques for making finite elements competitive in modeling flow in variably saturated porous media. Water Resources Research, 20(8), 1099-1115. Cerca con Google

Jarvis, N. J., 2011. Simple physics–based models of compensatory plant water uptake: Concepts and eco–hydrological consequences. Hydrology and Earth System Sciences, 15(11), 3431-3446. Cerca con Google

Jayawickreme, D. H., E. G. Jobbágy, and R. B. Jackson, 2014. Geophysical subsurface imaging for ecological applications. New Phytologist, 201(4), 1170-1175. Cerca con Google

Jayawickreme, D. H., R. L. Van Dam, and D. W. Hyndman, 2008. Subsurface imaging of vegetation, climate, and root–zone moisture interactions. Geophysical Research Letters, 35(18). Cerca con Google

Jury, W. A., D. Or, Y. Pachepsky, H. Vereecken, J. W. Hopmans, L. R. Ahuja, B. E. Clothier, K. L. Bristow, G. J. Kluitenberg, P. Moldrup, J. Šim ̊unek, M. T. van Genuchten, and R. Horton, 2011. Kirkham’s legacy and contemporary challenges in soil physics research. Soil Science Society of America Journal, 75(5), 1589-1601. Cerca con Google

Kemna, A., 2000. Tomographic inversion of complex resistivity: Theory and application. Der An- dere Verlag Osnabrück, Germany. Cerca con Google

Kemna, A., B. Kulessa, and H. Vereecken, 2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ert) and equivalent transport models. Journal of Hydrology, 267(3), 125-146. Cerca con Google

Keyes, S. D., K. R. Daly, N. J. Gostling, D. L. Jones, P. Talboys, B. R. Pinzer, R. Boardman, I. Sinclair, A. Marchant, and T. Roose, 2013. High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake. New Phytologist, 198(4), 1023-1029, doi:10.1111/nph.12294. Cerca con Google

Koestel, J., J. Vanderborght, M. Javaux, A. Kemna, A. Binley, and H. Vereecken, 2009. Noninvasive 3–d transport characterization in a sandy soil using ert: 1. investigating the validity of ert– derived transport parameters. Vadose Zone Journal, 8(3), 711-722. Cerca con Google

Kotur, S. C. and S. V. Keshava Murthy, 1998. Root activity distribution studies in citrus, grape, mango and guava using isotopic techniques. Karnataka J. Agric. Sci, 11, 651-657. Cerca con Google

LaBrecque, D. J., M. Miletto, W. Daily, A. Ramirez, and E. Owen, 1996. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics, 61(2), 538-548. Cerca con Google

Lambers, H., F. S. Chapin III, and T. L. Pons, 2008a. Photosynthesis. In Plant physiological ecology, pp. 11-99, Springer. Cerca con Google

Lambers, H., F. S. Chapin III, and T. L. Pons, 2008b. Plant physiological ecology. Springer, ISBN 978-0-387-78341-3. Cerca con Google

Leij, F. J., W. J. Alves, and M. T. van Genuchten, 1996. The UNSODA unsaturated soil hydraulic database: user’s manual, volume 96. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency. Cerca con Google

Lin, H., 2010. Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances. Hydrology and Earth System Sciences, 14(1), 25. Cerca con Google

Lynch, J., 1995. Root architecture and plant productivity. Plant physiology, 109(1), 7. Cerca con Google

Mancuso, S., 2011. Measuring roots: an updated approach. Springer Science & Business Media. Cerca con Google

Manoli, G., S. Bonetti, J.-C. Domec, M. Putti, G. Katul, and M. Marani, 2014. Tree root systems competing for soil moisture in a 3d soil-plant model. Advances in Water Resources, 66, 32 – 42, doi:10.1016/j.advwatres.2014.01.006. Cerca con Google

Manoli, G., S. Bonetti, E. Scudiero, F. Morari, M. Putti, and P. Teatini, 2015. Modeling Soil-Plant Dynamics: Assessing Simulation Accuracy by Comparison with Spatially Distributed Crop Yield Measurements. Vadose Zone Journal, 14(12). Cerca con Google

Manzoni, S., G. Vico, G. Katul, P. A. Fay, W. Polley, S. Palmroth, and A. Porporato, 2011. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Functional Ecology, 25(3), 456–467. Cerca con Google

Michot, D., Y. Benderitter, A. Dorigny, B. Nicoullaud, D. King, and A. Tabbagh, 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5). Cerca con Google

Moreno, P., S. Ambrós, M. R. Albiach-Martí, J. Guerri, and L. Peña, 2008. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), ISSN 1364-3703, doi:10.1111/j.1364-3703.2007.00455.x. Cerca con Google

Motisi, A., F. Rossi, S. Consoli, R. Papa, M. Minacapilli, G. Rallo, C. Cammalleri, and G. D’urso, 2012. Eddy Covariance and Sap Flow Measurement of Energy and Mass Exchanges of Woody Crops in a Mediterranean Environment. Acta Horticulturae, 951, 121-127. Cerca con Google

National Research Council, 1991. Opportunities in the Hydrologic Sciences. The National Academies Press, Washington, DC, doi:10.17226/1543. Cerca con Google

National Research Council, 2001. Basic Research Opportunities in Earth Science. National Academy Press. Cerca con Google

Nijland, W., M. Van der Meijde, E. A. Addink, and S. M. De Jong, 2010. Detection of soil moisture and vegetation water abstraction in a mediterranean natural area using electrical resistivity tomography. Catena, 81(3), 209-216. Cerca con Google

Nilson, S. E. and S. M. Assmann, 2007. The control of transpiration. Insights from Arabidopsis. Plant physiology, 143(1), 19-27. Cerca con Google

Nyquist, J. E. and M. J. S. Roth, 2005. Improved 3d pole–dipole resistivity surveys using radial measurement pairs. Geophysical Research Letters, 32(21), L21416, doi:10.1029/2005GL024153. Cerca con Google

Orghidan, T., 2010. A new habitat of subsurface waters: the hyporheic biotope. Fundamental and applied limnology, 176(4), 291. Cerca con Google

Orlandini, S. and R. Rosso, 1996. Diffusion wave modeling of distributed catchment dynamics. Journal of Hydrologic Engineering, 1(3), 103–113, doi:10.1061/(ASCE)1084-0699(1996)1:3(103). Cerca con Google

Paniconi, C. and M. Putti, 1994. A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resources Research, 30(12), 3357–3374. Cerca con Google

Paniconi, C. and E. F. Wood, 1993. A detailed model for simulation of catchment scale subsurface hydrologic processes. Water Resources Research, 29(6), 1601–1620. Cerca con Google

Parasnis, D., 1988. Reciprocity theorems in geoelectric and geoelectromagnetic work. Geoexploration, 25(3), 177-198, doi:10.1016/0016-7142(88)90014-2. Cerca con Google

Passioura, J. B., 1982. Water in the soil-plant-atmosphere continuum. In Physiological Plant Ecology II, pp. 5-33, Springer. Cerca con Google

Pinton, R., Z. Varanini, and P. Nannipieri, 2007. The rhizosphere: biochemistry and organic substances at the soi-plant interface. CRC press. Cerca con Google

Porporato, A., P. D’odorico, F. Laio, L. Ridolfi, and I. Rodriguez-Iturbe, 2002. Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 25(8), 1335-1348. Cerca con Google

Richter, D. and M. L. Mobley, 2009. Monitoring Earth’s Critical Zone. Science, 326(5956), doi: 10.1126/science.1179117. Cerca con Google

Ritchie, J. T., 1981. Water dynamics in the soil-plant-atmosphere system. Soil Water and Nitrogen in Mediterranean-Type Environments, pp. 81-96. Cerca con Google

Rodriguez-Iturbe, I. and A. Porporato, 2004. Ecohydrology of water controlled ecosystems: plants and soil moisture dynamics. Cerca con Google

Rossi, M., G. Manoli, D. Pasetto, R. Deiana, S. Ferraris, C. Strobbia, M. Putti, and G. Cassiani, 2015. Coupled inverse modeling of a controlled irrigation experiment us- ing multiple hydrogeophysical data. Advances in Water Resources, 82, 150-165, doi: 10.1016/j.advwatres.2015.03.008. Cerca con Google

Rossi, R., M. Amato, G. Bitella, R. Bochicchio, J. J. Ferreira Gomes, S. Lovelli, E. Martorella, and P. Favale, 2011. Electrical resistivity tomography as a non–destructive method for mapping root biomass in an orchard. European Journal of Soil Science, 62(2), 206-215. Cerca con Google

Rubin, Y. and S. S. Hubbard, 2005. Hydrogeophysics. Springer Science & Business Media.
Sadler, E. J., R. G. Evans, K. C. Stone, and C. R. Camp, 2005. Opportunities for conservation Cerca con Google

with precision irrigation. Journal of soil and water conservation, 60(6), 371-378. Cerca con Google

Samuelson, L., T. Stokes, T. Cooksey, and P. McLemore, 2001. Production efficiency of loblolly pine and sweetgum in response to four years of intensive management. Tree Physiology, 21(6), 369-376. Cerca con Google

Schiefelbein, J. W. and P. N. Benfey, 1991. The development of plant roots: new approaches to underground problems. The Plant Cell, 3(11), 1147. Cerca con Google

Schmidt, S., A. G. Bengough, P. J. Gregory, D. V. Grinev, and W. Otten, 2012. Estimating root– soil contact from 3D X–ray microtomographs. European Journal of Soil Science, 63(6), 776-786, doi:10.1111/j.1365-2389.2012.01487.x. Cerca con Google

Schneider, C. L., S. Attinger, J.-O. Delfs, and A. Hildebrandt, 2010. Implementing small scale processes at the soil-plant interface–the role of root architectures for calculating root water uptake profiles. Hydrology and Earth System Sciences, 14(2), 279-289. Cerca con Google

Scudeler, C., M. Putti, and C. Paniconi, 2016. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations. Advances in Water Resources, 94, 470-485. Cerca con Google

Segal, E., T. Kushnir, Y. Mualem, and U. Shani, 2008. Water uptake and hydraulics of the root hair rhizosphere. Vadose Zone Journal, 7(3), 1027–1034. Cerca con Google

Seidel, K. and G. Lange, 2007. Direct current resistivity methods. In K. Knödel, G. Lange, and H.-J. Voigt, editors, Environmental geology: Handbook of field methods and case studies, chapter 4.3, pp. 205-237, Springer, first edition. Cerca con Google

Srayeddin, I. and C. Doussan, 2009. Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography. Plant and Soil, 319(1-2), 185-207. Cerca con Google

Swanson, R. H. and D. W. Whitfield, 1981. A numerical analysis of heat pulse velocity theory and practice. Journal of Experimental Botany, 32(1), 221-239. Cerca con Google

Tenhunen, J. D., F. M. Catarino, O. L. Lange, and W. C. Oechel, 2013. Plant response to stress: functional analysis in mediterranean ecosystems, volume 15. Springer Science & Business Media. Cerca con Google

Tikhonov, A. N. and V. Y. Arsenin, 1977. Solutions of ill-posed problems. Winston. Cerca con Google

Ursino, N., G. Cassiani, R. Deiana, G. Vignoli, and J. Boaga, 2014. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot. Hydrology and Earth System Sciences, 18(3), 1105-1118. Cerca con Google

U.S. NSF National Program, 2016. Critical zone observatories. http://criticalzone.org/national/, accessed: September 2016. Vai! Cerca con Google

Van Alphen, B. J. and J. J. Stoorvogel, 2000. A functional approach to soil characterization in support of precision agriculture. Soil Science Society of America Journal, 64(5), 1706-1713. Cerca con Google

van Genuchten, M. T. and D. R. Nielsen, 1985. On describing and predicting the hydraulic properties of unsaturated soils. Annales Geophysicae, 3(5), 615-628. Cerca con Google

Vanderborght, J., J. A. Huisman, J. Kruk, and H. Vereecken, 2013. Geophysical methods for field-scale imaging of root zone properties and processes. In S. H. Anderson and J. W. Hopmans, editors, Soil-Water-Root Processes: Advances in Tomography and Imaging, pp. 247-282, SSSA Special Publication 61. Cerca con Google

Vereecken, H., A. Binley, G. Cassiani, A. Revil, and K. Titov, 2006. Applied hydrogeophysics. In A. Revil and K. Titov, editors, NATO science series IV: earth and environmental sciences, pp. 1-8, Springer, Dordrecht. Cerca con Google

Volpe, V., M. Marani, J. Albertson, and G. Katul, 2013. Root controls on water redistribution and carbon uptake in the soil-plant system under current and future climate. Advances in Water Resources, 60, 110-120, doi:10.1016/j.advwatres.2013.07.008. Cerca con Google

Waxman, M. H. and L. J. M. Smits, 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8(02), 107-122. Cerca con Google

Werban, U., S. Attia al Hagrey, and W. Rabbel, 2008. Monitoring of root-zone water content in the laboratory by 2D geoelectrical tomography. Journal of Plant Nutrition and Soil Science, 171(6), 927-935. Cerca con Google

Zanetti, C., A. Weller, M. Vennetier, and P. Mériaux, 2011. Detection of buried tree root samples by using geoelectrical measurements: a laboratory experiment. Plant and soil, 339(1-2), 273–283, doi:10.1007/s11104-010-0574-0 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record