Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

dal monte, andrea (2017) Development of an open source environment for the aero-structural optimization of wind turbines. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
24Mb

Abstract (english)

An advanced open source optimization environment, for the design of Horizontal and Vertical Axis Wind Turbines, is hereby presented: several geometric parameters can be used as design variables while the proposed objective functions allow to run a multi-disciplinary study considering structural and aerodynamic analysis and the impact of the design on the total cost.
In order to improve the performances of the considered wind turbine model, the airfoils can be parametrized in serveral ways and both in-house functions and open source tools are integrated in the optimization environment, based on DAKOTA. A BEM code evaluates the aerodynamic performances of the HAWT blades and it can be coupled with both FEM analysis and functions for the analysis of the cost of energy. The open source CFD code OpenFOAM has also been included, as a module, in the overall environment: a CFD analysis can be run in an completely automatic way, from the denition of the geometry, through the generation of the mesh and the solving phase to the post-processing analysis.
The proposed optimization environment succeeded in improving the performances of both the considered Horizontal and Vertical Axis Wind Turbines in terms of structural, aerodynamic and cost objective functions.

Abstract (italian)

Nella tesi è presentato un ambiente avanzato per l'ottimizzazione delle turbine eoliche sia ad asse orizzontale che verticale. Le variabili di design sono rappresentate da diversi parametri geometrici mentre le funzioni obiettivo implementate permettono di eseguire un’analisi multidisciplinare considerando gli aspetti strutturali, aerodinamici e l'impatto del design sul costo complessivo.
Allo scopo di aumentare le prestazioni delle turbine considerate, i profili aerodinamici possono essere parametrizzati in diversi modi. Diverse funzioni appositamente sviluppate e tools open source sono stati integrati nell'ambiente di ottimizzazione, basato su DAKOTA. Un codice BEM valuta le prestazioni aerodinamiche dei modelli ad asse orizzontale e può essere accoppiato sia con codici FEM, sia con funzioni allo scopo di valutare il costo dell’energia. Il codice CFD open source OpenFOAM è stato incluso, come modulo, nell’ambiente: un analisi CFD può essere eseguita in un modo completamente automatico dalla definizione della geometria, generazione della mesh, fase di risoluzione numerica all’analisi dei risultati.
L’ambiente di ottimizzazione proposto ha dimostrato di poter migliorare le prestazioni di entrambi i modelli di turbina eolica considerati, in termini di obiettivi strutturali, aerodinamici e di costo.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Benini, Ernesto
Supervisor:Benini, Ernesto
Ph.D. course:Ciclo 29 > Corsi 29 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:Optimization HAWT VAWT opensource CFD FEM openFOAM DAKOTA genetic algorithm
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/08 Macchine a fluido
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/09 Sistemi per l'energia e l'ambiente
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 Fluidodinamica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10302
Depositato il:16 Nov 2017 10:07
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1] Marten D., Wendle, J., Pechlivanoglou G., Nayeri C. N., Paschereit C. O. , Qblade: An Open Source Cerca con Google

Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines Int. J. Emerging Cerca con Google

Technol. Adv. Eng., 3(special issue 3), pp. 264269, 2013. Cerca con Google

[2] Jonkman J. M., Buhl Jr. M. L., FAST User's Guide NREL Technical Report No. EL-500-38230, Cerca con Google

2005. Cerca con Google

[3] Laino D. J., Hansen A. C., User's guide to the wind turbine aerodynamics computer software Cerca con Google

AeroDyn. Windward Engineering, Salt Lake City, 2002. Cerca con Google

[4] Ponza R., Benini E., DREAM-TILT Proposal, JTI-CS-2012-03. Cerca con Google

[5] Benini E., Ponza R., CODE-Tilt Proposal, JTI-CS-2010-1-GRC-02-004. Cerca con Google

[6] Campanardi G., Zanotti A., Macchi C., Final Complete Wind tunnel Test Database for Aircraft Sizing, Cerca con Google

Suitable for Use by the Codes of the Partners, NICETRIP/POLIMI/WP4.TR007/4.0, Version Cerca con Google

4.0, September 2008. Cerca con Google

[7] Ponza R., Benini E., CODE-Tilt Report 1.2, Report on near-stall characterization of the model Cerca con Google

scaled tiltrotor using Fluent®, CS/CT/HIT09/WP1.1/R1.2/A, September 2012. Cerca con Google

[8] Campanardi G., Gibertini G., Lanz M., Tilt-Rotor Stall Wind Tunnel Test, GRC Technical Report Cerca con Google

no. 737, September 2011. Cerca con Google

[9] Gasparella E., Ponza R., Benini E., Report on CFD assessment using OpenFOAM®, CS/CT/ Cerca con Google

HIT09/WP1.1/R1.1/A. (CODE-Tilt Report R1.1). Cerca con Google

[10] De Gregorio F., Ragni A., Notarnicola N., Test Report of DREAm-TILT PIV Test Campaign, Cerca con Google

CIRA-CF-14-2082. Cerca con Google

[11] Anderson J. D., Computational Fluid Dynamics The Basics with Applications, McGraw-Hill, Cerca con Google

Inc., New York. Cerca con Google

[12] Versteeg H. K., An Introduction to Computational Fluid Dynamics The Finite Volume Method, Cerca con Google

2nd ed., Prentice Hall, 2007. Cerca con Google

[13] ANSYS, INC, Ansys Fluent 16.0 theory guide, pp. 19-25, 2016 Cerca con Google

[14] Free Software Foundation website, (2016, November 1), https://www.fsf.org/ Vai! Cerca con Google

[15] GNU website - GPL license, (2016, November 1), https://www.gnu.org/copyleft/gpl.html Vai! Cerca con Google

[16] Reilly M., Interview: Richard Stallman, one of the founders of 'free software', Volume 198, Issue Cerca con Google

2651, pp. 4244, 12 April 2008. Cerca con Google

[17] GNU Operating System website, (2016, November 1), https://www.gnu.org/philosophy/freesw. Vai! Cerca con Google

en.html Cerca con Google

[18] GNU website - LGPL license, (2016, November 1), https://www.gnu.org/copyleft/lgpl.html Vai! Cerca con Google

[19] The 3-Clause BSD License website, (2017, January 9), https://opensource.org/licenses/BSD-3- Vai! Cerca con Google

Clause Cerca con Google

[20] Drela M., XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, Lecture Cerca con Google

Notes in Engineering, vol. 54, pp. 112, 1989. Cerca con Google

[21] XFOIL website, (2016, November 1), http://web.mit.edu/drela/Public/web/xfoil/ Vai! Cerca con Google

[22] Energy research Centre of the Netherlands, (2016, November 1), https://www.ecn.nl/ Vai! Cerca con Google

[23] TU Delft: Delft University of Technology, (2016, November 1), www.tudelft.nl/ Vai! Cerca con Google

[24] Van Rooij R., Modication of the boundary layer calculation in RFOIL for an improved stall Cerca con Google

prediction, Tech. Rep. IW-96087R, TU Delft, 1996. Cerca con Google

[25] Schlichting H., Lecture series 'Boundary Layer Theory', Part I - Laminar Flows, No. 1217, NACA, Cerca con Google

April 1949. Cerca con Google

[26] Ramanujam G., Ozdemirx H., Hoeijmakers H. W. M., Improving Airfoil Drag Prediction, 34th Cerca con Google

Wind Energy Symposium, San Diego, California, USA, 4-8 January 2016. Cerca con Google

[27] Dakota website, (2016, November 1), https://dakota.sandia.gov/ Vai! Cerca con Google

[28] Eddy J. E., Lewis K., Eective generation of Pareto sets using genetic programming, Proceedings Cerca con Google

of ASME Design Engineering Technical Conference, 2001. Cerca con Google

[29] Adams B. M., Bohnho W. J., Dalbey K. R., Eddy J. P., Ebeida M. S., Eldred M. S., Hough Cerca con Google

P. D., Hu K. T., Jakeman J. D., Maupin K. A., Monschke J. A., Ridgway E. M., Rushdi A., Cerca con Google

Swiler L. P., Stephens J. A., Vigil D. M., Wildey T. M., Dakota, a multilevel parallel objectoriented Cerca con Google

framework for design optimization, parameter estimation, uncertainty quantication, and Cerca con Google

sensitivity analysis: Version 6.4 users manual, Technical Report SAND2014-4633, Sandia National Cerca con Google

Laboratories, Albuquerque, NM, May 2016. Cerca con Google

[30] OpenFOAM website, (2016, November 1), http://www.openfoam.com/ Vai! Cerca con Google

[31] Salome website, (2017, January 9), http://www.salome-platform.org/ Vai! Cerca con Google

[32] ParaView website, (2017, January 9), http://www.paraview.org/ Vai! Cerca con Google

[33] VTK libraries website, (2017, January 9), http://www.vtk.org/ Vai! Cerca con Google

[34] Simioni N., Pellegrini A., Benini E., Ponza R., Blind test CFD analysis of the wind tunnel models, Cerca con Google

CS/DT/HIT09/WP1/5.1/1/B Cerca con Google

[35] Venturelli G., CODE-Tilt D1 part I, Report on the baseline tiltrotor fuselage properties, CS/CT/ Cerca con Google

HIT09/WP1.1/1/A, July 2011. Cerca con Google

[36] Hauser A., Large Wind Tunnel Emmen LWTE Facility description, RUAG Technical Report, Cerca con Google

TB-TA-2505, August 2012. Cerca con Google

[37] Menter F. R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. s.l., Cerca con Google

AIAA Journal, Vol. 32, pp. 269-289, 1994. Cerca con Google

[38] Steiling D., Test Program L1394 - Low Speed Wind Tunnel Test DREAm-TILT, TPH-TA2014- Cerca con Google

0091 rev. B, RUAG Aviation, Emmen, 2014. Cerca con Google

[39] Huber S., CLEAN SKY - Grant Agreement CSJU-GAM-GRC Amendment 2014-1 Annex IB - Cerca con Google

Description of Work from Period 7 to 9 ANNEX 2: Activity plan for GRC2 Drag Reduction of Cerca con Google

Airframe and Non Lifting Rotating Systems. Cerca con Google

[40] De Gregorio F., TiltRotor Drag Reduction. Technical Specication of DREAm-TILT PIV Test Cerca con Google

Campaign CIRA-CF-14-0730. Cerca con Google

[41] Hansen M. O. L., Aerodynamics of Wind Turbines, Earthscan, Second Edition, 2008. Cerca con Google

[42] Glauert H., Airplane Propellers, in Durand, W. F. (Ed) Aerodynamic Theory, Vol.4, Division L, Cerca con Google

Julius Springer, Berlin, pp. 169-360. Cerca con Google

[43] Spera D. A., Wind Turbines Technology, ASME Press, New York. Cerca con Google

[44] Troen I., Petersen E. L., European Wind Atlas, Roskilde: Risø National Laboratory, 1989 Cerca con Google

[45] Burton T., Jenkins N., Sharpe D., Bossanyi E, Wind Energy Handbook, John Wiley & Sons, 2001. Cerca con Google

[46] Liu S., Janajreh I., Development and application of an improved blade element momentum method Cerca con Google

model on horizontal axis wind turbines, International Journal of Energy and Environmental Engineering, Cerca con Google

Vol. 3, 2012. Cerca con Google

[47] Refan M., Hangang H., Aerodynamic Performance of a Small Horizontal Axis Wind Turbine, Cerca con Google

Journal of Solar Energy Engineering, Vol. 134(2), 2012. Cerca con Google

[48] ElQatary I., Elhadidi B., Comparison of CFD with BEM Technique for Wind Turbine Simulation Cerca con Google

of Thin and Thick Rotor Blades, 31st AIAA Applied Aerodynamics Conference, San Diego, CA, Cerca con Google

June 24-27 2013. Cerca con Google

[49] Kong C., Bang J., Sugiyama Y., Structural investigation of composite wind turbine blade considering Cerca con Google

various load cases and fatigue life, Energy, Vol. 30, Issues 11-12, pp. 21012114, August Cerca con Google

September 2005. Cerca con Google

[50] Mendez J., Greiner D., Wind Blade Chord and Twist Angle Optimization Using Genetic Algorithms, Cerca con Google

Proceedings of the Fifth International Conference on Engineering Computational Technology, Cerca con Google

Civil-Comp Press, Stirlingshire, UK, 2006. Cerca con Google

[51] Winter G., Periaux J., Gal n M., Cuesta P., Genetic Algorithms in Engineering and Computer Cerca con Google

Science, Jhon Wiley and Sons, 1995. Cerca con Google

[52] Benini E., Toolo A., Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Cerca con Google

Theory and Evolutionary Computation, Journal of Solar Energy Engineering, Vol. 124(4), pp. 357- Cerca con Google

363, November 2002. Cerca con Google

[53] Cai X., Zhu J., Pan P., Gu R., Structural Optimization Design of Horizontal-Axis Wind Turbine Cerca con Google

Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method, Energies, Vol. Cerca con Google

5, pp. 4683-4696, Nov 2012. Cerca con Google

[54] Dal Monte A., Raciti Castelli M., Benini E., Multi-objective structural optimization of a HAWT Cerca con Google

composite blade, Composite Structures, Vol. 106, pp. 362-373, December 2013. Cerca con Google

[55] Hu W., Han I., Park S. C., Choi D. H., Multi-objective structural optimization of a HAWT composite Cerca con Google

blade based on ultimate limit state analysis, Journal of Mechanical Science and Technology, Cerca con Google

Vol. 26, Issue 1, pp. 129-135, January 2012. Cerca con Google

[56] Pourrajabiana A., Afsharb P. A. N., Ahmadizadehc M., Woodd D., Aero-structural design and Cerca con Google

optimization of a small wind turbine blade, Optimization Methods in Renewable Energy Systems Cerca con Google

Design, Vol. 87, Part 2, pp. 837848, March 2016. Cerca con Google

[57] Bottasso C. L., Campagnolo F., Croce A., Multi-disciplinary constrained optimization of wind Cerca con Google

turbines, Multibody System Dynamics, Vol. 27, Issue 1, pp. 2153, January 2012. Cerca con Google

[58] Ashuri T., Zaaijer M. B., Martins J. R. R. A., van Bussel G. J. W., van Kuik G. A. M., Multidisciplinary Cerca con Google

design optimization of oshore wind turbines for minimum levelized cost of energy, Cerca con Google

Renewable Energy, Vol. 68, pp. 893-905, August 2014. Cerca con Google

[59] Grujicic M., Arakere G., Pandurangan B., Sellappan V., Vallejo A., Ozen M., Multidisciplinary Cerca con Google

Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Cerca con Google

Blades, Journal of Materials Engineering and Performance, Vol. 19, Issue 8, pp. 11161127, November Cerca con Google

2010. Cerca con Google

[60] Zhu J., Cai X., Gu R., Aerodynamic and Structural Integrated Optimization Design of Horizontal- Cerca con Google

AxisWind Turbine Blades, Energies 2016,9,66, January 2016. Cerca con Google

[61] Wang Y. Z., Li F., Zhang X., Zhang W. M., Composite Wind Turbine Blade Aerodynamic and Cerca con Google

Structural Integrated Design Optimization Based on RBF Meta-Model, Materials Science Forum, Cerca con Google

Vol. 813, pp. 10-18, 2015. Cerca con Google

[62] Ghommema M., Colliera N., Niemib A.H., Caloa V. M., On the shape optimization of apping Cerca con Google

wings and their performance analysis, Aerospace Science and Technology , Vol. 32, Issue 1, pp. Cerca con Google

274-292, January 2014. Cerca con Google

[63] Gillebaart E., De Breuker R., Low-delity 2D isogeometric aeroelastic analysis and optimization Cerca con Google

method with application to a morphing airfoil, Computer Methods in Applied Mechanics and Engineering Cerca con Google

, Vol. 305, pp. 512536, June 2016. Cerca con Google

[64] Zingg D. W., Nemec M., Pulliam T. H., A comparative evaluation of genetic and gradient-based Cerca con Google

algorithms applied to aerodynamic optimization, European Journal of Computational Mechanics , Cerca con Google

Vol. 17, Issue 1-2, pp. 103-126, 2008. Cerca con Google

[65] Jacobson R., Meadors M., Jacobson E., Link H., Power Performance Test Report for the AOC Cerca con Google

15/50 Wind Turbine, Test B, National Wind Technology Center, National Renewable Energy Laboratory, Cerca con Google

Colorado, 2003. Cerca con Google

[66] McKittrick L. R., Cairns D. S., Mandell J., Combs D. C., Rabern D. A., Van Luchene R. D., Cerca con Google

Analysis of a Composite Blade Design for the AOC 15/50 Wind Turbine Using a Finite Element Cerca con Google

Model, SAND2001-1441, May 2001. Cerca con Google

[67] Seaforthenergy website, (2014, June 1), AOC 15/50 Detailed Specication, Cerca con Google

http://seaforthenergy.com/wp-content/uploads/2010/12/AOC1550-Specication-Sheet.pdf Vai! Cerca con Google

[68] NREL website, NREL FAST software, (2014, June 1), https://nwtc.nrel.gov/FAST Vai! Cerca con Google

[69] Manwell J. F., McGowan J. G., Rogers A. L., Wind Energy Explained: Theory, Design and Cerca con Google

Application, John Wiley & Sons Inc., 2002. Cerca con Google

[70] Clifton-Smith M. J., Wind Turbine Blade Optimisation with Tip Loss Corrections, Wind Engineering, Cerca con Google

Vol. 33, pp. 477-496, 2009. Cerca con Google

[71] Lanzafame R., Messina M., Power curve control in micro wind turbine design, Energy, Vol. 35, Cerca con Google

pp. 556-561, 2010. Cerca con Google

[72] Pratumnopharat P., Leung P. S., Validation of various windmill brake state models used by blade Cerca con Google

element momentum calculation, Renewable Energy, Vol. 36, pp. 3222-3227, 2011. Cerca con Google

[73] Drela M., XFoil: An Analysys and Design System for Low Reynolds Number Airfoils, Technical Cerca con Google

Report, MIT Dept. of Aeronautics and Astronautics, Cambridge, Massachusetts, 1989. Cerca con Google

[74] Timmer W. A., van Rooij P. R. J. O. M., Summary of the Delft University Wind Turbine Dedicated Cerca con Google

Airfoils, Journal of Solar Energy Engineering, Vol. 125(4), pp. 488-496, 2003. Cerca con Google

[75] Lindenburg C., Investigation into Rotor Blade Aerodynamics - Analysis of the stationary measurements Cerca con Google

on the UAE Phase-VI rotor in the NASA-AMES wind tunnel, ECN-C03-025, July 2003. Cerca con Google

[76] Yu G., Shen X., Zhu X., Du Z., An insight into the separate ow and stall delay for HAWT,Renewable Energy, Vol. 36,pp. 69-76, 2011. Cerca con Google

[77] Lanzafame, R., Messina, M., Advanced brake state model and aerodynamic post-stall model for Cerca con Google

horizontal axis wind turbines, Renewable Energy, Vol. 50, pp. 415-420, 2013. Cerca con Google

[78] Enercon blade models, (2016, November 1), http://www.enercon.de/ Vai! Cerca con Google

[79] Wang L., Tanga X., Liu X., Optimized chord and twist angle distributions of wind turbine blade Cerca con Google

considering Reynolds number eects, International Conference on Wind Energy: Materials, Engineering Cerca con Google

and Policies, November 2012. Cerca con Google

[80] Mendez J., Greiner D., Wind blade chord and twist angle optimization using genetic algorithms, Cerca con Google

Fifth international conference on engineering computational technology, Las Palmas de Gran Canaria Cerca con Google

(Spain), 2006. Cerca con Google

[81] Dal Monte A., Benini E., Validation of a numerical model of a Horizontal Axis Wind Turbine with Cerca con Google

experimental data using two CFD codes, Analysis of Operating Wind Farms 2016 3rd edition, Cerca con Google

Bilbao, April 2016. Cerca con Google

[82] Rahimi H., Medjroubi W., Stoevesandt B., Peinke J., Navier-Stokes based prediction of the aerodynamic Cerca con Google

behaviour of stall regulated wind turbines using OpenFOAM, Progress in Computational Cerca con Google

Fluid Dynamic. An International Journal (PCFD), Vol. 16, No. 6, 2016. Cerca con Google

[83] Dal Monte A., Raciti Castelli M., Benini E., Multi-objective structural optimization of a HAWT Cerca con Google

composite blade, Composite Structures 106, pp. 362-373, 2013. Cerca con Google

[84] Dal Monte A., De Betta S., Raciti Castelli M., Benini E., Proposal for a Coupled Aerodynamic- Cerca con Google

Structural Wind Turbine Blade Optimization , Composite Structures, Vol. 159, pp. 144156, January Cerca con Google

2017. Cerca con Google

[85] Airfoiltools website, (2016, November 1), http://airfoiltools.com/ Vai! Cerca con Google

[86] Giguere P., Selig M. S., Tangler J. L., Blade Design Trade-Os Using Low Lift Airfoils for Stall- Cerca con Google

Regulated Hawt, NREL/CP-500-26091, National Renewable Energy Laboratory, Golden, CO. Cerca con Google

[87] Viterna L. A., Janetzke D. C., Theoretical and Experimental Power from Large Horizontal-Axis Cerca con Google

Wind Turbines, NASA TM-82944, September 1982. Cerca con Google

[88] Benini E., Ponza R, Iannelli P., Strüber H., Hrncir Z., Moens F., Kühn T., Multi-Point Shape And Cerca con Google

Setting Optimization Of High-Lift Airfoils In Both Take-O And Landing Conditions, European Cerca con Google

Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Cerca con Google

Vienna, Austria, September 2012. Cerca con Google

[89] Compositex, carbon ber technology, (2016, November 1), http://www.compositex.com/ Vai! Cerca con Google

[90] Moné C., Stehly T., Maples B., Settle E., 2014 Cost of Wind Energy Review, National Renewable Cerca con Google

Energy Laboratory report, 2014. Cerca con Google

[91] Moccia J., Wind energy scenario for 2020, European Wind Energy Association, 2014. Cerca con Google

[92] Sutherland H. J., Berg D. E., Ashwill T., D., A retrospective of VAWT thecnology, Sandia National Cerca con Google

Laboratories Technical Report, SAND2012-0304, January 2012. Cerca con Google

[93] Maydev R. C., Klimas P. C., Aerodynamic performances of vertical and horizontal axis wind Cerca con Google

turbine, Journal of energy, Vol. 5, pp. 189-190, 1981. Cerca con Google

[94] Ashwill T. D., Measured data for the Sandia 34-meter vertical axis wind turbine, Sandia National Cerca con Google

Laboratories Technical Report, SAND91-2228, 1992. Cerca con Google

[95] Berg D., E., Customized airfoils and their impact on VAWT cost of energy, Windpower '90, Cerca con Google

September 1990. Cerca con Google

[96] Klomas P. C., Tailored aifoils for vertical axis wind turbines, Sandia National Laboratories Technical Cerca con Google

Report, SAND84-1062, 1984. Cerca con Google

[97] Wang L., Koliosa A., Nishinoa T., Delana P. L., Birdb T., Structural optimisation of vertical-axis Cerca con Google

wind turbine composite blades based on nite element analysis and genetic algorithm, Composite Cerca con Google

Structures, Vol. 153, pp. 123138, October 2016. Cerca con Google

[98] Yamazaki W., Arakawa Y., Numerical-Experimental Investigation of Airfoil Shape for Small Cerca con Google

VAWT, 34th Wind Energy Symposium, pp. 1733, 2016. Cerca con Google

[99] Posteljnik Z., Stupar S., Svorcan J., Pekovi¢ O., Ivanov T., Multi-objective design optimization Cerca con Google

strategies for small-scale vertical-axis wind turbines, Structural and Multidisciplinary Optimization, Cerca con Google

Vol. 53, pp. 277-290, 2016. Cerca con Google

[100] Bedon G., Benini E., Aero-structural design optimization of vertical axis wind turbines, Wind Cerca con Google

Energy ,2016. Cerca con Google

[101] Ferreira C. S., Geurts B., Aerofoil optimization for vertical-axis wind turbines, Wind Energy 18, Cerca con Google

pp. 1371-1385, May 2014. Cerca con Google

[102] Ferreira C. S., The near wake of the VAWT: 2D and 3D views of the VAWT aerodynamics, PhD Cerca con Google

thesis, Delft University of Technology, 2009. Cerca con Google

[103] Castelein D., Dynamic stall on vertical Axis Wind Turbine, Master Thesis, TU Delft, 2015. Cerca con Google

[104] Horst, S., Airfoil design for vertical axis wind turbines, Master Thesis, TU Delft, 2015. Cerca con Google

[105] Lapin E., Theoretical performance of vertical axis wind turbines, In American Society of Mechanical Cerca con Google

Engineers, Winter Annual Meeting, Houston, Texas, 1975. Cerca con Google

[106] Bondi A. B., Characteristics of scalability and their impact on performance, Proceedings of the Cerca con Google

second international workshop on Software and performance - WOSP '00, p. 195, 2000. Cerca con Google

[107] Hill, M. D., What is scalability?, ACM SIGARCH Computer Architecture News, Vol. 18, Issue Cerca con Google

4, pp. 18-21, 1990. Cerca con Google

[108] Duboc L., Rosenblum D. S., Wicks T., A framework for modelling and analysis of software Cerca con Google

systems scalability, Proceeding of the 28th international conference on Software engineering - ICSE Cerca con Google

'06. p. 949, 2006. Cerca con Google

[109] UNV le format for exchange mesh-data, (2016, November 1), Cerca con Google

http://www.sdrl.uc.edu/sdrl/referenceinfo/universalleformats/le-format-storehouse/ Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record