Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Shawer, Rady (2017) Impact of traditional pesticides and new controlled release formulations on Drosophila suzukii. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF - Versione accettata
Tesi non accessible fino a 01 Febbraio 2020 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

3841Kb

Abstract (inglese)

The spotted wing drosophila, Drosophila suzukii, has become a great threat to European and American producton of soft and stone fruits. Laboratory and field experiments were performed to identify and optimize effective strategies to protect fruit crops from D. suzukii. The first experiment aimed at identification of the efficacy of most commonly insecticides used in Italy to control D. suzukii on cherries. As well as different chemical control strategies applied at commercial cherry orchards in Verona province, North-Eastern Italy, during the growing seasons of 2013, 2014 and 2015 were carried out to determine whether insecticide-based management programs and their timing can provide sufficient crop protection. Moreover, the adherence of those applied pesticides to their maximum residue levels’ (MRLs) requirements set in legal EU regulation for the marketed products was measured. Pre-treating cherries bioassay results revealed that pyrethroids (lambda-cyhalothrin, deltamethrin), spinosyns (spinosad, spinetoram), organophosphates (phosmet, dimethoate) and diamide (cyantraniliprole) were highly efficious, resulting in excellent (>90%) adult D. suzukii mortalities. Moreover, they were able to significantly suppress female fecundity, eggs laying and hatching, immature stages development, and adult emerging as well. Conversely, neonicotinoids (acetamiprid, thiamethoxam, thiacloprid, imidacloprid), Beauveria bassiana, and emamectin-benzoate caused unsatisfactory results. However, dipping infested-cherries bioassays suggested that cyantraniliprole, dimethoate and phosmet (Spada® WDG) can providemore than 10 days residual control for cherries. They caused complete activity, suppressing eggs hatching into larvae. Spinetoram and phosmet (Spada® 200 EC) provided good residual control. While, neonicotinoids (acetamiprid, thiamethoxam, thiacloprid), emamectin-benzoate and pyrethroids (lambda-cyhalothrin, deltamethrin) caused moderate impacts. Moreover, field results proved that two or three insecticide applications were insignificantly able to protect major cherry crops during three consecutive seasons of 2013, 2014 and 2015. Thus, effective D. suzukii control program can be achieved by timely of four applications of insecticides belonging different mode-of-action chemical groups. Except for dimethoate, all residue levels detected in cherries were lower than and completely adherence to their MRLs in force the European Union. It can be concluded that, spinosyns, diamides, organophosphates and pyrethroids may have an important role to protect cherry crop. Neonicotinoids and Beauveria bassiana suggested insignificant activities.
The second experiment identified the efficacy of most commonly insecticides registered in Italy against D. suzukii on strawberries. An open field trial at a commercial strawberry orchard in Verona province, North-Eastern Italy in 2014, and two laboratory bioassay trials in March and September 2015 were performed to determine whether chemical control strategy can provide significant crop protection from D. suzukii. All strategies applied in the field trial significantly succeeded to decrease the damage of strawberries compared to the untreated plants either at 14 or 21 DAFA. The field findings suggested that two treatments of spinosad may provide a suffiecient strawberry-crop protection. Results of pretreating strawberries bioassays confirmed that pyrethroids, spinosyns, avermectin (emamectin-benzoate) and diamide (cyantraniliprole) caused excellent activities, providing adult mortality higher than 90 and 97% at 1 and 2 DAT, respectively. They also provided significant residual activities against D. suzukii life stages emerging after treatment. Incontrast, neonicotinoids, and Beauveria bassiana showed insignificantly results. The same trend of pretreating strawberries bioassay was repeated within the dipping infested-strawberries bioassay, except that acetamiprid showed good residual control against the D. suzukii individuals emerging.
The third experiment investigated potential of the entomopathogenic bacterium, Photorhabdus luminescens as biological agent on D. suzukii. Efficacy of P. luminescens was assessed at different bacterial cell concentrations against third-instar larvae and pupae of D. suzukii under laboratory conditions. Larvae at 4 DAT were significantly affected by bacterial treatments when fed toxins; dipping bioassay was less effective. Following oral and dipping bioassays at concentration of 3.5×108 cells mL-1, total mortalities of 97 and 87% were recorded, respectively. For pupae, the concentration of 3.5×108 cells mL-1 caused a pupae mortality of 64 and 47%, and a total mortality of 100 and 73.33%, respectively in the direct-spray and dipping bioassays. It could be concluded that P. luminescens may play a vital role for managing D. suzukii.
The last work principally focused on preparing and characterizing new controlled release formulations of lambda-cyhalothrin to improve its biological performance against D. suzukii. Chitosan (CS) loaded lambda-cyhalothrin (LC) nanoparticles were prepared using the ionotropic gelation. Tripolyphosphate (TPP) and alginate (ALG) were used as crosslinking agents with CS. The optimum encapsulation efficiency (73.6%) and loading capacity (51.4%) were obtained by a 0.4% CS high molecular weight, 0.3% ALG cross-liking agent, and LC concentration of 1% and at stirring rate of 500 rpm. The nanoparticle size of this formulation was about 416 nm (polydispersity index: 0.447) and a zeta potential of -19.8. Transmission electron microscope (TEM) imaging showed a spherical, smooth and almost homogenous structure for nanoparticles. Fourier transform infrared (FTIR) spectroscopy confirmed linking between tripolyphosphoric groups of TPP with ammonium groups of chitosan, and between ALG and CS in the nanoparticles. The release profile of LC loaded CS nanoparticles cross-linked with TPP exhibited an initial burst release of about 30-40% in the first hour followed by controlled release of 50-60% for the subsequent 5 hours. However, the release profile of LC loaded CS nanoparticles cross-linked with ALG showed a constant sustained release of the pesticide among the time of the release study. All prepared formulations significantly caused adult mortality at 2 and 16 HAT, with a best activity in the formulation of lowest nanoparticle size (278 nm). Most prepared controlled release formulations based on LC suggested activity greater than the efficacy of the commercialize insecticide, Karate-zeon® (lambda cyhalothrin 10% CS).

Abstract (italiano)

The spotted wing drosophila, Drosophila suzukii, has become a great threat to European and American producton of soft and stone fruits. Laboratory and field experiments were performed to identify and optimize effective strategies to protect fruit crops from D. suzukii. The first experiment aimed at identification of the efficacy of most commonly insecticides used in Italy to control D. suzukii on cherries. As well as different chemical control strategies applied at commercial cherry orchards in Verona province, North-Eastern Italy, during the growing seasons of 2013, 2014 and 2015 were carried out to determine whether insecticide-based management programs and their timing can provide sufficient crop protection. Moreover, the adherence of those applied pesticides to their maximum residue levels’ (MRLs) requirements set in legal EU regulation for the marketed products was measured. Pre-treating cherries bioassay results revealed that pyrethroids (lambda-cyhalothrin, deltamethrin), spinosyns (spinosad, spinetoram), organophosphates (phosmet, dimethoate) and diamide (cyantraniliprole) were highly efficious, resulting in excellent (>90%) adult D. suzukii mortalities. Moreover, they were able to significantly suppress female fecundity, eggs laying and hatching, immature stages development, and adult emerging as well. Conversely, neonicotinoids (acetamiprid, thiamethoxam, thiacloprid, imidacloprid), Beauveria bassiana, and emamectin-benzoate caused unsatisfactory results. However, dipping infested-cherries bioassays suggested that cyantraniliprole, dimethoate and phosmet (Spada® WDG) can providemore than 10 days residual control for cherries. They caused complete activity, suppressing eggs hatching into larvae. Spinetoram and phosmet (Spada® 200 EC) provided good residual control. While, neonicotinoids (acetamiprid, thiamethoxam, thiacloprid), emamectin-benzoate and pyrethroids (lambda-cyhalothrin, deltamethrin) caused moderate impacts. Moreover, field results proved that two or three insecticide applications were insignificantly able to protect major cherry crops during three consecutive seasons of 2013, 2014 and 2015. Thus, effective D. suzukii control program can be achieved by timely of four applications of insecticides belonging different mode-of-action chemical groups. Except for dimethoate, all residue levels detected in cherries were lower than and completely adherence to their MRLs in force the European Union. It can be concluded that, spinosyns, diamides, organophosphates and pyrethroids may have an important role to protect cherry crop. Neonicotinoids and Beauveria bassiana suggested insignificant activities.
The second experiment identified the efficacy of most commonly insecticides registered in Italy against D. suzukii on strawberries. An open field trial at a commercial strawberry orchard in Verona province, North-Eastern Italy in 2014, and two laboratory bioassay trials in March and September 2015 were performed to determine whether chemical control strategy can provide significant crop protection from D. suzukii. All strategies applied in the field trial significantly succeeded to decrease the damage of strawberries compared to the untreated plants either at 14 or 21 DAFA. The field findings suggested that two treatments of spinosad may provide a suffiecient strawberry-crop protection. Results of pretreating strawberries bioassays confirmed that pyrethroids, spinosyns, avermectin (emamectin-benzoate) and diamide (cyantraniliprole) caused excellent activities, providing adult mortality higher than 90 and 97% at 1 and 2 DAT, respectively. They also provided significant residual activities against D. suzukii life stages emerging after treatment. Incontrast, neonicotinoids, and Beauveria bassiana showed insignificantly results. The same trend of pretreating strawberries bioassay was repeated within the dipping infested-strawberries bioassay, except that acetamiprid showed good residual control against the D. suzukii individuals emerging.
The third experiment investigated potential of the entomopathogenic bacterium, Photorhabdus luminescens as biological agent on D. suzukii. Efficacy of P. luminescens was assessed at different bacterial cell concentrations against third-instar larvae and pupae of D. suzukii under laboratory conditions. Larvae at 4 DAT were significantly affected by bacterial treatments when fed toxins; dipping bioassay was less effective. Following oral and dipping bioassays at concentration of 3.5×108 cells mL-1, total mortalities of 97 and 87% were recorded, respectively. For pupae, the concentration of 3.5×108 cells mL-1 caused a pupae mortality of 64 and 47%, and a total mortality of 100 and 73.33%, respectively in the direct-spray and dipping bioassays. It could be concluded that P. luminescens may play a vital role for managing D. suzukii.
The last work principally focused on preparing and characterizing new controlled release formulations of lambda-cyhalothrin to improve its biological performance against D. suzukii. Chitosan (CS) loaded lambda-cyhalothrin (LC) nanoparticles were prepared using the ionotropic gelation. Tripolyphosphate (TPP) and alginate (ALG) were used as crosslinking agents with CS. The optimum encapsulation efficiency (73.6%) and loading capacity (51.4%) were obtained by a 0.4% CS high molecular weight, 0.3% ALG cross-liking agent, and LC concentration of 1% and at stirring rate of 500 rpm. The nanoparticle size of this formulation was about 416 nm (polydispersity index: 0.447) and a zeta potential of -19.8. Transmission electron microscope (TEM) imaging showed a spherical, smooth and almost homogenous structure for nanoparticles. Fourier transform infrared (FTIR) spectroscopy confirmed linking between tripolyphosphoric groups of TPP with ammonium groups of chitosan, and between ALG and CS in the nanoparticles. The release profile of LC loaded CS nanoparticles cross-linked with TPP exhibited an initial burst release of about 30-40% in the first hour followed by controlled release of 50-60% for the subsequent 5 hours. However, the release profile of LC loaded CS nanoparticles cross-linked with ALG showed a constant sustained release of the pesticide among the time of the release study. All prepared formulations significantly caused adult mortality at 2 and 16 HAT, with a best activity in the formulation of lowest nanoparticle size (278 nm). Most prepared controlled release formulations based on LC suggested activity greater than the efficacy of the commercialize insecticide, Karate-zeon® (lambda cyhalothrin 10% CS).

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Lenzi, Mario Aristide - Mori, Nicola
Correlatore:Lenzi, Mario Aristide - Mori, Nicola
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:31 Gennaio 2017
Anno di Pubblicazione:01 Febbraio 2017
Parole chiave (italiano / inglese):SWD, Drosophila suzukii, chemical control, biological control, IPM, nano pesticide, nanoparticles
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/11 Entomologia generale e applicata
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:10284
Depositato il:02 Nov 2017 15:18
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abdel‐Razek, A. (2003). Pathogenic effects of Xenorhabdus nematophilus and Photorhabdus luminescens (Enterobacteriaceae) against pupae of the Diamondback Moth, Plutella xylostella (L.). Anzeiger für Schädlingskunde, 76:108-111. Cerca con Google

Açikgöz, M.; H. Kaş; M. Orman and A. Hincal (1996). Chitosan microspheres of diclofenac sodium: I. application of factorial design and evaluation of release kinetics. J. microencap., 13: 141-159. Cerca con Google

Agusti, L; A. Bonaterra; C. Moragrega; J. Camps and E. Montesinos (2011). Biocontrol of root rot of strawberry caused by Phytophthora cactorum with a combination of two Pseudomonas fluorescens strains. J. Plant Patho., 363-372. Cerca con Google

AGW (2012). A report of the commission expert working group on the annexes of Council 2000/29/EC (annexes working group- AWG) http://ec.europa.eu/environment/ppps/home.htmhttp://ec.europa.eu/environment/ppps/home.htm. Vai! Cerca con Google

Amidi, M.; S. G. Romeijn; G. Borchard; H. E. Junginger; W. E. Hennink; W. Jiskoot (2006). Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Con. Rel., 111(1-2):107-16. Cerca con Google

Andreazza, F.; D. Bernardi; C. A. Baronio; J. Pasinato; D. E. Nava and M. Botton (2016). Toxicities and effects of insecticidal toxic baits to control Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Pest Manag. Sci., doi:10.1002/ps.4348. Cerca con Google

Asplen MK., Anfora G., Biondi A., et al. (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science 88:469-494 Cerca con Google

Atlas, R. M. (2010). Handbook of microbiological media CRC press. Cerca con Google

Balcerzak, M. (1991). Comparative studies on parasitism caused by entomogenous nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. I. The roles of the nematode-bacterial complex, and of the associated bacteria alone, in pathogenesis. Acta Parasitol. Polonica 4. Cerca con Google

Bansal, V.; P. K. Sharma; N. Sharma; O. P. Pal and R. Malviya (2011). Applications of chitosan and chitosan derivatives in drug delivery. Advances in Biol. Res., 5 (1): 28-37. Cerca con Google

Barney, D. L. (1999). Growing strawberries in the Inland Northwest & Intermountain West. Book: Page: 5. Available at: Cerca con Google

Baroffio, C. and S. Fischer (2011). New threat to orchards and berry plants: the cherry fruit fly (Neue Bedrohung fur Obstplantagen und Beerenpflanzen: die Kirschessigfliege), UFA-Revue, 11:46-47. Cerca con Google

Barry, J. D. and S. Polavarapu (2005). Feeding and survivorship of blueberry maggot flies (Diptera: Tephritidae) on protein baits incorporated with insecticides. Fla. Entomol., 88:268–277. Cerca con Google

Basoalto, E.; R. Hilton and A. Knight (2013). Factors affecting the efficacy of a vinegar trap for Drosophila suzikii (Diptera; Drosophilidae). J. Appl. Entomol., 137(8): 561-570. Cerca con Google

Beers, E. H.; R. A. Van Steenwyk; P. W. Shearer; W. W. Coates and J. A. Grant (2011). Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag. Sci., 67: 1386-1395. Cerca con Google

Bellamy, D. E.; M. S. Sisterson and S. S. Walse (2013). Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. Plos One, 8:e61227. Cerca con Google

Bharani, A. R. S.; S. K. R. Namasivayam and S. S. Shankar (2014). Biocompatible chitosan nanoparticles incorporated pesticidal protein beauvericin (Csnp-Bv) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera Litura (Fab.) (Lepidoptera; Noctuidae). Intern. J. ChemTech Res., 6(12): 5007-5012. Cerca con Google

Blackburn, M. B.; J. M. Domek; D. B. Gelman and J. S. Hu (2005). The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci. J. Ins. Sci., 5:32. Cerca con Google

Blackburn, M.; E. Golubeva; D. Bowen and R. H. Ffrench-Constant (1998). A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Appl. and Environ. Microbiol., 64:3036-3041. Cerca con Google

Blumel, S. and Hausdorf, H. (2002). Results of 8th and 9th IOBC joint pesticides testing programme: persistence test with Phytoseiulus persimilis Athias Heriot (Acari: Phytoseiidae). Pesti. benefi. organisms IOBC/wprs. Bull., 25 (11): 43-51. Cerca con Google

Bolda, M. P.; R. E. Goodhue and F. G. Zalom (2010). Spotted wing drosophila: potential economic impact of a newly established pest. Agric. Resour. Econ. Update, 13: 5–8. Cerca con Google

Bouwmeester, H.; S. Dekkers; M. Noordam; W. Hagens; A. Bulder; C. Deheer; S. Tenvoorde; S. Wijnhoven; H. Marvin and A. Sips (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicol. Pharmacol., 53 (1): 52-62. Cerca con Google

Brown, P. H.; P. W. Shearer; J. C. Miller and H. M. A. Thistlewood (2011). The discovery and rearing of a parasitoid (Hymenoptera: Pteromalidae) associated with spotted wing drosophila, Drosophila suzukii, in Oregon and British Columbia. In: ESA 59th Annual Meeting, 2011 November 13-16, Reno, Nevada, USA. Cerca con Google

Bruck, D. J.; M. Bolda; L. Tanugoshi; J. Klick; J. Kleiber; J. DeFrancesco; B. Gerdeman and H. Spitler (2011). Laboratory and field compaqrison of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag. Sci., 67:1375-1385. Cerca con Google

Burrack, H. J.; J. P. Smith; D. G. Pfeiffer; G. Koeher and J. Laforest (2012). Using volunteer-based networks to track Drosophila suzukii (Diptera: Drosophilidae) an invasive pest of fruit crops. J. Integ. Pest Manag., 3(4): 1-5. Cerca con Google

Bussaman, P.; R. W. Sermswan and P. S. Grewal (2006). Toxicity of the entomopathogenic bacteria Photorhabdus and Xenorhabdus to the mushroom mite (Luciaphorus sp.; Acari: Pygmephoridae). Biocon. Sci. Tech., 16: 245-256. Cerca con Google

CABI (2016). Drosophila suzukii (spotted wing drosophila), Datasheet (online). http://www.cabi.org/isc/datasheet/109283. Vai! Cerca con Google

Calabria, G.; J. Máca; G. Bächli; L. Serra and M. Pascual (2012). First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol., 136(1/2):139-147. Cerca con Google

Cha, D. H.; S. P. Hesler; R. S. Cowles; H. Vogt; G. M. Loeb and P. J. Landolt (2013). Comparison of a Synthetic Chemical Lure and Standard Fermented Baits for Trapping Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol., 42(5): 1052-1060. Cerca con Google

Cha, D. H.; T. Adams; C. T. Werle; B. J. Sampson; J. J. Adamczyk; H. Rogg and P. J. Landolt (2014). A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag. Sci., 70(2): 324-331. Cerca con Google

Chabert, S.; R. Allemand; M. Poyet; P. Eslin and P. Gibert (2012). Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Con., 63(1):40-47. Cerca con Google

Cini, A.; C. Ioriatti and G. Anfora (2012). A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol., 65, 149-160. Cerca con Google

Cordova, D.; E. A. Benner; M. D. Sacher; J. J. Rauh; J. S. Sopa; G. P. Lahm; T. P. Selby; T. M. Stevenson; L. Flexner; S. Gutteridge; D.F. Rhoades; L. Wu; R. M. Smith and Y. Tao (2006). Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesti. Biochem. Physiol., 84, 196–214. Cerca con Google

Cowles, R. S.; C. Rodriguez-Saona; R.Holdcraft; G. M. Loeb; J. E. Elsensohn and S. P. Hesler (2015). Sucrose improves insecticide activity against Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol., 108:640-653. Cerca con Google

Cuthbertson, A. G. and N. Audsley (2016). Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects, 7:24. Cerca con Google

Cuthbertson, A. G.; D. A. Collins; L. F. Blackburn; N. Audsley and H. A. Bell (2014). Preliminary screening of potential control products against Drosophila suzukii. Insects, 5:488-498. Cerca con Google

da Silva, O.S.; G. R. Prado; J. L. R. da Silva; C. E. Silva; M. da Costa and R. Heermann (2013). Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol. Res., 112: 2891-2896. Cerca con Google

Daborn, P.; N. Waterfield; C. Silva; C. Au and S. Sharma (2002). A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proceedings of the National Academy of Sci., 99:10742-10747. Cerca con Google

Dailey, L. A.; M. Wittmar and T. Kissel (2005). The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. J. Con. Rel., 101(1-3):137-49. Cerca con Google

De Ros, G.; G. Anfora; A. Grassi and C. Ioriatti (2013). The potential economic impact of Drosophila suzukii on small fruits production in Trentino (Italy). IOBC-WPRS Bull., 91: 317-321. Cerca con Google

Delfinado, M. and D. Hardy (1975). A Catalog of the Diptera of the Oriental region. Vol. II. Suborder brachycera through division aschiza, Suborder cyclorrhapha, Uni. press Hawaii, Honolulu. Cerca con Google

Deprá, M.; J. L. Poppe; H. J. Schmitz; D. C. De Toni and V. L. Valente (2014). The first records of the invasive pest Drosophila suzukii in the South American continent. J. Pest Sci., 87(3): 379-383. Cerca con Google

Desneux, N.; A. Decourtye and J. M. Delpuech (2007). The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol., 52: 81-106. Cerca con Google

Donaldson, K. and A. Seaton (2007). Nanosci Technol., 7(12), 432-438. Cerca con Google

Dowds, B. C. and A. Peters (2002). 4 Virulence Mechanisms. Entomopath. nematol.:79. Cerca con Google

Dowling, A. and N. R. Waterfield (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49: 436-451. Cerca con Google

Elawad, S. (1998). Studies on the taxonomy and biology of a newly isolated species of Steinernema (Steinernematidae: Nematoda) from the tropics and its associated bacteria. Ph. D. Thesis, Department of Agriculture, University of Reading, UK. Cerca con Google

Emiljanowicz, L. M.; G. D. Ryan; A. Langille and J. Newman (2014). Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J. econ. Entomol., 107(4): 1392-1398. Cerca con Google

Enkerli, J.; F. Widmer and S. Keller (200). Long term field persistence of Beauveria brongniartii strains applied as biocontrol agents’ European cockchafer larvae in Switzerland, Biol. Con., 29,115-123. Cerca con Google

EPPO (2010). Report of a pest risk analysis for Drosophila suzukii. Available at: file:///D:/DROPSA%20PROJECT/Drosophila%20suzukii%20Articals/EPPO%20Methods/epp12059.pdf. Cerca con Google

EPPO (2013a). EPPO Datasheet for efficacy evaluation of insecticides on Drosophila suzukii. OEPP/EPPO Bull., 43: 386–388. Cerca con Google

EPPO (2013b). EPPO Standard PM 7/115 (1) Drosophila suzukii. OEPP/EPPO Bull., 43 (3): 417–424. file:///D:/DROPSA%20PROJECT/Drosophila%20suzukii%20Articals/EPPO%20Methods/epp12059.pdf. Cerca con Google

EPPO Global Database (2010). First record of Drosophila suzukii in Italy: addition to the EPPO Alert List, EPPO Reporting Service no. 01- 2010 Num. article: 2010/007. Available at: https://gd.eppo.int/reporting/article-305. Vai! Cerca con Google

EPPO Global Database (2016). Drosophila suzukii, Available at: https://gd.eppo.int/taxon/DROSSU/distribution. Vai! Cerca con Google

EPPO, 2012. EPPO Reporting Service. EPPO Reporting Service. Paris, France: EPPO.http://archives.eppo.org/EPPOReporting/Reporting_Archives.htm. Vai! Cerca con Google

EU pesticide database (2015). Available at: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN. Vai! Cerca con Google

Fabregasa, A.; M. M˜ınarroa; E. Garcia-Montoyaa; P. Perez-Lozanoa; C. Carrillo; R. Sarratea; N. Sancheza; J. R. Ticoa; J. M. S˜une-Negrea (2013). Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan–tripolyphosphate nanoparticles. Int. J. Pharm., 446: 199–204. Cerca con Google

FAO (2015). Food and Agriculture Organization of the United Nations, FAO Statistic Division. Available at: http://faostat3.fao.org/browse/Q/QC/E. Vai! Cerca con Google

FAO stat (2016). Food and Agriculture Organization of the United Nations, statistic division. http://faostat3.fao.org/home/E. Vai! Cerca con Google

Ffrench-Constant, R.; N. Waterfield; P. Daborn; S. Joyce; H. Bennett; C. Au; A. Dowling; S. Boundy; S. Reynolds and D. Clarke (2003). Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS microbiol. reviews, 26:433-456. Cerca con Google

Freshfel Europe Activity Report (2012). http://www.freshfel.org/asp/newsroom/. Vai! Cerca con Google

Gabarra, R.; J. Riudavets; G. A. Rodríguez; J. Pujade-Villar and J. Arnó (2015). Prospects for the biological control of Drosophila suzukii. Biocon., 60 (3): 331–339. Cerca con Google

Garcia, M.; T. Forbei and E. Gonzalez (2010). Potential applications of nanotechnology in the agro-food sector. Ciênc. Tecnol. Aliment. Campinas, 30(3): 573-581. Cerca con Google

Gargani, E.; F. Tarchi; R. Frosinini; G. Mazza and S. Simoni (2013). Notes on Drosophilasuzukii Matsumura (Diptera: Drosophilidae): field survey in Tuscany and laboratory evaluation of organic products. Redia-Giornale Di Zoologia, 96: 85-90. Cerca con Google

Gazori, T.; M. R. Khoshayand; E. Azizi; P. Yazdizade; A. Nomani and I. Haririan (2009). Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydrate Polymers, 77: 599-606. Cerca con Google

George, M. and T. E. Abraham (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J. Controlled Release, 114 (1) 1-14. Cerca con Google

Goodhue, R. E.; M. Bolda; D. Farnsworth; J. C. Williams and F. G. Zalom (2011). Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest manag. Sci., 67:1396-1402. Cerca con Google

Gotz, P.; A. Boman and H. Boman (1981). Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proceedings of the Royal Soci. of London B: Biol. Sci., 212:333-350. Cerca con Google

Grassi, A.; L. Palmie and L. Giongo (2009). New pests of the small fruits in Trentino. (Nuovo fitofago per i piccoli frutti in Trentino.) Terra Trentina, 55(10):19-23. Cerca con Google

Grassi, A.; L. Palmieri and L. Giongo (2012). Drosophila (Sophophora) suzukii (Matsumura), new pest of soft fruits in Trentino (North-Italy) and in Europe. IOBC/wprs Bulletin, 70: 121–128. Cerca con Google

Guo, L.; R. O. Fatig; G. L. Orr; B. W. Schafer; J. A. Strickland; K. Sukhapinda; A. T. Woodsworth and J. K. Petell (1999). Photorhabdus luminescens W-14 insecticidal activity consists of at least two similar but distinct proteins purification and characterization of toxin A and toxin B. J. Biol. Chem., 274: 9836-9842. Cerca con Google

Hamby K. A.; D. E. Bellamy; J. C. Chiu; J. C. Lee; V. M. Walton; N. G. Wiman and A. Biondi (2016). Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci., 89:605-619. Cerca con Google

Hauser M. (2011). A historic account of the invasion of Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest manag. Sci., 67: 1352-1357. Cerca con Google

Hauser, M.; S. Gaimari and M. Damus (2009). Drosophila suzukii new to North America. Fly Times, 43: 12–15. Cerca con Google

Haviland, D. R. and Beers, E. H. (2012). Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integ. Pest Manag., 3(2): 1-6. Cerca con Google

Haye, T.; P. Girod; A. G. S. Cuthbertson; X. G. Wang; K. M. Daane; K. A. Hoelmer and N. Desneux (2016). Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest Sci., 89(3): 643-651. Cerca con Google

He, L.; J. Troiano; A. Wang and K. Goh (2008). Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev. Environ. Contam. Toxicol.,195: 71-91. Cerca con Google

Ion, R. M.; S. Dreve; D. V. Brezoi (2007). New technologies and products in machines manufacturing and technologies. Presented at the 14th Intern. Conf. - Tehnomus XIV, 4-5 May 2007, Suceava, Romania. Cerca con Google

IRAC (2016). Insecticide resistance action committee, IRAC mode of action classification scheme. Ver. 8.1. Available at: http://www.irac-online.org/documents/moa-classification/?ext=pdf. Vai! Cerca con Google

Kah, M. and T. Hofmann (2014). Nanopesticide research: current trends and future priorities. Environ. Intern., 63: 224-235. Cerca con Google

Kanzawa, T. (1935). Research into the fruit-fly Drosophila suzukii Matsumura(preliminary report). Yamanashi Prefecture Agri. Exp. Station, Kofu, Japan. Cerca con Google

Kanzawa, T. (1936). Studies on Drosophila suzukii mats. J. Plant Prot., 23, 66–70, 127–132, 183–191. Abstract in Rev. Appl. Entomol. 24, 315. Cerca con Google

Kanzawa, T. (1939). Studies on Drosophila suzukii Mats. Kofu, Yamanashi agricultural experiment station 49 pp. Abstract Rev. Appl. Entomol., 29: 622. Cerca con Google

Karungi, J.; S. Kyamanywa; E. Adipala and M. Erbaugh (2011). Pesticide utilisation, regulation and future prospects in small scale horticultural crop production systems in a developing country, pesticides in the modern world - pesticides use and management, Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-459-7, InTech, Available from: http://www.intechopen.com/books/pesticides-in-the-modern-world-pesticides-use-andmanagement/pesticide-utilisation-regulation-and-future-prospects-in-small-scale-horticultural-crop-productions. Vai! Cerca con Google

Kashyapa, P. L.; X. Xiang and P. Heiden (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. Intern. J. Biol. Macromol., 77: 36–51. Cerca con Google

Kasuya, N.; H. Mitsui, S. Ideo, M. Watada and M. T. Kimura (2013). Ecological, morphological and molecular studies on Ganaspis individuals (Hymenoptera: Figitidae) attacking Drosophila suzukii (Diptera: Drosophilidae). Appl. Entomol. and Zool., 48(1): 87-92. Cerca con Google

Kenis, M. And M. Branco (2010). Impact of Alien Terrestrial Arthropods in Europe. In BIORISK– Biodiversity & Ecosystem Risk Assessment 4, 51–71. Cerca con Google

Kinjo, H.; Y. Kunimi; T. Ban and M. Nakai (2013). Oviposition efficacy of Drosophila suzukii (Diptera: Drosophilidae) on different cultivars of Blueberry. J. Econ. Entomol., 106(4): 1767-1771. Cerca con Google

Kiss, B.; G. Lengyel; Z. Nagy and Z. Kárpáti (2013). First record of spotted wing drosophila [Drosophila suzukii (Matsumura, 1931)] in Hungary. (A pettyesszárnyú muslica (Drosophila suzukii) elsodouble acute~ magyarországi elodouble acute~fordulása.) Növényvédelem, 49(3): 97-99. Cerca con Google

Knight, A. L.; E. Basoalto; W. Yee; R. Hilton and C. P. Kurtzman (2016). Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry. Pest. Manag. Sci., 72: 1482–1490. doi:10.1002/ps.4171. Cerca con Google

Kouchak, M.; M. Avadi; M. Abbaspour and; A. Jahangiri and S. K Boldaji (2012). Effect of different molecular weights of chitosan on preparation and characterization of insulin loaded nanoparticles by ion gelation method. Intern. J. Drug Develop. Res., 4(2): 271-277. Cerca con Google

Kumari, K.; K. K. Raina and P. P. Kundu (2008). Studies on the cure kinetics of chitosan‐glutamic acid using glutaraldehyde as crosslinker through differential scanning calorimeter. J. appl. Polym. Sci., 108(1): 681-688. Cerca con Google

Kumirska, J.; M. Czerwicka; Z. Kaczyński; A. Bychowska, K. Brzozowski, J. Thöming and P. Stepnowski (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine drugs, 8(5): 1567-1636. Cerca con Google

Landolt, P. J.; T. Adams; T. S. Davisi and H. Rogg (2012). Spotted wind drosophila, Drosophila suzukii (Diptera: drosophilidae), trapped with Combinations of Wines and Vinegars. Florida Entomologist, 95(2): 326-332. Cerca con Google

Lee, J. C.; D. J. Bruck; A. J. Dreves; C. Ioriatti; H. Vogt and P. Baufeld (2011b). In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest manag. Sci., 67:1349-1351. Cerca con Google

Lee, J. C.; D. J. Bruck; H. Curry; D. Edwards; D R. Haviland; R. A. van Steenwyk and B. M. Yorgey (2011a). The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag. Sci., 67, 1358–1367. Cerca con Google

Lee, J. C.; P. W. Shearer; L. D. Barrantes; E. H. Beers; H. J. Burrack; D. T. Dalton; A. J. Dreves; L. J. Gut; K. A. Hamby; D. R. Haviland; R. Isaacs; A. L. Nielsen; T. Richardson; C. R. Rodriguez-Saona; C. A. Stanley; D. B. Walsh; V. M. Walton; W. L. Yee; F. G. Zalom and D. J. Bruck (2013). Trap Designs for Monitoring Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol., 42(6): 1348-1355. Cerca con Google

Leelapornpisid, P.; P. Leesawat; S. Natakarnkitkul and P. Rattanapanadda (2010). Application of chitosan for preparation of arbutin nanoparticles as skin whitening. J. Metals, Mat. and Min., 20: 101-105. Cerca con Google

Lethmayer, C. (2011). Gefhrliche fly on apple (Gefhrliche Fliegen fur Apfel & Co.) Bessers Obst, 12:4-5. Cerca con Google

Mahar, A.; N. Jan; G. M. Mahar and A. Q. Mahar (2008). Control of insects with entomopathogenic bacterium Xenorhabdus nematophila and its toxic secretions. Int. J. Agric. Biol., 10:52-56. Cerca con Google

Mandrin, J. F.; C. Weydert and Y. Trottin-Caudal (2010). Fruit falls victim to a newly-arrived pest: Drosophila suzukii. First reports of damage to cherry. (Un nouveau ravageur des fruits: Drosophila suzukii. Premiers dégâts observés sur cerises.) Infos-Ctifl, 266:29-33. Cerca con Google

Masalova, O.; V. Kulikouskaya; T. Shutava and V. Agabekov ( 2013 ). Alginate and chitosan gel nanoparticles for efficient protein entrapment, Physics Procedia, (40): 69-75. Cerca con Google

Matsumura, S. (1931). A revision of the Palaearctic and Oriental Typhlocybid-genera with descriptions of new species and new genera. Insecta Matsumurana, 6: 55-91. Cerca con Google

Mazzetto, F.; E. Marchetti; N. Amiresmaeili; D. Sacco; S. Francati; C. Jucker; M. L. Dindo; D. Lupi and L. Tavella (2016). Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci., 89(3): 837-850. Cerca con Google

Milek, T. M.; G. Seljak; M. Simala and M. Bjelis (2011). First record of Drosophila suzukii (Matsumara, 1931) (Diptera: Drosophilidae) in Croatia. (Prvi nalaz Drosophila suzukii (Matsumara, 1931) (Diptera: Drosophilidae) u Hrvatskoj.) Glasilo Biljne Zastite, 11(5):377-382. Cerca con Google

Mitsui, H. and M. T. Kimura (2010). Distribution, abundance and host association of two parasitoid species attacking frugivorous drosophilid larvae in central Japan. European J. Entomol., 107(4):535-540. Cerca con Google

Mohammadpour Dounighi, N.; R. Eskandari; M. R. Avadi; H. Zolfagharian; A. Mir Mohammad Sadeghi and M. Rezayat (2012). Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Venomous Ani.Toxins Including Trop. Dis., 18(1): 44-52. Cerca con Google

Mohammadur Dounighi, N.; M. Mehrabi; M. R. Avadi; H. Zolfagharian and M. Rezayat (2016). Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Archives Razi Inst., 70(4): 269-277. Cerca con Google

Montgomery, D. (1991). Design and Analysis of Experiments, Wiley, Chichester. Cerca con Google

Mortelmans, J. and H. Casteels and T. Beliën (2012). Drosophila suzukii (Diptera: Drosophilidae): a pest species new to Belgium. Belgian J. Zool., 142(2):143-146. Cerca con Google

Motwani, S. K.; S. Chopra; S. Talegaonkar; K. Kohli; F. J. Ahmad and R. K. Khar (2008). Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterization, European J. Pharm. and Biopharm., 68: 513–525. Cerca con Google

Naranjo-Lázaro, J. M.; M. A. Mellín-Rosas; V. D. González-Padilla; J. A. Sánchez-González; G. Moreno-Carrillo and H. C Arredondo-Bernal. (2014). Susceptibility of Drosophila suzukii Matsumura (Diptera: Drosophilidae) to entomophatogenic fungi. Southwestern Entomol., 39:201-203. Cerca con Google

Nomano, F. Y.; H. Mitsui and M. T. Kimura (2015). Capacity of Japanese Asobara species (Hymenoptera; Braconidae) to parasitize a fruit pest Drosophila suzukii (Diptera; Drosophilidae). J. Appl. Entomol., 139 (1-2) : 105-113. Cerca con Google

NPIC (2001). National pesticide infirmation center, lambda-cyhalothrin (General Fact Sheet) technical fact sheet for more technical information. Available at: http://npic.orst.edu/factsheets/archive/l_cyhalotech.pdf. Vai! Cerca con Google

NPPO (2012). First findings of Drosophila suzukii. NPPO., The Netherlands: National Plant Protection Organization. Cerca con Google

Orhan, A.; R. Aslantas; B. Ş. Önder and G. Tozlu (2016). First record of the invasive vinegar fly Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) from eastern Turkey. Turk. J. Zool., 40: 290-293. Cerca con Google

Pillai, C. K. S.; W. Paul and C. P. Sharma (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progr. Polym. Sci., 34:641–678. Cerca con Google

Pimentel, D.; R. Peshin and A. K. Dhawan (Eds.) (2009). Integrated pest management: Innovation-development, Springer, Dordrecht, Netherland, pp. 83–88. Cerca con Google

Rahoo, A. M.; T. Mukhtar; S. R. Gowen and B. Pembroke (2011). Virulence of entomopathogenic bacteria Xenorhabdus bovienii and Photorhabdus luminescens against Galleria mellonella larvae. Pak. J. Zool., 43: 543-548. Cerca con Google

Rai, M. and A. Ingle. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol., 94:287–293. Cerca con Google

Rajagopal, R. And R. K. Bhatnagar (2002). Insecticidal toxic proteins produced by Photorhabdus luminescens akhurstii, a symbiont of Heterorhabditis indica. J. Nematol., 34:23. Cerca con Google

Raspi, A; A. Canale; R. Canovai; B. Conti; A. Loni and F. Strumia (2011). Insects of the protected areas of the town of San Giuliano Terme (Insetti delle aree protette del comune di San Giuliano Terme). San Giuliano Terme, Pisa, Italy: Felici Editore. Cerca con Google

Rossi Stacconi, M. V.; A. Grassi; D. T. Dalton; B. Miller; M. Ouantar; A. Loni, C. Ioriatti; V. M. Walton and G. Anfora (2013). First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomolo., 1:11-16. Cerca con Google

Saharan, V.; A. Mehrotra; R. Khatik; P. Rawal; S. S. Sharma and A. Pal (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int. J. Biol. Macromol., 62 (2013) 677–683. Cerca con Google

Sahayaraj, K. and R. N. S. Karthick (2008). Mass production of entomopathogenic fungi using agricultural products and byproducts, Afr. J. Biotechnol., 17: 213-218. Cerca con Google

Sasaki, M. and R. Sato (1995). Bionomics of the cherry drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Fukushima prefecture (Japan) , 3: Life cycle. Annu. Rep. Soci. Plant Prot. North Japan, 46:170-172. Cerca con Google

Schmidhuber, J. (2010). FAO’s Long-term Outlook for Global Agriculture—Challenges, Trends and Drivers. Intern. Food Agr. Trade Pol. Council. http://www.agritrade.org/events/documents/schmidhuber.pdf. Vai! Cerca con Google

Scott, N. R. (2007). Nanotechnology opportunities in agriculture and food systems, Biol. Environ. Eng., Cornell Uni., NSF Nanoscale Sci. Eng. Grantees Conf., December 5, Arlington, VA. Cerca con Google

Seljak, G. (2011). Spotted wing drosophila - Drosophila suzukii (Matsumura). (Plodova vinska musica - Drosophila suzukii (Matsumura). SAD, Revija za Sadjarstvo, Vinogradnistvo in Vinarstvo, 22(3). Cerca con Google

Shawer, R.; L.Tonina; E. Gariberti and N. Mori (2015). Efficacy of insecticides against Drosophila suzukii on cherries, Intern. Plant Prot. Cong. (IPPC), Berlin, Germany. Cerca con Google

Sicard, M.; S. Hering; R. Schulte; S. Gaudriault and H. Schulenburg (2007). The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). Environ. Microbiol., 9:12-25. Cerca con Google

Sinha, V. R.; A. K. Singla; S. Wadhawan; R. Kaushik; R. Kumria; K. Bansal and S. Dhawan (2004). Int. J. Pharmaceut. 274: 1-33. Cerca con Google

Siozios, S.; A. Cestaro; R. Kaur; I. Pertot; O. Rota-Stabelli and G. Anfora (2013). Draft genome of the Wolbachia endosymbiont of Drosophila suzukii. Genome Announc., 1(1):e00032-13. Cerca con Google

Smirle, M. J.; C. L. Zurowski; M. M. Ayyanath; I. M. Scott and K. E. MacKenzie (2016). Laboratory studies of insecticide efficacy and resistance in Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) populations from British Columbia, Canada. Pest. Manag. Sci.. doi:10.1002/ps.4310 Cerca con Google

Sonia, T. A. and C. P. Sharma (2011). Chitosan and its derivatives for drug delivery perspective. Chitosan for biomaterials I. Springer Berlin Heidelberg, 23-53. Cerca con Google

Stark, J. D. and J. E. Banks (2003). Population-level effects of pesticides and other toxicants on arthropods. Ann. Rev. Entomol., 48(1): 505-519. Cerca con Google

Steck, G. J.; W. Dixon and D. Dean (2009). Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a fruit pest new to North America. Pest Alerts http://www.fl.dpi.com/enpp/ento/drosophila_suzukii.html. (Accessed on 01/08/2014). Vai! Cerca con Google

Stoica, R.; R. Şomoghi and R. M. Ion (2013). Presentation of chitosan-tripolyphosphate nanoparticles for the encapsulation of polyphenoles extracted from rose hips. Digest. J. Nanomat. Biostructures, 8 (3): 955 – 963. Cerca con Google

Suh, J. K. F. and H. W. Matthew (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomater., 21(24): 2589-2598. Cerca con Google

Susan, M.; I. Baldea; S. Senila; V. Macovei; S. Dreve; R. M. Ion and R. Cosgarea (2011). Photodamaging effects of porphyrins and chitosan on primary human keratinocytes and carcinoma cell cultures. Int. J. Dermatol., 50 (3): 280-286. Cerca con Google

Tiyaboonchai, W. (2003). Chitosan nanoparticles: a promising system for drug delivery. Naresuan Uni. J., 11 (3): 51-66. Cerca con Google

Tochen, S.; D. T. Dalton; N. G. Wiman; C. Hamm; P. W. Shearer and V. M. Walton (2014). Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol., 417-424. Cerca con Google

Tochen, S.; V. M. Walton and J. C. Lee (2016a). Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J. Pest Sci., 89(3):793–802. Cerca con Google

Tukhtaev, K.; S. T. N. Zokirova and N. Tukhtaev (2012). Effect of long term exposure of low doses of lambda-cyhalothrin on the level of lipid peroxidation and antioxidant enzymes of the pregnant rats and their offspring. Med. Health Sci. J. (MHSJ), 13: 93-98. Cerca con Google

Van Timmeren, S. and R. Isaacs (2013). Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot.; 54: 126-133. Cerca con Google

Varshosaz, J.; N. Tavkoli; F. Moghaddam and E. Ghassami (2013). Polyelectrolyte complexes of chitosan for production of sustained release tables of bupropion HCL. Farmacia, Vol. 63 (1): 65-71. Cerca con Google

Vogt, H.; P. Baufeld; J. Gross; K. Kopler and C. Hoffmann (2012). Drosophila suzukii: a new threat feature for the European fruit and viticulture - report for the intern. Conf. Trient, 2, December 2011. J. fur Kulturpflanzen, 64:68-72. Cerca con Google

Walsh, D. (2009). Spotted wing drosophila could pose threat of Washington fruit growers. Washington State Uni. Extension. http://sanjuan.wsu.edu/Documents/SWD11.09.pdf. Vai! Cerca con Google

Walsh, D. B.; M. P. Bolda; R. E. Goodhue; A. J. Dreves; J. Lee; D. J. Bruck; V. M. Walton; S. D. O‟Neaand and F. G. Zalom (2011). Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. Intern. J. Pest Manag., 2: 1–7. Cerca con Google

Wang, X. G.; T. J. Stewart; A. Biondi; B. A. Chavez; C. Ingels; J. Caprile and K. M. Daane (2016). Population dynamics and ecology of Drosophila suzukii in Central California. J. Pest Sci., 89(3):701-712 Cerca con Google

Waterfield, N.; A. Dowling; S. Sharma; P. J. Daborn; U. Potter and R. H. Ffrench-Constant (2001). Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Appl. Environ. Microbiol., 67:5017-5024. Cerca con Google

Werle, M.; H. Takeuchi and A. Bernkop‐Schnürch (2009). Modified chitosans for oral drug delivery. J. Pharmaceut. Sci., 98: 1643-1656. Cerca con Google

Weydert, C.; J. F. Mandrin and B. Bourgouin (2012). Drosophila suzukii: a report on the pest status in tree-fruit growing and small fruits. (Le ravageur Drosophila suzukii: point sur la situation en arboriculture fruitière et petits fruits.) Infos-Ctifl, 279:45-52. Cerca con Google

WHO (1981). Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Cerca con Google

Wiman, N. G.; D. T. Dalton; G. Anfora; A. Biondi; J. C. Chiu; K. M. Daane and A. Grassi (2016). Drosophila suzukii population response to environment and management strategies. J. Pest Sci., 1-13. Cerca con Google

Wise, J. C.; A. B. Coombs; C. Vandervoort; L. J. Gut; E. J. Hoffmann and M. E. Whalon (2006). Use of residue profile analysis to identify modes of insecticide activity contributing to control of plum curculio in apples. J. Econ. Entomol., 99: 2055–2064. Cerca con Google

Wise, T. A. (2013). Can we feed the world in 2050. A scoping paper to assess the evidence (Working Paper no. 13-04). Tufts Uni., Global Develop. Environ. Inst. http://ase.tufts.edu/gdae/Pubs/wp/13-04WiseFeedWorld2050.pdf. Vai! Cerca con Google

Yan, X. L.; E. Khor and L.Y. Lim (2001). Chitosan-alginate films prepared with chitosans of different molecular weights. J. Biomed. Mater., 58:358–365. Cerca con Google

Yu, J. H.; Du, Y. M. and H. Zheng (1999). Blend films of chitosan-gelation. Wuhan Univ. J. Nat. Sci., 45:440-4. Cerca con Google

Zerulla F. N.; S. Schmidt; M. Streitberger; C. P. W. Zebitz and R. Zelger (2015). On the overwintering ability of Drosophila suzukii in South Tyrol. Journal of Berry Research 5:41-48. Cerca con Google

Zhou, S. B.; Deng, X. M. and Li, X. (2001). Investigation on a novel core-coated microspheres protein delivery system. J. Con. Rel., 75(1-2): 27-36. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record