Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Sudiro, Cristina (2017) Unveiling salt-tolerance mechanisms in Italian rice varieties. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 01 February 2020 for intellectual property related reasons.
Visibile to: nobody

5Mb

Abstract (english)

Plant tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular and gene networks (Gupta and Huang, 2014, Int J Genomics). Salinity impacts plants by causing osmotic stress and ion toxicity. Salt stress also causes the production of excessive reactive oxygen species (Munns and Tester, 2008, Annu Rev Plant Biol). Salt-stress perception and signalling are required for appropriate responses to these insults. Key components of the signalling pathways induced by salt stress are Ca2+ (Knight et al., 1997, Plant J), NO and the recently re-evaluated H2O2.
Cereals are overall considered to be salt sensitive and, among them, rice is the most sensitive one.
Two Italian rice cultivars, Vialone Nano (VN) and Baldo (B), were selected for their contrasting salt sensitivity, being VN more sensitive and B more tolerant. The analysis of the salt-stress responses in these varieties was performed both in plants and in suspension cell cultures established from their seeds.
At the whole plant level, morphological, physiological and molecular analyses showed B being able to rapidly respond to the stress, by developing of an adaptive programme that allowed growth to resume.
The components of the signal transduction pathway induced by salt stress were investigated in suspension cell cultures. The role of H2O2 and NO as signalling molecules in salt stress response was investigated in detail. In particular, the signature of H2O2 seemed to be important to determine the fate of the cells: acclimation in B versus programmed cell death in VN.
Moreover, to study Ca2+ signalling, transformed plants harboring Ca2+ sensors of both Italian rice varieties were obtained. These plants will be used as a tool to compare calcium signatures induced by salt stress in the sensitive and tolerant variety.

Abstract (italian)

La tolleranza delle piante allo stress salino è un sistema complesso di tratti fisiologici, vie metaboliche, e reti molecolari e geniche (Gupta e Huang, 2014, Int J Genomics). Nelle piante, lo stress salino causa due tipi di stress: uno stress osmotico e uno stress ionico. Un’alta salinità provoca anche una eccessiva produzione di dannose specie reattive dell'ossigeno (Munns e Tester, 2008, Annu Rev impianto Biol). La percezione e il signalling dello stress sono necessari per l’attivazione di una risposta adeguata. I componenti chiave delle vie di signalling indotte da stress salino sono Ca2+ (Cavaliere et al., 1997, pianta J), NO e H2O2.
I cereali sono generalmente considerati sensibile al sale e, tra questi, il riso è il più sensibile.
Due varietà di riso italiano, Vialone Nano (VN) e Baldo (B), sono state selezionate per la loro contrastante sensibilità al sale: VN è risultato essere il più sensibile mentre B il più tollerante. Le analisi delle risposte allo stress salino in queste due varietà sono state effettuate sia in pianta che in colture cellulari generate a partire da semi.
A livello dell’intera pianta, analisi morfologiche, fisiologiche e molecolari hanno dimostrato che B è in grado di rispondere rapidamente allo stress, mettendo in atto un programma di adattamento che permette di riprendere la crescita.
I componenti della via di trasduzione del segnale indotto da stress sono stati studiati in colture cellulari in sospensione. Il ruolo di H2O2 e NO, come molecole segnale in risposta allo stress salino, è stato studiato in dettaglio. In particolare, un diverso andamento nella produzione di H2O2 sembra essere importante per determinare il destino delle cellule: acclimatazione in B contro morte cellulare programmata in VN.
Inoltre, sono state ottenute piante esprimenti sensori per il calcio per entrambe le varietà di riso italiano. Queste piante saranno uno strumento utile per studiare il signalling del calcio indotto da stress salino.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Lo Schiavo, Fiorella
Supervisor:Formentin, Elide
Ph.D. course:Ciclo 29 > Corsi 29 > BIOSCIENZE E BIOTECNOLOGIE
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:30 January 2017
Key Words:rice salt-stress ROS-signalling
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/04 Fisiologia vegetale
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:10263
Depositato il:02 Nov 2017 15:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abogadallah G. M. (2010) Antioxidative defense under salt stress. Plant Signaling and Behavior 5, 369–374. Cerca con Google

Agarwal P.K., Agarwal P., Reddy M.K. and Sopory S.K. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports 25, 1263–1274. Cerca con Google

Ahmad I., Devonshire J., Mohamed R., Schultze M. and Maathuis F.J. (2016) Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytologist 209, 1040-1048. Cerca con Google

Akbar M., Yabuno T. and Nakao S. (1972) Breeding for saline-resistant varieties of rice. I. Variability for salt tolerance among some rice varieties. Japanese Journal of Breeding 22, 277–284. Cerca con Google

Amin U.S.M., Biswas S., Elias S.M., Razzaque S., Haque T., Malo R. and Seraj Z.I. (2016) Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9kb coding region with 5’UTR in transgenic lines of rice. Frontiers in Plant Science 7, 14. Cerca con Google

Anders S., McCarthy D.J., Chen Y., Okoniewski M., Smyth G.K., Huber W. and Robinson M.D. (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols 8, 1765–1786. Cerca con Google

Andrés Z., Pérez-Hormaeche J., Leidi E.O., Schlücking K., Steinhorst L., McLachlan D.H., Schumacher K., Hetherington A.M., Kudla J., Cubero B. and Pardo J.M. (2014) Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences U S A 111, E1806-1814. Cerca con Google

Apel K. and Hirt H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Reviews of Plant Biology 55, 373–399. Cerca con Google

108 Cerca con Google

Apse M.P., Aharon G.S., Snedden W.A. and Blumwald, E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256-1258. Cerca con Google

Arencibia A.D., Carmona E.R., Tellez P., Chan M.T., Yu S.M., Trujillo L.E. and Oramas, P. (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Research 7, 213–222. Cerca con Google

Asada K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Reviews of Plant Physiology 50, 601–639. Cerca con Google

Azzabi G., Pinnola A., Betterle N., Bassi R. and Alboresi A. (2012) Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress. Plant Cell Physiology 53, 1815–1825. Cerca con Google

Bagdi D.L., Shaw B.P., Sahu B.B. and Purohit G.K. (2015) Real time PCR expression analysis of gene encoding p5cs enzyme and proline metabolism under NaCI salinity in rice. Journal of Environmental Biology 36, 955–961. Cerca con Google

Bánfi B., Tirone F., Durussel I., Knisz J., Moskwa P., Molnár G.Z., Krause K.H. and Cox J.A. (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). Journal of Biological Chemistry 279, 18583-18591. Cerca con Google

Banuelos M.A., Garcia de blas B., Cubero B. and Rodriguez‐Navarro A. (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology 130, 784–795. Cerca con Google

Barr H.D. and Weatherley P.E. (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Science 15, 413-428. Cerca con Google

Barragán V., Leidi E.O., Andrés Z., Rubio L., De Luca A., Fernández J.A., Cubero B. and Pardo J.M. (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24, 1127-1142. Cerca con Google

Bassil E., Coku A. and Blumwald E. (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany 63: 5727-5740. Cerca con Google

Batistič O. and Kudla J. (2012) Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta 1820, 1283–1293 Cerca con Google

Baxter A., Mittler R. and Suzuki N. (2013) ROS as key players in plant stress signalling. Journal of Experimental Botany doi:10.1093/jxb/ert375. Cerca con Google

Beauchamp C.O., Fridovich I. (1971): Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287. Cerca con Google

Behera S. and Kudla J. (2013) High-resolution imaging of cytoplasmic Ca2+ dynamics in Arabidopsis roots. Cold Spring Harb Protocols 2013, 665–669. Cerca con Google

109 Cerca con Google

Bellincampi D., Dipierro N., Salvi G., Cervone F. and De Lorenzo G. (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiology 122, 1379-1385. Cerca con Google

Benjamini Y. and Hochberg Y. (1995) controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289–300. Cerca con Google

Bertazzini M. and Forlani G. (2011) Differential sensitivity of Italian rice cultivars to salt stress conditions. Proceedings of the AGI-SIBV-SIGA Joint Meeting, Assisi, September 19-22, 3A.11, ISBN: 978-88-904570-2-9. Cerca con Google

Bertl A., Reid J. D., Sentenac H. and Slayman C. L. (1997) Functional comparison of plant inward-rectifier channels expressed in yeast. Journal of Experimental Botany 48, 405–413 Cerca con Google

Blumwald E. (2000) Sodium transport and salt tolerance in plants Current Opinion in Cell Biology 12, 431–434. Cerca con Google

Bohnert H.J. and Shen B. (1999) Transformation and compatible solutes. Scientia horticulturae 78, 237-260. Boursiac Y., Chen S., Luu D-T., Sorieul M., van den Dries N. and Maurel C. (2005) Early effects of salinity on water transport in Arabidopsis roots: Molecular and cellular features of aquaporin expression. Plant Physiology 139, 790–805. Bray E.A., Bailey-Serres J. and Weretilnyk E. (2000) Responses to abiotic stresses. Biochemistry and Molecular Biology of Plants, B. Buchanan, W. Gruissem and R. Jones (eds), p 1160, American Society of Plant Physiologists. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. Carraretto L., Formentin E., Teardo E., Checchetto V., Tomizioli M., Morosinotto T., Giacometti G.M., Finazzi G. and Szabó I. (2013) A Thylakoid-Located Two-Pore Potassium Channel Controls Photosynthetic Light Utilization in Plants. Science 342(6154),114-118. Chen Z., Cuin T.A., Zhou M., Twomey A., Naidu B.P. and Shabala S. (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany 58(15-16), 4245-4255. Cerca con Google

Cotsaftis O., Plett D., Shirley N., Tester M. and Hrmova M. (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7, e39865. Cerca con Google

Counce P.A., Keisling T.C. and Mitchell A.J. (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Science 40, 436–443. Cerca con Google

Cuin T.A. and Shabala S. (2008) Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species. Plant Signaling and Behavior 3, 207–208. Cerca con Google

110 Cerca con Google

De Gara L., Locato V., Dipierro S. and de Pinto M.C. (2010) Redox homeostasis in plants. The challange of living with endogenous oxygen production. Respiratory Physiology and Neurobiology 173S, 13-19. Cerca con Google

Delledonne M., Zeier J., Marocco A. and Lamb C. (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance. Proceedings of the National Academy of Sciences USA 98, 13454–13459 Cerca con Google

Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A. and Yurin V. (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death. Jounal of Cell Science 123, 1468–1479. Cerca con Google

de Pinto M.C., Locato V., Sgobba A., Romero-Puertas M. del C., Gadaleta C., Delledonne M. and De Gara L. (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiology 163, 1766-75. Cerca con Google

de Pinto M.C., Locato V. and De Gara L. (2012) Redox regulation in plant programmed cell death. Plant, Cell and Environment 35(2), 234-244. Cerca con Google

de Pinto M.C., Paradiso A., Leonetti P. and De Gara L. (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal 48, 784–795. Cerca con Google

de Pinto M.C., Tommasi F. and De Gara L. (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiology 130, 698-708. Cerca con Google

de Pinto M.C., Tommasi F. and De Gara L. (2000) Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tabacco Bright Yellow 2. Plant Physiology and Biochemistry 38, 541-550 Cerca con Google

de Pinto M.C., Francis D. and De Gara L. (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209, 90-97. Cerca con Google

Diaz-Vivancos P., Faize M., Barba-Espin G., Faize L., Petri C., Hernández J.A. and Burgos L. (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnology Journal 11, 976–985. Cerca con Google

Dionisio-Sese M.L. and Tobita S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135,1-9. Cerca con Google

Donaldson L., Ludidi N., Knight M.R., Gehring C. and Denby K. (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Letters 569, 317–320. Cerca con Google

Dubiella U., Seybold H., Durian G., Komander E., Lassig R., Witte C.P., Schulze W.X. and Romeis T. (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defence signal propagation. Proceedings of the National Academy of Sciences USA 110, 8744-8749. Cerca con Google

111 Cerca con Google

Du H., Wang N., Cui F., Li X., Xiao J. and Xiong L. (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiology 154, 1304–1318. Cerca con Google

Erickson E., Wakao S. and Niyogi K.K. (2015). Light stress and photoprotection in Chlamydomonas reinhardtii. Plant Journal 82, 449-465. Cerca con Google

Evans M.J., Choi W.G, Gilroy S. and Morris R.J. (2016) A ROS-assisted calcium wave dependent on AtRBOHD and TPC1 4 propagates the systemic response to salt stress in Arabidopsis roots. Plant Physiology DOI:10.1104/pp.16.00215 Cerca con Google

Faiyue B., Vijayalakshmi C., Nawaz S., Nagato Y., Taketa S., Ichii M., Al-Azzawi M.J. and Flowers T.J. (2010) Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). Plant Cell and Environment 33, 687–701. Cerca con Google

Falda M., Toppo S., Pescarolo A., Lavezzo E., Di Camillo B., Facchinetti A., Cilia E., Velasco R. and Fontana P. (2012) Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 13 Suppl 4:S14. Cerca con Google

Falda M., Lavezzo E., Fontana P., Bianco L., Berselli M., Formentin E. and Toppo S. (2016) Eliciting the Functional Taxonomy from protein annotations and taxa. Scientific Reports 6, 31971. Cerca con Google

Feng H., Guan D., Sun K., Wang Y., Zhang T. and Wang R. (2013) Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Biochimica et Biophysica Sinica (Shanghai) 45(12), 985-994. Cerca con Google

Finotello F., Lavezzo E., Bianco L., Barzon L., Mazzon P., Fontana P., Toppo S. and Di Camillo B. (2014) Reducing bias in RNA sequencing data: a novel approach to compute counts. BMC Bioinformatics 15 Suppl 1:S7. Cerca con Google

Fitter A.H. and Stickland T.R. (1991) Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist 118, 383-389. Cerca con Google

Fitter A.H. (1996) Characteristics and functions of root system. In: Waisel, Y., Eshel, A., Kafkafi, U. (Eds.), Plant Roots, the Hidden Half. Marcel Dekker, New York, pp. 1-20. Cerca con Google

Flowers TJ and Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agriculture and Water Management 78,15-24. Cerca con Google

Flowers T.J. and Yeo A.R. (1995) Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology 22, 875–884. Cerca con Google

Flowers T,J. and Yeo A.R.(1988) Ion relation of salt tolerance. In: Baker DA, Hall JL, eds. Solute transport in plant cells and tissues. Harlow: Longman Scientific and Technical, 392–413. Cerca con Google

Foyer C.H. and Halliwell B. (1977) Purification and properties of dehydroascorbate reductase from spinach leaves. Phytochemistry 16, 1347-1350. Cerca con Google

Foyer C.H. and Noctor G. (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155(1), 2-18. Cerca con Google

112 Cerca con Google

Fraley R.T., Rogers S.G., Horsch R.B., Eichholtz D.A., Flick J.S., Fink C.L., Hoffmann N.L. and Sanders P.R. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Biotechnology 3, 629–635 Cerca con Google

Fuchs I., Stolzle S., Ivashikina N. and Hedrich R. (2005) Rice K(+) uptake channel OsAKT1 is sensitive to salt stress. Planta 221, 212-121. Cerca con Google

Fukuda A., Nakamura A., Hara N., Toki S. and Tanaka Y. (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233, 175-188. Cerca con Google

Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H. and Tanaka Y. (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiology 45, 146-159. Cerca con Google

Gaff D.F. and Okong'O-Ogola O (1971) The Use of Non-permeating Pigments for Testing the Survival of Cells. Journal of Experimental Botany 22, 756–758. Cerca con Google

Galvan-Ampudia C.S. and Testerink C. (2011) Salt stress signals shape the plant root. Current Opinion in Plant Biology 14, 296-302. Cerca con Google

Gaxiola R.A., Li J., Undurraga S., Dang L.M., Allen G.J., Alper S.L. and Fink G.R. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of National Academy of Sciences U.S.A 98, 11444–11449. Gechev T.S. and Hille J. (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. Journal of Cell Biology 168(1), 17–20. Gechev T., Gadjev I., Van Breusegem F., Inze ´ D., Dukiandjiev S., Toneva V. and Minkov I. (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences 59, 708–714. Cerca con Google

Gill S.S. and Tuteja N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909-930. Cerca con Google

Goeman J.J. and Buhlmann P. (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23, 980–987. Cerca con Google

Golldack D., Quigley F., Michalowsky C.B., Kamasani U.R. and Bohnert H.J. (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel differently. Plant molecular biology 51, 71-81. Cerca con Google

Gong H.J., Randall D.P. and Flowers T.J. (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell and Environment 29,1970–1979. Gould J., Devery M., Heeegawa O., Ulian, E.C., Peterson G. and Smith R.H. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiology 95, 426-434. Cerca con Google

113 Cerca con Google

Gould K. S., Lamotte O., Klinguer A., Pugin A. and Wendehenne D. (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant, Cell and Environment 26, 1851–1862. Cerca con Google

Gregorio G.B., Senadhira D., Mendoza R.D., Manigbas N.L., Roxas J.P. and Guerta C. Q. (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research 76, 91–101. Cerca con Google

Guo L., Wang Z.Y., Lin H., Cui W.E., Chen J., Liu M., Chen Z.L., Qu L.J. and Gu H. (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research 16, 277–86. Gupta B. and Huang B. (2014) Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 701596. Cerca con Google

Hare P.D., Cress W.A. and Van Staden J. (1988) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment 21, 535–553. Cerca con Google

Hasegawa P.M., Bressan R.A., Zhu J-K. and Bohnert H.J. (2000) Plant cellular and molecular responses to high salinity. Annuual Review of Plant Physiology Plant Molecular Biology 51, 463–99. Cerca con Google

Hauser F. and Horie T. (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress. Plant, Cell and Environment 33, 552-565. Cerca con Google

Haynes W.A., Higdon R., Stanberry L., Collins D. and Kolker E. (2013) Differential expression analysis for pathways. PLoS Computational Biology 9, e1002967. Hernández J.A., Corpas F.J., Gómez M., del Río L.A. and Sevilla F. (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum 89, 103–110. Hiei Y., Komari T. and Kumashiro T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal 6, 271–282. Hiei Y., Komari T. and Kubo T. (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology 35, 205–218. Hiei Y. and Komari T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols 3, 824–834. Cerca con Google

Hirayama T. and Shinozaki K. (2010) Research on plant abiotic stress responses in the postgenome era: Past, present and future. Plant Journal 61, 1041–1052. Cerca con Google

Hoagland D.R. and Arnon D.I. (1938) The water-culture method for growing plants without soil. University of California Collections Agriculture Experimental Station Berkley Circ, 347-353. Cerca con Google

114 Cerca con Google

Hoeberichts F.A. and Woltering E.J. (2003). Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. Bioessays 25, 47–57. Cerca con Google

Hong C.Y., Chao Y.Y., Yang M.Y., Cheng S.Y., Cho S.C. and Kao C.H. (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320, 103–115. Cerca con Google

Horie T., Karahara I. and Katsuhara M. (2012) Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice (N Y). 5, 11. Cerca con Google

Horie T., Sugawara M., Okada T., Taira K., Kaothien-Nakayama P., Katsuhara M., Shinmyo A. and Nakayama H. (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Journal of Bioscience and Bioengineering 111, 346-356. Cerca con Google

Horie T., Kaneko T., Sugimoto G., Sasano S., Panda S. K., Shibasaka M. and Katsuhara M. (2011b) Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant and Cell Physiology 52(4), 663-675. Cerca con Google

Hur J., Jung K.H., Lee G.H. and An G.H. (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science 167, 417–426. Cerca con Google

Isayenkov S., Isner J.C. and Maathuis F.J. (2011) Membrane localisation diversity of TPK channels and their physiological role. Plant Signaling and Behavior 6, 1201-1204. Cerca con Google

Isayenkov S. and Maathuis F.J. (2015) The expression of rice vacuolar TPK channels genes restores potassium uptake in E. coli mutant strain LB2003. Cytology and Genetics 49(1), 1–5. Cerca con Google

Ismail A., Takeda S. and Nick P. (2014) Life and death under salt stress: same players, different timing? Journal of Experimental Botany 65, 2963-2979. Cerca con Google

Ismail A.M., Heuer S., Thomson M.J. and Wissuwa M. (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65, 547–570. Cerca con Google

Jaspers P. and Kangasjarvi J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum 138, 405–413. Cerca con Google

Ji H., Pardo J.M., Batelli G., Oosten M.J.V., Bressan R.A. and Li X. (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Molecular Plant 6, 275–286. Cerca con Google

Jiang C., Belfield E.J., Mithani A., Visscher A., Ragoussis J., Mott R., Smith J.A. and Harberd N.P. (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO Journal 31, 4359–4370. Cerca con Google

Kader M.A. and Lindberg S. 2010. Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling and Behavior 5, 233–238. Cerca con Google

Kahl G. (1982) Molecular biology of wound healing: the conditioning phenomenon. Molecular Biology of Plant Tumors, 211–267. Cerca con Google

115 Cerca con Google

Kanehisa M., Sato Y. and Morishima K. (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology 428, 726-731. Cerca con Google

Katsuhara M. and Kawasaki T. (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant and Cell Physiology 37,169-173. Cerca con Google

Kawahara Y., de la Bastide M., Hamilton J.P., Kanamori H., McCombie W.R., Ouyang S., Schwartz D.C., Tanaka T., Wu J., Zhou S., Childs K.L., Davidson R.M., Lin H., Quesada-Ocampo L., Vaillancourt B., Sakai H., Lee S.S., Kim J., Numa H., Itoh T., Buell C.R. and Matsumoto T. (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4. Cerca con Google

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R. and Salzberg S.L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36. Cerca con Google

Knight H., Trewavas A.J. and Knight M.R. (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant Journal 12, 1067–1078. Cerca con Google

Koeduka T., Matsui K., Hasegawa M., Akakabe Y. and Kajiwara T. (2005) Rice fatty acid α-dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling. Journal of Plant Physiology 162, 912–920. Cerca con Google

Kurusu T., Kuchitsu K. and Tada Y. (2015) Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science 6, 427. Cerca con Google

Khush G.S and P.S. Virk. (2000) Rice breeding : Achievements and future strategies. Crop Improvement 27(2), 115-144. Cerca con Google

Krebs M., Held K., Binder A., Hashimoto K., Den Herder G., Parniske M., Kudla J and Schumacher K. (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics. Plant Journal 69, 181–192. Cerca con Google

Langsrud Ø (2005) Rotation tests. Statistics and Computing 15, 53–60. Cerca con Google

Lavezzo E., Falda M., Fontana P., Bianco L. and Toppo S. (2016) Enhancing protein function prediction with taxonomic constraints--The Argot2.5 web server. Methods 93, 15-23. Cerca con Google

Law C.W., Chen Y., Shi W. and Smyth G.K. (2014) voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15,: R29. Cerca con Google

Li G. W., Peng Y.H., Yu X., Zhang M.H., Cai W.M., Sun W.N. and Su W.A. (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology 165, 1879–88. Cerca con Google

Li Y., Yuan F., Wen Z., Li Y., Wang F., Zhu T., Zhu T., Zhuo W., Jin X., Wang Y., Zhao H., Pei Z.M. and Han S. (2015) Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biology 15, 261. Cerca con Google

116 Cerca con Google

Livak K.J. and Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25, 402-408. Cerca con Google

Locato V., de Pinto M.C. and De Gara L. (2009) Different involvement of the mitochondrial, plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses. Physiologia Plantarum 135(3), 296-306. Cerca con Google

Ma L., Zhang H., Sun L., Jiao Y., Zhang G., Miao C. and Hao F. (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany 63, 305-317. Cerca con Google

Maathuis F.J. (2011) Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytologist 191, 84-91. Cerca con Google

Maathuis F.J. and Amtmann A. (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany 84,123–133 Cerca con Google

Mallikarjuna G., Mallikarjuna K., Reddy M.K. and Kaul T. (2011). Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnology Letters 33, 1689–1697. Cerca con Google

Martínez-Atienza J., Jiang X., Garciadeblas B., Mendoza I., Zhu J. K., Pardo J. M. and Quintero F.J. (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiology 143, 1001–1012. Cerca con Google

Maurel C., Verdoucq L., Luu D. T. and Santoni V. (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annual Reviews of Plant Biolology 59, 595-624. Cerca con Google

Maxwell K. and Johnson G.N. (2000). Chlorophyll fluorescence - A practical guide. Journal of Experimental Botany 51, 659–668. Cerca con Google

Miller G., Suzuki N., Ciftci-Yilmaz S. and Mittler R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment 33, 453-467. Cerca con Google

Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405–410. Cerca con Google

Mittler R and Blumwald E. (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology 61, 443-462. Mittler R., Vanderauwera S., Gollery M. and Van Breusegem F. (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498. Cerca con Google

Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V. and Van Breusegem F. (2011) ROS signaling: the new wave? Trends in Plant Science 16, 300-309. Mlejnek P. (2013) Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells. Protoplasma 250(5),1195-202. Cerca con Google

117 Cerca con Google

Mohammadi-Nejad G., Singh R.K., Arzani A., Rezaie A.M., Sabouri H. and Gregorio G.B. (2010) Evaluation of salinity tolerance in rice genotypes. International Journal of Plant Production 4, 199–207. Cerca con Google

Mooney P.A., Goodwin P.B., Dennis E.S. and Llewellyn D.J. (1991) Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell, Tissue and Organ Culture 25, 209-218. Cerca con Google

Munns R. and Tester M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651-681. Cerca con Google

Nakamura R.L., McKendree W.L., Hirsch R.E., Sedbrook J.C., Gaber R.F. and Sussman M.R. (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiology 109, 371–374. Nieves-Cordones M., Aleman F., Martinez V. and Rubio F. (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Molecular Plant 3, 326–333. Nishimura A., Ashikari M., Lin S., Takashi T., Angeles E. R., Yamamoto T. and Makoto Matsuoka (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proceedings of National Academy of Sciences U.S.A 102, 11940–11944 Noctor G., Mhamdi A. and Foyer C. H. (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164, 1636–1648. Nounjan N., Nghia P. T. and Theerakulpisut P. (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology 169, 596–604. Cerca con Google

Obata T., Kitamoto H.K., Nakamura A., Fukuda A. and Tanaka Y. (2007) Rice Shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology 144, 1978-1985. Cerca con Google

Pandey P., Ramegowda V. and Senthil-Kumar M. (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science 6, 723. Cerca con Google

Pang C. H. and Wang B. (2008) Oxidative stress and salt tolerance in plants. Progress in Botany 231–245. Cerca con Google

Paradiso A., de Pinto M. C., Locato V. and De Gara L. (2012) Galactonoγ-lactone-dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biology (Stuttg) 14, 652–658. Cerca con Google

Parida AK and Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60, 324–349. Cerca con Google

118 Cerca con Google

Ponce de León I., Sanz A., Hamberg M. and Castresana C. (2002) Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant Journal 29, 61–62. Qi Z., Hampton C.R., Shin R., Barkla B.J., White P.J. and Schachtman D.P. (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. Journal of Experimental Botany 59, 595–607. Cerca con Google

Quinlan A.R. and Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842. Cerca con Google

Raineri D. M., Bottino P., Gordon M.P. and Nester E.W. (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Biotechnology, 8, 33-38. Cerca con Google

Ream W. (1989) Agrobacterium tumefaciens and Interkingdom Genetic Exchange. Annual Reviews of Phytopathology 27, 586-618 Cerca con Google

Robinson M.D., McCarthy D.J. and Smyth G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. Cerca con Google

Rocchetti E., Sharma T., Wulfetange C., Scholtz-Starke J., Gripps A., Carpaneto A., Dreyer I., Vitale A., Czempinski K. and Pedrazzini E. (2013) The putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis. Frontiers in Plant Science Volume 3, Article 251. Cerca con Google

Rodriguez-Navarro A. and Rubio F. (2006) High-affinity potassium and sodium transport systems in plants. Journal of Experimental Botany 57, 1149–1160 Cerca con Google

Roy S.J., Negrão S. and Tester M. (2014) Salt resistant crop plants. Current Opinion in Biotechnology 26, 115-124. Cerca con Google

Sales G., Calura E., Cavalieri D. and Romualdi C. (2012) graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 13, 20. Cerca con Google

Sanders D., Pelloux J., Brownlee C. and Harper J.F. (2002) Calcium at the crossroads of signaling. Plant Cell (Suppl) 14, S401–S417. Cerca con Google

Santa-María G.E., Rubio F., Dubcovsky J. and Rodríguez-Navarro A. (1997) The HAK1 gene of barley belongs to a large gene family and encodes a high-affinity potassium transporter. The Plant Cell 9(12), 2281–2289. Cerca con Google

Sakamoto A., Alia and Murata N. (1998) Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Molecular Biology 38, 1011–1019. Cerca con Google

Schindelin J., Arganda-Carreras I. and Frise, E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P. and Cardona A. (2012) Fiji: an open-source platform for biological-image analysis. Nature methods 9(7), 676-682. Cerca con Google

119 Cerca con Google

Schmidt R., Mieulet D., Hubberten H.M., Obata T., Hoefgen R., Fernie A.R., Fisahn J., San Segundo B., Guiderdoni E., Schippers J.H. and Mueller-Roeber B. (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25, 2115-2131. Cerca con Google

Schneider C. A., Rasband W. S. and Eliceiri K. W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature methods 9, 671-675. Cerca con Google

Schroeder J., Delhaize E., Frommer W. B., Guerinot M. L., Harrison M. J., Herrera-Estrella L., Horie T., Kochian L. V., Munns R., Nishizawa N. K., Tsay Y-F. and Sanders D. (2013) Using membrane transporters to improve crops for sustainable food production. Nature Vol. 497. Cerca con Google

Sgobba A., Paradiso A., Dipierro S., De Gara L. and de Pinto M.C. (2014) Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiologia Plantarum 153, 68–78. Cerca con Google

Shabala S. and Pottosin I. (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum 151, 257-279. Cerca con Google

Shabala S. and Cuin T. A. (2007) Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669. Cerca con Google

Shabala L., Cuin T.A., Newman I.A. and Shabala S. (2005) Salinity induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222, 1041–1050. Cerca con Google

Sharma T., Dreyer I. and Riedelsberger J. (2013) The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Frontiers in Plant Science 4, 224 Cerca con Google

Skopelitis D.S., Paranychianakis N.V., Paschalidis K.A., Pliakonis E.D., Delis I.D., Yakoumakis D.I., Kouvarakis A., Papadakis A.K., Stephanou E.G. and Roubelakis-Anfelakis K.A. (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell 18, 2767– 2781. Cerca con Google

Suzuki N., Koussevitzky S., Mittler R. and Miller G. (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment 35(2), 259-70. Cerca con Google

Suzuki N., Miller G., Morales J., Shulaev V., Torres M. A. and Mittler R. (2011) Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology 14, 691–699. Cerca con Google

Suzuki K., Yamaji N., Costa A., Okuma E., Kobayashi N.I., Kashiwagi T., Katsuhara M., Wang C., Tanoi K., Murata Y., Schroeder J.I., Ma J.F. and Horie T. (2016) OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology 19, 16-22. Cerca con Google

Suzuki-Yamamoto, M., Mimura, T. and Ashihara, H. (2006), Effect of short-term salt stress on the metabolic profiles of pyrimidine, purine and pyridine nucleotides in cultured cells of the mangrove tree, Bruguiera sexangula. Physiologia Plantarum 128, 405–414. Cerca con Google

120 Cerca con Google

Tester M. and Davenport R. (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503-527. Cerca con Google

Torres M.A. and Dangl J.L. (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology 8, 397–403. Cerca con Google

Tóth G., Montanarella L. and Rusco E. (2008) Threats to Soil Quality in Europe. EUR 23438 –Scientific and Technical Research series Luxembourg: Office for Official Publications of the European Communities p.61-74. Cerca con Google

Tracy F. E., Gilliham M., Dodd A.N., Webb A.A.R. and Tester M. (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell and Environment 31, 1063–1073. Cerca con Google

Valderrama R., Corpas F.J., Carreras A., Fernandez-Ocana A., Chaki M., Luque F., Gomez-Rodriguez M.V., Colmenero-Varea P., del Rio L.A. and Barroso J.B. (2007) Nitrosative stress in plants. FEBS Letters 581, 453–461 Cerca con Google

Van Breusegem F. and Dat J. (2006) Reactive oxygen species in plant cell death. Plant Physiology 141, 384–390. Cerca con Google

Véry A. and Sentenac H. (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annual Reviews of Plant Biology 54, 575-603. Cerca con Google

Wang X., Zhang M.M., Wang Y.J., Gao Y.T., Li R., Wang G.F., Li W.Q., Liu W.T. and Chen K.M. (2016) The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice. Physiologia Plantarum 156, 421-443. Cerca con Google

Wassmann R., Jagadish S.V.K., Sumfleth K., Pathak H., Howell G., Ismail A., Serraj R., Redona E., Singh R.K. and Heuer S. (2009) Chapter 3 Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advanced Agronomy 102, 91–133. Cerca con Google

Yang T., Zhang S., Hu Y., Wu F., Hu Q., Chen G., Cai J., Wu T., Moran N., Yu L. and Xu G. (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology 166, 945–959. Cerca con Google

Yeo A.R., Yeo M.E. and Flowers T.J. (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. Journal of Experimental Botany 38, 1141–1153. Cerca con Google

Yeo A.R., Yeo M.E., Flowers S.A. and Flowers T.J. (1990). Screening of rice (Oryza sativa L) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theoretical and Applied Genetics 79, 377–384. Cerca con Google

Yuan F., Yang H., Xue Y., Kong D., Ye R., Li C., Zhang J., Theprungsirikul L., Shrift T., Krichilsky B., Johnson D.M., Swift G.B., He Y., Siedow J.N. and Pei Z.M. (2014) OSCA1 mediates osmotic-stress-evoked Ca increases vital for osmosensing in Arabidopsis. Nature 514, 367-371. Cerca con Google

Zhang J., Li J., Wang X. and Chen J. (2011) OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiology and Biochemistry 49, 33-38. Cerca con Google

121 Cerca con Google

Zhu J.K. (2001) Plant salt tolerance. Trends in Plant Science 6, 66-71. Cerca con Google

Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annual Reviews in Plant Biology 53, 247–273. Cerca con Google

Zhu J.K. (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441–445. Cerca con Google

Zhu S.Q., Chen M.W., Ji B.H., Jiao D.M. and Liang J.S. (2011) Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Journal of Experimental Botany 62, 4617–4625. Cerca con Google

Zulfugarov I.S., Tovuu A., Eu Y.J., Dogsom B., Poudyal R.S., Nath K., Banerjee M., Yoon U.C., Moon Y.H., An G., Jansson S. and Lee C.H. (2014) Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biology 14, 242. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record