Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Belotti, Roberto (2017) Eigenstructure assignment in vibrating systems through active and passive approaches. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi di dottorato)
Thesis not accessible until 01 January 2020 for intellectual property related reasons.
Visibile to: nobody

2818Kb

Abstract (english)

The dynamic behaviour of a vibrating system depends on its eigenstructure, which consists of the eigenvalues and the eigenvectors. In fact, eigenvalues define natural frequencies, damping and settling time, while eigenvectors define the spatial distribution of vibrations, i.e. the mode shape, and also affect the sensitivity of eigenvalues with respect to the system parameters.
Therefore, eigenstructure assignment, which is aimed at modifying the system in such a way that it features the desired set of eigenvalues and eigenvectors, is of fundamental importance in mechanical design. However, similarly to several other inverse problems, eigenstructure assignment is inherently challenging, due to its ill-posed nature. Despite the recent advancements of the state of the art in eigenstructure assignment, in fact, there are still important open issues.
The available methods for eigenstructure assignment can be grouped into two classes: passive approaches, which consist in modifying the physical parameters of the system, and active approaches, which consist in employing actuators and sensors to exert suitable control forces as determined by a specified control law. Since both these approaches have advantages and drawbacks, it is important to choose the most appropriate strategy for the application of interest.
In the present thesis, in fact, are collected passive, active, and even hybrid methods, in which active and passive techniques are concurrently employed. All the methods proposed in the thesis are aimed at solving open issues that emerged from the literature and which have applicative relevance, as well as theoretical. In contrast to several state-of-the-art methods, in fact, the proposed ones implement strategies that enable to ensure that the computed solutions are meaningful and feasible. Moreover, given that in modern mechanical design large-scale systems are increasingly common, computational issues have become a major concern and thus have been adequately addressed in the thesis.
The proposed methods have been developed to be general and broadly applicable. In order to demonstrate the versatility of the methods, in the thesis it is provided an extensive numerical assessment, hence diverse test-cases have been used for validation purposes. In order to evaluate without bias the performances of the proposed methods, it has been chosen to employ well-established benchmarks from the literature. Moreover, selected experimental applications are presented in the thesis, in order to determine the capabilities of the developed methods when critically challenged.
Given the focus on these issues, it is expected that the methods here proposed can constitute effective tools to improve the dynamic behaviour of vibrating systems and it is hoped that the present work could contribute to spread the use of eigenstructure assignment in the solution of engineering design problems.

Abstract (italian)

Il comportamento dinamico di un sistema vibrante dipende dai suoi autovalori e autovettori. Infatti, gli autovalori definiscono le frequenze naturali, lo smorzamento e il tempo di assestamento, mentre gli autovettori definiscono la distribuzione spaziale delle vibrazioni, ossia le forme modali, ed influenzano la sensitività degli autovalori dai parametri del sistema.
Pertanto, l'eigenstructure assignment, che è rivolta alla modifica del sistema per fare sì che abbia un desiderato insieme di autovalori e autovettori, è di importanza fondamentale nella progettazione meccanica. Tuttavia, analogamente a molti altri problemi inversi, l'eigenstructure assignment è un problema intrinsecamente molto arduo, essendo per sua natura mal-condizionato. Nonostante i recenti progressi dello stato dell'arte, infatti, ci sono tuttora importanti problemi aperti.
I metodi disponibili possono essere raggruppati in due classi: gli approcci passivi, che consistono nel modificare i parametri fisici del sistema, e gli approcci passivi, che consistono nell'impiegare attuatori e sensori per esercitare delle appropriate forze di controllo, in accordo alle leggi di controllo stabilite. Poichè entrambi questi approcci hanno vantaggi e svantaggi, è importante scegliere la strategia più appropriata per l'applicazione in esame.
Nella presente tesi, infatti, sono raccolti metodi passivi, attivi ed anche ibridi, in cui tecniche attive e passive sono impiegate simultaneamente. Tutti i metodi proposti nella tesi sono rivolti alla soluzione di problemi aperti che sono emersi dalla letteratura e che hanno rilevanza applicativa, oltre che teorica. Diversamente da molti metodi dello stato dell'arte, infatti, quelli proposti implementano strategie che permettono di assicurare che le soluzioni calcolate siano realizzabili. Inoltre, dato che nella progettazione meccanica moderna sono sempre più comuni sistemi di larga scala, i problemi computazionali sono diventati una problematica importante e quindi sono adeguatamente affrontati nella tesi.
I metodi proposti sono stati sviluppati per essere generali ed ampiamente applicabili. Al fine di dimostrare la versatilità dei metodi, è stata effettuata un'ampia verifica numerica, ossia molteplici casi studio sono stati usati nella validazione. Per valutare in maniera imparziale le prestazioni del metodi proposti, è stato scelto di impiegare benchmark consolidati nella letteratura. Inoltre, nella tesi è fornita una selezione di applicazione sperimentali, al fine di determinare le capacità dei metodi sviluppati in condizioni di utilizzo reale.
Date le motivazioni che hanno ispirato il presente lavoro di ricerca, ci si auspica che i metodi proposti possano costituire degli strumenti efficaci per migliorare il comportamento dinamico di sistemi vibranti e si spera che il presente lavoro possa contribuire a diffondere l'uso dell'eigenstructure assignment nella soluzione di problemi ingegneristici.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Richiedei, Dario
Ph.D. course:Ciclo 29 > Corsi 29 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:mechanical vibrations eigenstructure assignment passive control active control hybrid control
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/13 Meccanica applicata alle macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:10276
Depositato il:09 Nov 2017 12:25
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

S. Adhikari. Rates of change of eigenvalues and eigenvectors in damped dynamic system. AIAA journal, 37(11):1452–1458, 1999. Cerca con Google

K. Farahani and H. Bahai. An inverse strategy for relocation of eigenfrequencies in structural design. Part I: first order approximate solutions. Journal of Sound and Vibration, 274(3):481–505, 2004. Cerca con Google

K. Farahani and H. Bahai. An inverse strategy for relocation of eigenfrequencies in structural design. Part II: second order approximate solutions. Journal of Sound and Vibration, 274(3):507–528, 2004. Cerca con Google

W. Liangsheng. Direct method of inverse eigenvalue problems for structure redesign. Journal of Mechanical Design, 125(4):845–847, 2003. Cerca con Google

D. Wang, J. Jiang, and W. Zhang. Optimization of support positions to maximize the fundamental frequency of structures. International journal for numerical methods in engineering, 61(10):1584–1602, 2004. Cerca con Google

D. Wang, M. Friswell, and Y. Lei. Maximizing the natural frequency of a beam with an intermediate elastic support. Journal of Sound and Vibration, 291(3):1229–1238, 2006. Cerca con Google

Y. Ram. Optimal mass distribution in vibrating systems. Mechanical Systems and Signal Processing, 23(7):2130–2140, 2009. Cerca con Google

D. Richiedei, A. Trevisani, and G. Zanardo. A constrained convex approach to modal design optimization of vibrating systems. Journal of Mechanical Design, 133(6):061011, 2011. Cerca con Google

H. Ouyang, D. Richiedei, A. Trevisani, and G. Zanardo. Discrete mass and stiffness modifications for the inverse eigenstructure assignment in vibrating systems: Theory and experimental validation. International Journal of Mechanical Sciences, 64(1):211–220, 2012. Cerca con Google

Y. Ram and S. Braun. An inverse problem associated with modification of incomplete dynamic systems. Journal of Applied Mechanics, 58(1):233–237, 1991. Cerca con Google

D. D. Sivan and Y. M. Ram. Physical modifications to vibratory systems with assigned eigendata. Journal of Applied Mechanics, 66(2):427–431, 1999. Cerca con Google

D. Sivan and Y. Ram. Optimal construction of a mass-spring system from prescribed modal and spectral data. Journal of Sound and Vibration, 201(3):323–334, 1997. Cerca con Google

I. Bucher and S. Braun. The structural modification inverse problem: an exact solution. Mechanical Systems and Signal Processing, 7(3):217–238, 1993. Cerca con Google

S. Braun and Y. Ram. Modal modification of vibrating systems: some problems and their solutions. Mechanical Systems and Signal Processing, 15(1):101–119, 2001. Cerca con Google

D. D. Sivan and Y. M. Ram. Mass and stiffness modifications to achieve desired natural frequencies. Communications in numerical methods in engineering, 12(9):531–542, 1996. Cerca con Google

J. Mottershead. Structural modification for the assignment of zeros using measured receptances. Journal of Applied Mechanics, 68(5):791–798, 2001. Cerca con Google

A. Kyprianou, J. E. Mottershead, and H. Ouyang. Assignment of natural frequencies by an added mass and one or more springs. Mechanical Systems and Signal Processing, 18(2):263–289, 2004. Cerca con Google

A. Kyprianou, J. E. Mottershead, and H. Ouyang. Structural modification. Part 2: assignment of natural frequencies and antiresonances by an added beam. Journal of Sound and Vibration, 284(1):267–281, 2005. Cerca con Google

H. Ouyang. Prediction and assignment of latent roots of damped asymmetric systems by structural modifications. Mechanical Systems and Signal Processing, 23(6):1920–1930, 2009. Cerca con Google

Y. H. Park and Y. S. Park. Structural modification based on measured frequency response functions: an exact eigenproperties reallocation. Journal of Sound and Vibration, 237(3):411–426, 2000. Cerca con Google

J. Mottershead and G. Lallement. Vibration nodes, and the cancellation of poles and zeros by unit-rank modifications to structures. Journal of Sound and Vibration, 222(5):833–851, 1999. Cerca con Google

J. Mottershead, T. Li, and J. He. Pole–zero cancellation in structures: repeated roots. Journal of Sound and Vibration, 231(1):219–231, 2000. Cerca con Google

H. Ouyang, D. Richiedei, A. Trevisani, and G. Zanardo. Eigenstructure assignment in undamped vibrating systems: a convex-constrained modification method based on receptances. Mechanical Systems and Signal Processing, 27:397–409, 2012. Cerca con Google

W. Wonham. On pole assignment in multi-input controllable linear systems. IEEE Transactions on Automatic Control, 12(6):660–665, 1967. Cerca con Google

J. Kautsky, N. K. Nichols, and P. Van Dooren. Robust pole assignment in linear state feedback. International Journal of Control, 41(5):1129–1155, 1985. Cerca con Google

J. Ackermann. Der entwurf linearer regelungssysteme im zustandsraum. at-Automatisierungstechnik, 20(1-12):297–300, 1972. Cerca con Google

E. Chu and B. Datta. Numerically robust pole assignment for second-order systems. International Journal of Control, 64(6):1113–1127, 1996. Cerca con Google

B. N. Datta, S. Elhay, and Y. M. Ram. Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Algebra and its Applications, 257:29–48, 1997. Cerca con Google

Y. Ram and S. Elhay. Pole assignment in vibratory systems by multi-input control. Journal of Sound and Vibration, 230(2):309–321, 2000. Cerca con Google

E. Chu. Pole assignment for second-order systems. Mechanical Systems and Signal Processing, 16(1):39–59, 2002. Cerca con Google

J. Qian and S. Xu. Robust partial eigenvalue assignment problem for the second-order system. Journal of Sound and Vibration, 282(3):937–948, 2005. Cerca con Google

B. C. Moore. On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. In Decision and Control including the 14th Symposium on Adaptive Processes, 1975 IEEE Conference on, pages 207–214. IEEE, 1975. Cerca con Google

A. Andry, E. Shapiro, and J. Chung. Eigenstructure assignment for linear systems. IEEE transactions on aerospace and electronic systems, 19(5):711–729, 1983. Cerca con Google

B. White. Eigenstructure assignment: a survey. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 209(1):1–11, 1995. Cerca con Google

B. N. Datta, S. Elhay, Y. a. Ram, and D. R. Sarkissian. Partial eigenstructure assignment for the quadratic pencil. Journal of Sound and Vibration, 230(1):101–110, 2000. Cerca con Google

J. E. Mottershead and Y. M. Ram. Receptance method in active vibration control. AIAA journal, 45(3):562–567, 2007. Cerca con Google

M. G. Tehrani, R. N. Elliott, and J. E. Mottershead. Partial pole placement in structures by the method of receptances: theory and experiments. Journal of Sound and Vibration, 329(24):5017–5035, 2010. Cerca con Google

E. Allgower and K. Georg. Introduction to Numerical Continuation Methods. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2003. Cerca con Google

W. Forster. Homotopy methods. In R. Horst and P. Pardalos, editors, Handbook of Global Optimization, volume 2 of Nonconvex Optimization and Its Applications, pages 669–750. Springer US, 1995. Cerca con Google

D. M. Dunlavy and D. P. O’Leary. Homotopy optimization methods for global optimization. Sandia National Laboratories, Report SAND2005-7495, 2005. Cerca con Google

C. P. Vyasarayani, T. Uchida, A. Carvalho, and J. McPhee. Parameter identification in dynamic systems using the homotopy optimization approach. Multibody System Dynamics, 26(4):411–424, 2011. Cerca con Google

F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics of Operations Research, 8(2):273–286, 1983. Cerca con Google

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Mathematical programming, 10(1):147–175, 1976. Cerca con Google

Z. Liu, W. Li, H. Ouyang, and D. Wang. Eigenstructure assignment in vibrating systems based on receptances. Archive of Applied Mechanics, 85(6):713–724, 2015. Cerca con Google

E. D. Andersen and K. D. Andersen. The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm, pages 197–232. Springer US, Boston, MA, 2000. Cerca con Google

R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999. Cerca con Google

J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. Cerca con Google

G. Canbaloglu and H. N. Özgüven. Structural modifications with additional DOF applications to real structures. In Proceedings of the 27th International Modal Analysis Conference, IMAC, Orlando, 2009. Cerca con Google

H. Hang, K. Shankar, and J. C. Lai. Prediction of the effects on dynamic response due to distributed structural modification with additional degrees of freedom. Mechanical Systems and Signal Processing, 22(8):1809–1825, 2008. Cerca con Google

H. Hang, K. Shankar, and J. C. Lai. Effects of distributed structural dynamic modification with additional degrees of freedom on 3d structure. Mechanical Systems and Signal Processing, 24(5):1349–1368, 2010. Cerca con Google

D. Stăncioiu and H. Ouyang. Structural modification formula and iterative design method using multiple tuned mass dampers for structures subjected to moving loads. Mechanical Systems and Signal Processing, 28:542–560, 2012. Cerca con Google

R. Jacquot. Suppression of random vibration in plates using vibration absorbers. Journal of Sound and Vibration, 248(4):585–596, 2001. Cerca con Google

R. Caracciolo, D. Richiedei, A. Trevisani, and G. Zanardo. Designing vibratory linear feeders through an inverse dynamic structural modification approach. The International Journal of Advanced Manufacturing Technology, 80(9):1587–1599, 2015. Cerca con Google

D. Richiedei and A. Trevisani. Vibration confinement in lightly damped multibody systems: An hybrid active-passive approach. In Proceedings of the ECCOMAS thematic conference on multibody dynamics, pages 789–795, Zagreb, Croatia, 2013. Cerca con Google

Y. Saad. Projection and deflation method for partial pole assignment in linear state feedback. IEEE Transactions on Automatic Control, 33(3):290–297, 1988. Cerca con Google

B. N. Datta and D. R. Sarkissian. Partial eigenvalue assignment in linear systems: existence, uniqueness and numerical solution. In Proceedings of the Mathematical Theory of Networks and Systems (MTNS), Notre Dame. Citeseer, 2002. Cerca con Google

D. J. Inman. Active modal control for smart structures. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 359(1778):205–219, 2001. Cerca con Google

M. Gürgöze et al. Preserving the fundamental frequencies of beams despite mass attachments. Journal of Sound and Vibration, 235(2):345–359, 2000. Cerca con Google

V. Mermertas and M. Gürgöze. Preservation of the fundamental natural frequencies of rectangular plates with mass and spring modifications. Journal of Sound and Vibration, 276(1):440–448, 2004. Cerca con Google

O. Çakar. Mass and stiffness modifications without changing any specified natural frequency of a structure. Journal of Vibration and Control, 17(5):769–776, 2011. Cerca con Google

H. Ouyang and J. Zhang. Passive modifications for partial assignment of natural frequencies of mass–spring systems. Mechanical Systems and Signal Processing, 50:214–226, 2015. Cerca con Google

J. Yang, H. Ouyang, and J.-F. Zhang. A new method of updating mass and stiffness matrices simultaneously with no spillover. Journal of Vibration and Control, 22(5):1181–1189, 2014. Cerca con Google

J. Zhang, H. Ouyang, and J. Yang. Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback. Journal of Sound and Vibration, 333(1):1–12, 2014. Cerca con Google

J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11–12:625–653, 1999. Version 1.05 available from http://fewcal.kub.nl/sturm. Vai! Cerca con Google

K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3—A MATLAB software package for semidefinite programming, version 1.3. Optimization Methods and Software, 11(1-4):545–581, 1999. Cerca con Google

M. T. Chu and Q. Guo. On the least squares approximation of symmetric-definite pencils subject to generalized spectral constraints. SIAM Journal on Matrix Analysis and Applications, 19(1):1–20, 1998. Cerca con Google

H. P. Langtangen and G. K. Pedersen. Scaling of Differential Equations. Springer, 2016. Cerca con Google

I. Gurobi Optimization. Gurobi optimizer reference manual, 2016. Cerca con Google

X. Mao and H. Dai. Finite element model updating with positive definiteness and no spill-over. Mechanical Systems and Signal Processing, 28:387–398, 2012. Cerca con Google

M. Bratland, B. Haugen, and T. Rølvåg. Modal analysis of active flexible multibody systems containing PID controllers with non-collocated sensors and actuators. Finite Elements in Analysis and Design, 91:16–29, 2014. Cerca con Google

S. K. Dwivedy and P. Eberhard. Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, 41(7):749–777, 2006. Cerca con Google

R. J. Theodore and A. Ghosal. Comparison of the assumed modes and finite element models for flexible multilink manipulators. The International journal of robotics research, 14(2):91–111, 1995. Cerca con Google

P. Kalra and A. M. Sharan. Accurate modelling of flexible manipulators using finite element analysis. Mechanism and Machine Theory, 26(3):299–313, 1991. Cerca con Google

M. Giovagnoni. A numerical and experimental analysis of a chain of flexible bodies. Journal of dynamic systems, measurement, and control, 116(1):73–80, 1994. Cerca con Google

J. Mottershead and M. Friswell. Model updating in structural dynamics: a survey. Journal of Sound and Vibration, 167(2):347–375, 1993. Cerca con Google

S. Sehgal and H. Kumar. Structural dynamic model updating techniques: A state of the art review. Archives of Computational Methods in Engineering, pages 1–19, 2015. Cerca con Google

G.-H. Kim and Y.-S. Park. An improved updating parameter selection method and finite element model update using multiobjective optimisation technique. Mechanical Systems and Signal Processing, 18(1):59–78, 2004. Cerca con Google

S. Weng, Y. Xia, Y.-L. Xu, and H.-P. Zhu. Substructure based approach to finite element model updating. Computers & structures, 89(9):772–782, 2011. Cerca con Google

R. Caracciolo, D. Richiedei, and A. Trevisani. Experimental validation of a model-based robust controller for multi-body mechanisms with flexible links. Multibody System Dynamics, 20(2):129–145, 2008. Cerca con Google

T. Uchida, C. Vyasarayani, M. Smart, and J. McPhee. Parameter identification for multibody systems expressed in differential-algebraic form. Multibody System Dynamics, 31(4):393–403, 2014. Cerca con Google

J. O’Challan, I. Liew, P. Avitabile, and R. Madden. An efficient method of determining rotational degrees of freedom from analytical and experimental modal data. In Proceedings of the fourth International Modal Analysis conference, Los Angeles, USA, pages 50–58, 1986. Cerca con Google

A. Ng’andu, C. Fox, and E. Williams. Estimation of rotational degrees-of-freedom using curve and surface fitting. In Proceedings of the International Modal Analysis Conference, pages 620–626. SEM Society for Experimental Mechanics Inc., 1993. Cerca con Google

M. Liu and D. Gorman. Formulation of Rayleigh damping and its extensions. Computers & structures, 57(2):277–285, 1995. Cerca con Google

I. Chowdhury and S. P. Dasgupta. Computation of Rayleigh damping coefficients for large systems. The Electronic Journal of Geotechnical Engineering, 8(0), 2003. Cerca con Google

H. Ahmadian, J. Mottershead, and M. Friswell. Regularisation methods for finite element model updating. Mechanical Systems and Signal Processing, 12(1):47–64, 1998. Cerca con Google

B. Peeters, G. Lowet, H. Van der Auweraer, and J. Leuridan. A new procedure for modal parameter estimation. Sound and Vibration, 38(1):24–29, 2004. Cerca con Google

H. Ouyang. Pole assignment of friction-induced vibration for stabilisation through state-feedback control. Journal of Sound and Vibration, 329(11):1985–1991, 2010. Cerca con Google

M. G. Tehrani, J. E. Mottershead, A. T. Shenton, and Y. M. Ram. Robust pole placement in structures by the method of receptances. Mechanical Systems and Signal Processing, 25(1):112–122, 2011. Cerca con Google

H. Ouyang, D. Richiedei, and A. Trevisani. Pole assignment for control of flexible link mechanisms. Journal of Sound and Vibration, 332(12):2884–2899, 2013. Cerca con Google

W. M. Haddad and D. S. Bernstein. Controller design with regional pole constraints. IEEE Transactions on Automatic Control, 37(1):54–69, 1992. Cerca con Google

M. Chilali and P. Gahinet. H∞ design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control, 41(3):358–367, 1996. Cerca con Google

S. Datta, B. Chaudhuri, and D. Chakraborty. Partial pole placement with minimum norm controller. In 49th IEEE Conference on Decision and Control (CDC), pages 5001–5006. IEEE, 2010. Cerca con Google

S. Datta, D. Chakraborty, and B. Chaudhuri. Partial pole placement with controller optimization. IEEE Transactions on Automatic Control, 57(4):1051–1056, 2012. Cerca con Google

S. Gutman and E. Jury. A general theory for matrix root-clustering in subregions of the complex plane. IEEE Transactions on Automatic Control, 26(4):853–863, 1981. Cerca con Google

M. Ikeda, D. Šiljak, and D. White. An inclusion principle for dynamic systems. IEEE Transactions on Automatic Control, 29(3):244–249, 1984. Cerca con Google

L. R. Corr and W. W. Clark. Active and passive vibration confinement using piezoelectric transducers and dynamic vibration absorbers. In 1999 Symposium on Smart Structures and Materials, pages 747–758. International Society for Optics and Photonics, 1999. Cerca con Google

J. Tang and K. Wang. Vibration confinement via optimal eigenvector assignment and piezoelectric networks. Journal of Vibration and Acoustics, 126(1):27–36, 2004. Cerca con Google

I. M. Diaz, E. Pereira, V. Feliu, and J. J. Cela. Concurrent design of multimode input shapers and link dynamics for flexible manipulators. Mechatronics, IEEE/ASME Transactions on, 15(4):646–651, 2010. Cerca con Google

H. Ouyang. A hybrid control approach for pole assignment to second-order asymmetric systems. Mechanical Systems and Signal Processing, 25(1):123–132, 2011. Cerca con Google

D. Richiedei and A. Trevisani. Simultaneous active and passive control for eigenstructure assignment in lightly damped systems. Mechanical Systems and Signal Processing, 85:556 – 566, 2017. Cerca con Google

M. Fazel. Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford University, 2002. Cerca con Google

M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4, pages 3273–3278. IEEE, 2004. Cerca con Google

M. Mesbahi. On the rank minimization problem and its control applications. Systems & control letters, 33(1):31–36, 1998. Cerca con Google

P. Jain, R. Meka, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. In Advances in Neural Information Processing Systems, pages 937–945, 2010. Cerca con Google

I. Markovsky and K. Usevich. Structured low-rank approximation with missing data. SIAM Journal on Matrix Analysis and Applications, 34(2):814–830, 2013. Cerca con Google

Z.-F. Jin, Z. Wan, X. Zhao, and Y. Xiao. A penalty decomposition method for rank minimization problem with affine constraints. Applied Mathematical Modelling, 39(16):4859–4870, 2015. Cerca con Google

M. Fazel, H. Hindi, and S. P. Boyd. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In American Control Conference, 2003. Proceedings of the 2003, volume 3, pages 2156–2162. IEEE, 2003. Cerca con Google

M. Mesbahi. On the semi-definite programming solution of the least order dynamic output feedback synthesis. In American Control Conference, 1999. Proceedings of the 1999, volume 4, pages 2355–2359. IEEE, 1999. Cerca con Google

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In American Control Conference, 2001. Proceedings of the 2001, volume 6, pages 4734–4739. IEEE, 2001. Cerca con Google

P. Gaudenzi, R. Carbonaro, and E. Benzi. Control of beam vibrations by means of piezoelectric devices: theory and experiments. Composite structures, 50(4):373–379, 2000. Cerca con Google

A. Preumont. Vibration control of active structures: an introduction, volume 179. Springer Science & Business Media, 2011. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record