Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Brustolin, Leonardo (2017) Novel antiblastic Ru(III)-, Cu(II)- and Au(III)-based coordination compounds: from rational design, synthesis and physico-chemical characterization to nanoformulation, targeted delivery and in vitro evaluation. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF (tesi dottorato_Leonardo_ brustolin ) - Versione accettata
Tesi non accessible fino a 14 Novembre 2019 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

21Mb

Abstract (inglese)

There is an essential contribution of inorganic medicinal chemistry in the pharmacopeia. In particular, platinum-based drugs revolutionized the anticancer chemotherapy, and nowadays they find wide application in the treatment of several solid tumors. Nevertheless, their effectiveness is paralleled with severe side-toxicity and the onset of drug resistance. In order to obtain compounds with a better chemotherapeutic index and increased bioavailability, several metal-based compounds have been designed and investigated in the last decades. On these grounds, we present here the synthesis and characterization of a library of coordination compounds containing a biologically-active metal center, namely Ru(III), Cu(II), and Au(III), and one or more dithiocarbamato (DTC) ligands, derived from cyclic amines (aliphatic or aromatic). Several techniques have been used to characterize the compounds, such as elemental analysis, X-ray crystallography, ESI-MS, 1H-NMR spectroscopy, FT-IR and UV-Vis spectrophotometries, highlighting different electronic behaviors generated by the DTC substituents. Moreover, the synthetized compounds were tested for their antiproliferative activity against two tumor models. This screening pointed out the druglikeness of some derivatives, which have been successively encapsulated in micellar nanocarriers, being also carbohydrate-functionalized on their hydrophilic surface for a cancer-selective delivery exploiting the Warburg effect. In particular, the nonionic surfactant block copolymer Pluronic® F127 (PF127) has been chemically modified with sugars and the derivatives characterized by means of NMR and FT-IR. Then, the two Lead Compounds have been loaded into the hydrophobic core of PF127 non- and cancer-targeting micelles. These nanoformulations have been studied for their dimensions (DLS, TEM) and stability, and tested for their cytotoxicity. The promising results obtained with these nanosystems, accompanied by preliminary in vitro mechanistic studies, open intriguing perspectives for the use of this solubility-increasing and neoplasia-targeting strategy for our anticancer metal-DTC complexes.
In conclusion, this work is the basis for optimizing the investigated nanoformulations, followed by future pre-clinical in vivo studies on animal models to evaluate i) their carrier capabilities, ii) the cancer-selective release of the cytotoxic cargo, iii) the stability and PK, iv) the anticancer activity and v) the acute/chronic toxicity.

Abstract (italiano)

Nella farmacopea odierna vi è un contributo essenziale della chimica farmaceutica inorganica. In particolare, la chemioterapia oncologica è stata rivoluzionata dai farmaci a base di platino, i quali al giorno d’oggi trovano ampio utilizzo nella terapia di molte neoplasie solide. Tuttavia, tale efficacia è controbilanciata dalla tossicità di tali composti, così come dall’insorgenza di resistenza al trattamento. Per questo motivo, negli ultimi decenni sono stati progettati e studiati diversi composti a base di metalli, al fine di migliorare l’indice chemioterapico e la biodisponibilità. Con queste premesse, in questo lavoro di dottorato viene presentata la sintesi e la caratterizzazione di una libreria di composti di coordinazione contenenti un centro metallico attivo biologicamente, ovvero Ru(III), Cu(II) e Au(III), e uno o più leganti ditiocarbammici derivanti da ammine cicliche (alifatiche o aromatiche). Le diverse tecniche spettroscopiche utilizzate per la caratterizzazione di questi complessi, quali l’analisi elementare, la cristallografia a raggi X, ESI-MS, spettroscopia 1H-NMR, spettrofotometrie FT-IR e UV-Vis, hanno evidenziato comportamenti elettronici diversi generati dai sostituenti del legante ditiocarbammico. Inoltre, la citotossicità dei composti sintetizzati è stata analizzata su due modelli tumorali umani. I risultati ottenuti hanno dimostrato le ottime proprietà farmacologiche di alcuni complessi, candidandoli ad un ulteriore sviluppo. Di conseguenza, essi sono stati incapsulati in micelle polimeriche funzionalizzate convenientemente con carboidrati, al fine di veicolare selettivamente l’intero sistema supramolecolare verso le cellule tumorali, sfruttando l’effetto Warburg. Al fine di eseguire questi studi, il Pluronico® F127 (PF127), un tensioattivo non ionico co-polimerico, è stato modificato chimicamente per legare degli zuccheri e successivamente caratterizzato mediante NMR e FT-IR. Quindi i due composti Lead sono stati caricati sia in micelle di PF127 sia in micelle di PF127 funzionalizzate con carboidrati; le risultanti formulazioni sono state studiate per la loro dimensione (DLS, TEM) e stabilità e successivamente testate in vitro per la loro attività citotossica. I risultati promettenti ottenuti con questi nanosistemi, accompagnati da studi meccanicistici preliminari in vitro, aprono prospettive interessanti per l’utilizzo di questa strategia capace di aumentare la solubilità dei complessi ditiocarbammici nonché di guidarli selettivamente verso le cellule tumorali.
In conclusione, questo lavoro rappresenta il punto di partenza per l’ottimizzazione delle nanoformulazioni precedentemente analizzate. Esso sarà seguito in futuro da studi pre-clinici in vivo su modelli animali, al fine di verificare i) la capacità di trasporto delle micelle, ii) la loro capacità di rilascio del complesso citotossico contenuto in prossimità dell’ambiente tumorale, iii) la stabilità e la farmacocinetica degli aggregati, iv) l’attività tumorale e v) le tossicità cronica e acuta.


Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Fregona, Dolores
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > SCIENZE MOLECOLARI
Data di deposito della tesi:31 Gennaio 2017
Anno di Pubblicazione:31 Gennaio 2017
Parole chiave (italiano / inglese):metal-based; anticancer; coordination compound; nanoformulation; cytotoxic
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/03 Chimica generale e inorganica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10303
Depositato il:17 Nov 2017 09:26
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] K. H. Thompson, Medicinal Inorganic Chemistry: introduction, in Encyclopedia of Inorganic Chemistry, 2010, John Wiley & Sons, New York (USA). Cerca con Google

[2] P. Chellan, P. J. Sadler, The elements of life and medicines, Phil. Trans. R. Soc. A, 2015, 373(2037), 20140182. Cerca con Google

[3] W. Maret, The metals in the biological periodic system of the elements: concepts and conjectures, Int. J. Mol. Sci., 2016, 17(1), 1. Cerca con Google

[4] N. P. E. Barry, P. J. Salder, Exploration of the medical periodic table towards new targets, Chemm. Comm., 2013, 49, 5106. Cerca con Google

[5] Different authors and different chapters, in Metal ions in biological systems, 2015, A. Sigel, H. Sigel, R. K. Sigel eds., Royal Society of Chemistry, Cambridge (UK). Cerca con Google

[6] A. Krężel, W. Maret, The biological inorganic chemistry of zinc ions, Arch. Biochem. Biophys., 2016, doi:10.1016/j.abb.2016.04.010. Cerca con Google

[7] Y. Sheng, I. A. Abreu, D. E. Cabelli, M. J. Maroney, A.-F- Miller, M. Teixeira, J. S. Valentine, Superoxide dismutase and superoxide reductase, Chem. Rev., 2014, 114, 3854. Cerca con Google

[8] K. D. Mjos, C. Orvig, Metallodrugs in medicinal inorganic chemistry, Chem. Rev., 2014, 114, 4540. Cerca con Google

[9] N. P. E. Barry, P. J. Sadler, 100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs, Pure Appl. Chem., 2014, 86(12), 1897. Cerca con Google

[10] H. G. Raubenheimer, H. Schmidbaur, The late start and amazing upswing in gold chemistry, J. Chem. Educ., 2014, 91, 2024. Cerca con Google

[11] P. Ehrlich, A. Bertheim, Über das salzsaure 3.3’-diamino-4.4’-dioxy-arsenobenzol und seine nächsten verwandten, Ber. Dtsch. Chem. Ges., 1912, 45, 756. Cerca con Google

[12] B. Rosenberg, L. Van Camp, J. E. Trosko, V. H. Mansour, Platinum compounds: a new class of potent antitumor agents, Nature, 1969, 222, 385. Cerca con Google

[13] Visiongain Report, Leading anti-cancer drugs and associated market 2013-2023, http://www.visiongain.com/Report/1063/Leading-Anti-Cancer-Drugs-and-Associated-Market-2012-2013, 2013 (accessed 09.06.2016). Vai! Cerca con Google

[14] World Cancer Report 2014, 2014, B. W. Stewart, C. P. Wild eds., World Health Organization Press, Geneva (Switzerland). Cerca con Google

[15] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, 2015, 136, E359. Cerca con Google

[16] Analyze search result of the keyword “cancer” on Scopus, http://www.scopus.com (accessed 09.06.2016). Vai! Cerca con Google

[17] GBI Research, Breast cancer therapeutics in major developed markets to 2021 - Growth driven by rapid uptake of premium priced biologics and rising incidence, report code GBIHC379MR, http://www.gbiresearch.com, 2015 (accessed 10.06.2016). Vai! Cerca con Google

[18] G. M. Cooper GM, The Development and Causes of Cancer, in The Cell: A Molecular Approach 2nd edition, 2000, Sinauer Associates, Sunderland (USA). Cerca con Google

[19] R. J. Gilbertson, Mapping cancer origins, Cell, 2011, 145, 25. Cerca con Google

[20] S. M. Ametamey, M. Honer, P. A. Schubiger, Molecular imaging with PET, Chem. Rev., 2008, 108, 1501. Cerca con Google

[21] Z. Zhou, Z.-R. Lu, Gadolinium-based contrast agents for MR cancer imaging, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(1), 1. Cerca con Google

[22] F. R. Balkwill, M. Capasso, T. Hagemann, The tumor microenvironment at a glance, J. Cell Sci., 2012, 125, 5591. Cerca con Google

[23] S. J. Lunt, N. Chaudary, R. P. Hill., The tumor microenvironment and metastatic disease, Clin. Exp. Metastasis, 2009, 26, 19. Cerca con Google

[24] L. M. F. Merlo, J. W. Pepper, B. J. Reid, C. C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 2006, 6, 924. Cerca con Google

[25] P. C. Nowell, The clonal evolution of tumor cell populations, Science, 1976, 194, 23. Cerca con Google

[26] J. E. Visvader, Cells of origin in cancer, Nature, 2011, 469, 314. Cerca con Google

[27] A. P. Feinberg, R. Ohlsson, S. Henikoff, The epigenetic progenitor origin of human cancer, Nat. Rev. Genet., 2006, 7(1), 21. Cerca con Google

[28] M. Greaves, C. C. Maley, Clonal evolution in cancer, Nature, 2012, 481, 306. Cerca con Google

[29] D. P. Tabassum, K Polyak, Tumorigenesis: it takes a village, Nat. Rev. Cancer, 2015, 15, 473. Cerca con Google

[30] R. Axelrod, D. E. Axelrod, K. J. Pienta, Evolution of cooperation among tumor cells, Proc. Natl. Acad. Sci. USA, 2006, 103, 13474. Cerca con Google

[31] A. Marusyk, D. P. Tabassum, P. M. Altrock, V. Almendro, F. Michor, K. Polyak, Non-cell-autonomous driving of tumor growth supports sub-clonal heterogeneity, Nature, 2014, 514, 54. Cerca con Google

[32] D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 2000, 100(1), 57. Cerca con Google

[33] D. Hanahan, R. A. Weinberg, The hallmarks of cancer: the next generation, Cell, 2011, 144(5), 646. Cerca con Google

[34] N. Bailon-Moscoso, J. C. Romero-Benavides, P. Ostrosky-Wegman, Development of anticancer drugs based on the hallmarks of tumor cells, Tumor Biol., 2014, 35(5), 3981. Cerca con Google

[35] B. Weinstein, A. K. Joe, Mechanism of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy, Nat. Clin. Pract. Oncol., 2006, 3(8), 448. Cerca con Google

[36] S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol., 2007, 35, 495. Cerca con Google

[37] D. Mendez, A. Inga, M. A. Resnick, The expanding universe of p53 targets, Nat. Rev. Cancer, 2009, 9, 724. Cerca con Google

[38] J. W. Shay, W. E. Wright, Role of telomeres and telomerase in cancer, Semin. Cancer Biol., 2011, 21(6), 349. Cerca con Google

[39] F. Pezzella, A. L Harris, M. Tavassoli, K. C. Gatter, Blod vessels and cancer much more than just angiogenesis, Cell Death Discovery, 2015, 1, 15064. Cerca con Google

[40] N. S. Vasudev, A. R. Reynolds, Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions, Angiogenesis, 2014, 17, 471. Cerca con Google

[41] R. A. Cairns, I. S. Harris, T. W. Mak, Regulation of cancer cell , Nat. Rev. Cancer, 2011, 11, 85. Cerca con Google

[42] R. A. Gatenby, R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nat. Rev. Cancer, 2004, 4, 891. Cerca con Google

[43] R. J. Gillies, I. Robey, R. A. Gatenby, Causes and consequences of increased glucose metabolism of cancers, J. Nucl. Med., 2008, 49(suppl. 2), 245. Cerca con Google

[44] G. L. Semenza, Regulation of cancer cell metabolism by hypoxia-inducible factor 1, Semin. Cancer Biol., 2009, 19, 12. Cerca con Google

[45] L. Szablewski, Expression of glucose transporters in cancers, Biochim. Biophys. Acta, 2013, 1835, 164. Cerca con Google

[46] R. J. De Berardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff, S. Wehrli, C. B. Thompson, Beyond aerobic glycolysis: transformed cell can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19345. Cerca con Google

[47] S. Turajlic, C. Swanton, Metastasis as an evolutionary process, Science, 2016, 352, 169. Cerca con Google

[48] K. W. Hunter, N. P. S Crawford, J. Alsarraj, Mechanism of metastasis, Breast Cancer Res., 2008, 10(suppl. 1), S2. Cerca con Google

[49] O. J. Finn, Immuno-oncology: understanding the function and dysfunction of the immune system in cancer, Ann. Oncol., 2012, 23(suppl. 8), vii6. Cerca con Google

[50] K. Bell, S. Ristovski-Slijepcevic, Cancer survivorship: why labels matter, J. Clin. Oncol., 2013, 31(4), 409. Cerca con Google

[51] M. M. Olszewski, Concepts of cancer from antiquity to the nineteenth century, UTMJ, 2010, 87(3), 181. Cerca con Google

[52] S. Rockwell, I. T. Dobrucki, E. Y. Kim, S. Tucker Marrison, V. Thuc Vu, Hypoxia and radiation therapy: past history, ongoing research, and future promise, Curr. Mol. Med., 2009, 9(4), 442. Cerca con Google

[53] L. F. Povirk, D. E. Shuker, DNA damage and mutagenesis induced by nitrogen mustards, Mutat. Res., 1994, 318(3), 205. Cerca con Google

[54] M. Arruebo, N. Vilaboa, B. Saez-Gutierrez, J. Lambea, A. Tres, M. Valladares, A. Gonzalez-Fernandez, Assessment of the evolution of cancer treatment therapies, Cancers, 2011, 3, 3279. Cerca con Google

[55] American Cancer Society, http://www.cancer.org/treatment/ (accessed 07.09.2016). Vai! Cerca con Google

[56] J. D. Hoeschele, Dr. Barnett Rosenberg – a personal perspective, Dalton Trans., 2016, 45, 12966. Cerca con Google

[57] X. Lin, T. Okuda, A. Holzer, S. B. Howell, The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae, Mol. Pharmacol., 2002, 62(5), 1154. Cerca con Google

[58] N. D. Eljack, H.-Y. M. Ma, J. Drucker, C. Shen, T. W. Hambley, E. J. New, T. Friedrich, R. J. Clarke, Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin, Metallomics, 2014, 6, 2126. Cerca con Google

[59] P. M. Takahara, C. A. Frederick, S. J. Lippard, Crystal structure of the anticancer drug cisplatin bound to duplex DNA, J. Am. Chem. Soc., 1996, 118(49), 12309. Cerca con Google

[60] M. P. M. Marques, D. Gianolio, G. Cibin, J. Tomkinson, S. F. Parker, R. Valero, R. Pedro Lopes, L. A. E. Batista de Carvalho, A molecular view of cisplatin’s mode of action: interplay with DNA bases and acquired resistance, Phys. Chem. Chem. Phys., 2015, 17, 5155. Cerca con Google

[61] L. Kelland, The resurgence of platinum-based cancer chemotherapy, Nat. Rev. Cancer, 2007, 7, 573. Cerca con Google

[62] R. P. Miller, R. K. Tadagavadi, G. Ramesh, W. B. Reeves, Mechanism of cisplatin nephrotoxicity, Toxins, 2010, 2(11), 2490. Cerca con Google

[63] M. L. Hensley, K. L. Hagerty, T. Kewalramani, D. M. Green, N. J. Meropol, T. H. Wasserman, G. I. Cohen, B. Emami, W. J. Gradishar, R. B. Mitchell, et al., American Society of Clinical Oncology 2008 practice guideline update: use of chemotherapy and radiation therapy protectants, J. Clin. Oncol., 2009, 27, 127. Cerca con Google

[64] A. J. Di Pasqua, J. Goodisman, J. C. Dabrowiak, Understanding how the platinum anticancer drug carboplatin works: from the bottle to the cell, Inorg. Chim. Acta, 2012, 389, 29. Cerca con Google

[65] A. K. Holzer, S. B. Howell, The internalization and degradation of human copper transporter 1 following cisplatin exposure, Cancer. Res., 2006, 66, 10944. Cerca con Google

[66] R. Safaei, A. K. Holzer, K. Katano, G. Saimi, S. B. Howell, The role of copper transporters in the development of resistanceto Pt drugs, J. Inorg. Chem., 2004, 98, 1607. Cerca con Google

[67] R. G. Pearson, Hard and soft acids and bases, HSAB, part I, J. Chem. Ed., 1968, 45, 581. Cerca con Google

[68] P. Mistry, L. R. Kelland, G. Abel, S. Sidhar, K. R. Harrap, The relationships between glutathione, glutathione-S-transferase, and cytotoxicity of platinum drugs and melphalanin eight human ovarian cancer cell lines, Br. J. Cancer, 1991, 64, 215. Cerca con Google

[69] L. P. Rybak, C. A. Whitworth, D. Mukherjea, V. Ramkumar, Mechanisms of cisplatin-induced ototoxicity and prevention, Hear. Res., 2007, 226, 157. Cerca con Google

[70] O. Pinato, C. Musetti, C. Sissi, Pt-based drugs: the spotlight will be on proteins, Metallomics, 2014, 6, 380. Cerca con Google

[71] L. P. Martin, T. C. Hamilton, R. J. Schilder, Platinum resistance: the role of DNA repair pathways, Clin. Cancer Res., 2008, 14(5), 1291. Cerca con Google

[72] E. Raymond, S. Faivre, S. Chaney, J. Woynarowski, E. Cvitkovic, Cellular and molecular pharmacology of oxaliplatin, Mol. Cancer Ther., 2002, 1, 227. Cerca con Google

[73] N. J. Wheate, S. Walker, G. E. Craig, R. Oun, The status of platinum anticancer drugs in the clinic and in clinical trials, Dalton Trans., 2010, 39, 8113. Cerca con Google

[74] B. A. Chabner, T. G. Roberts Jr, Chemotherapy and the war on cancer, Nat. Rev. Cancer, 2005, 5, 65. Cerca con Google

[75] K. Strebhardt, A. Ullrich, Paul Ehrlich’s magic bullet concept: 100 years of progress, Nat. Rev. Cancer, 2008, 8, 473. Cerca con Google

[76] M. Deininger, E. Buchdunger, B. J. Druker, The development of Imatinib as a therapeutic agent for chronic myeloid leukemia, Blood, 2005, 105, 2640. Cerca con Google

[77] S. Kumar Pal, R. A. Figlin, H. Yu, Deciphering the anticancer mechanism of sunitinib, Cancer Biol. Ther., 2010, 10(7), 712. Cerca con Google

[78] D. Chen, M. Frezza, S. Schmitt, J. Kanwar, Q. P. Dou, Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives, Curr. Cancer Drug Targets, 2011, 11(3), 239. Cerca con Google

[79] I. Sanchez-Serrano, Translational research in the development of bortezomib: a core model, Discov. Med., 2005, 5(30), 527. Cerca con Google

[80] M. Vanneman, G. Dranoff, Combining immunotherapy and targeted therapies in cancer treatment, Nat. Rev. Cancer, 2012, 12, 237. Cerca con Google

[81] A. M. Scott, J. D. Wolchk, L. J. Old, Antibody therapy of cancer, Nat. Rev. Cancer, 2012, 12, 278. Cerca con Google

[82] G. J. Weiner, Building better monoclonal antibody-based therapeutics, Nat. Rev. Cancer, 2015, 15, 361. Cerca con Google

[83] A. J. Grillo-Lopez, C. A. White, C. Varns, D. Shen, A. Wei, A. McLaure, B. K. Dallaire, Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma, Semin. Oncol., 1999, 26, 66. Cerca con Google

[84] Hematology/Oncology (Cancer) Approvals & Safety Notifications, http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDRugs/ucm279174.htm (accessed 08.09.2016). Vai! Cerca con Google

[85] A. Swaika, W. A. Hammond, R. W. Joseph, Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy, Mol. Immunol., 2015, 67,4. Cerca con Google

[86] T. T. Hansel, H. Kropshofer, T. Singer, J. A. Mitchell, A. J. T. George, The safety and side effects of monoclonal antibodies, Nat. Rev. Drug Discov., 2010, 9, 325. Cerca con Google

[87] i)H. Joensuu, J. Gligorov, Adjuvant treatments for triple-negative breast cancer, Annal. Oncol., 2012, 23(suppl. 6), vi40; ii) Personal communication with Dr. Giuseppe Curigliano, European Institute of Oncology, Milan (Italy). Cerca con Google

[88] S. Hoelder, P. A. Clarke, P. Workman, Discovery of small molecule cancer drugs: successes, challenges and opportunities, Mol. Oncol., 2012, 6, 155. Cerca con Google

[89] J. Frearson, P. Wyatt, Drug discovery in Academia – the third way?, Expert Opin. Drug Discov., 2010, 5(10), 909. Cerca con Google

[90] Pharmaceutical Research and Manufacturers of America (PhRMA), Profile 2009, 2009, Washington, www.phrma.org (accessed 13.09.2016). Vai! Cerca con Google

[91] J. Eder, R. Sedrani, C. Wiesmann, The discovery of first-in-class drugs: origins and evolution, Nat. Rev. Drug Discov., 2014, 13, 577. Cerca con Google

[92] G. J. Kelloff, C. C. Sigman, Cancer biomarkers: selecting the right drug for the right patient, Nat. Rev. Drug Discov., 2012, 11, 202. Cerca con Google

[93] S. Neidle, D. E. Thurston, Chemical approach to the discovery and development of cancer therapies, Nat. Rev. Cancer, 2005, 5, 287. Cerca con Google

[94] J. F. Pritchard, M Jurima-Romet, M. L. J. Reimer, E. Mortimer, B. Rolfe, M. N. Cayen, Making better drugs: decision gates in non-clinical drug development, Nat. Rev. Drug Discov., 2003, 2, 542. Cerca con Google

[95] R. Perkins, H. Fang, W. Tong, W. J. Welsh, Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology, Environ. Toxicol. Chem., 2003, 22, 1666. Cerca con Google

[96] D. J. Adams, The Valley of Death in anticancer drug development: a reassessment, Trends Pharmacol. Sci., 2012, 33(4), 173. Cerca con Google

[97] C. Tailor Gilliland, D. Zuk, P. Kocis, M. Johnson, S. Hay, M. Hajduch, F. Bietrix, G. Aversa, C. P. Austin, E. Ussi, Putting translational science on to a global stage, Nat. Rev. Drug Discov., 2016, 15, 217. Cerca con Google

[98] FDA Content and Format of Investigational New Drug Applications (INDs) for Phase 1 studies of Drugs, including well-characterized, therapeutic, biotechnology-derived products, www.fda.gov/downloads/Drugs/.../Guidances/ucm074908.pdf (accessed 13.09.2016). Vai! Cerca con Google

[99] FDA Drug Development and Process – Step3: Clinical Research, www.fda.gov/ForPatients/Approvals/Drug/ucm405622.htm (accessed 13.09.2016). Vai! Cerca con Google

[100] M. Shea, L. Ostermann, R. Homan, S. Roberts, M. Kozak, R. Dull, J. Allen, E. Sigal, Regulatory watch: impact of breakthrough therapy designation on cancer drug development, Nat. Rev. Drug Discov., 2016, 15, 152. Cerca con Google

[101] B. Chabner, The traveling oncologist and the wages of sin, Oncologist, 2001, 6, 1. Cerca con Google

[102] T. A. Yap, S. K. Sandhu, P. Workman, J. S. de Bono, Envisioning the future of early anticancer drug development, Nat. Rev. Cancer, 2010, 10, 514. Cerca con Google

[103] P. J. Heard, Main group dithiocarbamate complexes, in Progress in Inorganic Chemistry (Vol. 53), 2005, K. D. Karlin ed., John Wiley & Sons, New York (USA). Cerca con Google

[104] G- Moad, D. Keddie, C. Guerrero-Sanchez, E. Rizzardo, S. H. Thang, Advances in switchable RAFT polymerization, Macromol. Symp., 2015, 350(1), 34. Cerca con Google

[105] J- R- Roede, D. P. Jones, Thiol-reactivity of the fungicide maneb, Redox Biol., 2014, 2(1), 651. Cerca con Google

[106] G. Vettorazzi, W. F. Almeida, G. J. Burin, R. B. Jaeger, F. R. Puga, A. F. Rahde, F. G. Reyes, S. Schvartsman, International safety assessment of pesticides: dithiocarbamate pesticides, ETU, and PTU – a review and update, Teratog., Carcinog. Mutagen., 1995, 15(6), 313. Cerca con Google

[107] V. Bala, G. Gupta, V. L. Sharma, Chemical and medicinal verastility of dithiocarbamates: an overview, Mini-Rev. Med. Chem., 2014, 14(12), 1021. Cerca con Google

[108] A. Imyim, P. Daorattanachai, F. Unob, Determination of cadmium, nickel, lead and zinc in fish tissue by flame and graphite furnace atomic absorption after extraction with pyrrolidine dithiocarbamate and activated carbon, Anal. Lett., 2013, 46, 2101. Cerca con Google

[109] G. Hogarth, Metal-dithiocarbamate complexes: chemistry and biological activity, Mini-Rev. Med. Chem., 2012, 12(12), 1202. Cerca con Google

[110] D. M. Miller, R. A. Latimer, The kinetic of decomposition and synthesis of some dithiocarbamates, Can. J. Chem., 1962, 40, 246. Cerca con Google

[111] E. Humeres, N. A. Debacher, M. M. de S. Sierra, J. D. Franco, A. Schutz, Mechanisms of acid decomposition of dithiocarbamates. 1. Alkyl dithiocarbamates, J. Org. Chem., 1998, 63, 1598. Cerca con Google

[112] E. Humeres, N. A. Debacher, M. M. de S. Sierra, Mechanisms of acid decomposition of dithiocarbamates. 2. Efficiency of the intramolecular genera acid catalysis, J. Org. Chem., 1999, 64, 1807. Cerca con Google

[113] E. Humeres, N. A. Debacher, J. D. Franco, B. S. Lee, A. Martendal, Mechanisms of acid decomposition of dithiocarbamates. 3. Aryldithiocarbamates and the torsional effect, J. Org. Chem., 2002, 67, 3662. Cerca con Google

[114] D. J. Halls, The properties of dithiocarbamates, Mikrochim. Acta, 1969, 62. Cerca con Google

[115] K. Ramadas, N. Srinivasan, Sodium chlorite – yet another oxidant for thiols and disulphides, Synth. Commun., 1995, 25(2), 227. Cerca con Google

[116] G. Hogarth, Transition metal dithiocarbamates: 1978-2003, in Progress in Inorganic Chemistry (Vol. 53), 2005, K. D. Karlin ed., John Wiley & Sons, New York (USA). Cerca con Google

[117] A. Domenicano, A. Vaciago, L. Zambonelli, P. L. Loader, L. M. Venanzi, The structure of nitrosylruthenium tris-(N,N-diethyldithiocarbamate): a complex with a monodentate dithiocarbamate group, Chem. Commun. (London), 1966, 14, 1966. Cerca con Google

[118] A. R. Hendrickson, J. M. Hope, R. L. Martin, Tris- and pentakis- dialkyldithiocarbamates of ruthenium, [Ru(S2CNR2)3] n and [Ru2(S2CNR2)5]n (n= +1, 0, and -1): chemical and electrochemical interrelations, J. Chem. Soc. Dalton Trans., 1976, 20, 2032. Cerca con Google

[119] V. K. Sharma, J. S. Aulakh, A. K. Malik, Thiram: degradation, applications and analytical methods, J. Environ. Monit., 2003, 5(5), 717. Cerca con Google

[120] R. M. Swift, E. R. Aston, Pharmacotherapy for alcohol use disorder: current and emerging therapies, Harv. Rev. Psychiatry, 2015, 23(2), 122. Cerca con Google

[121] N. Segovia, G. Crovetto, P. Lardelli, M. Espigares, In vitro toxicity of several dithiocarbamates and structure-activity relationships, J. Appl. Toxicol., 2002, 22, 353. Cerca con Google

[122] R. A. Goyer, M. G. Cherian, M. M. Jones, J. R. Reigart, Role of chelating agents for prevention, intervention, and treatment of exposures to toxic metals, Environ. Health Perspect., 1995, 103(11), 1048. Cerca con Google

[123] R. F. Borch, M. E. Pleasants, Inhibition of cis-platinum nephrotoxicity by diethyldithiocarbamate rescue in rat model, Proc. Natl. Acad. Sci. USA, 1979, 76(12), 6611. Cerca con Google

[124] R. F. Borch, J. C. Katz, P. H. Lieder, M. E. Pleasants, Effect of diethyldithiocarbamate rescue on tumor response to cis-platinum in rat model, Proc. Natl. Acad. Sci. USA, 1980, 77(9), 5441. Cerca con Google

[125] L. P. Rybak, R. Ravi, S. M. Somani, Mechanism of protection by diethyldithiocarbamate agains cisplatin ototoxicity: antioxidant system, Fund. Appl. Toxicol., 1995, 26, 293. Cerca con Google

[126] P. K. Gessner, T. Gessner, Disulfiram and its metabolite, diethyldthiocarbamate: pharmacology and status in the treatment of alcoholism, HIV infections, AIDS and heavy metal toxicity, 1992, Springer, New York (USA). Cerca con Google

[127] G. J. M. van der Kerk, H. L. Klöpping, Investigation on organic fungicides: VII. Further considerations regarding the relations between chemical structure and antifungal action of dithiocarbamate and bisdithiocarbamate derivatives, Recl. Trav. Chim. Pays-Bas, 1952, 71, 1179. Cerca con Google

[128] G. J. M. van der Kerk, M. H. van Raalte, A. Kaars Sijpesteijn, A new type of plant growth-regulating substances, Nature, 1955, 176, 308. Cerca con Google

[129] J. P. Cartier, C. Sandorfy, Inductive and mesomeric effects in substituted fulvene and pyridine derivatives, Can. J. Chem., 1963, 41, 2759. Cerca con Google

[130] R. R. Eley, R. R. Myers, N. V. Duffy, Electron spin crossover in iron(III) dithiocarbamates, Inorg. Chem., 1972, 11(5), 1128. Cerca con Google

[131] B. Leon, D. K. Straub, Magnetism of tris(dithiocarbamato)iron(III) complexes derived from cyclic amines, Inorg. Chim. Acta, 1989, 156, 13. Cerca con Google

[132] K. Nakamoto, J. Fujita, R. A. Condrate, Y. Morimoto, Infrared spectra of metal chelate compounds. IX. A normal coordinate analysis of dithiocarbamato complexes, J. Chem. Phys., 1963, 39, 423. Cerca con Google

[133] F. A. Cotton, J. A. McCleverty, Dimethyl- and Diethyldithiocarbamate complexes of some metal carbonyl compounds, Inorg. Chem., 1964, 3(10), 1398. Cerca con Google

[134] E. J. Kupchik, P. J. Calabretta, Some phenyltin, -lead, and antimony dithiocarbamates, Inorg. Chem., 1965, 4(7), 973. Cerca con Google

[135] H. K. Hall Jr., Field and inductive effects on the base strengths of amines, J. Am. Chem. Soc., 1955, 78, 2570. Cerca con Google

[136] H. K. Hall Jr., Correlation of the base strengths of amines, J. Am. Chem. Soc., 1957, 79, 5441. Cerca con Google

[137] H. K. Hall Jr., Steric effects on the base strengths of cyclic amines, J. Am. Chem. Soc., 1957, 79, 5444. Cerca con Google

[138] M. N. Kouodom, G. Boscutti, M. Celegato, M. Crisma, S. Sitran, D. Aldinucci, F. Formaggio, L. Ronconi, D. Fregona, Rational design of gold(III)-dithiocarbamato peptidomimetics for the targeted anticancer chemotherapy, J. Inorg. Biochem., 2012, 117, 248. Cerca con Google

[139] C. Nardon, F. Chiara, L. Brustolin, A. Gambalunga, F. Ciscato, A. Rasola, A. Trevisan, D. Fregona, Gold(III)-pyrrolidinedithiocarbamato derivative sas antineoplastic agents, Open Chem., 2015, 4(2), 183. Cerca con Google

[140] C. Nardon, L. Brustolin, D. Fregona, Is matching ruthenium dithiocarbamato ligands a potent chemotherapeutic weapon in oncology?, Fut. Med. Chem., 2016, 8(2), 211. Cerca con Google

[141] R. D. Bereman, D. Nalewajek, Preparation of dithiocarbamate ligands derived from indole, indoline, carbazole, and imidazole and representative transition-element complexes, Inorg. Chem., 1978, 17(4), 1085. Cerca con Google

[142] O. Esenturk, R. A. Walker, Indoline: a versatile probe of specific and non-specific solvation forces, Phys. Chem. Chem. Phys, 2003, 5, 2020. Cerca con Google

[143] M. A. Slifkin, S. M. Ali, Protonation rate constants of proline, J. Mol. Liq., 1984, 29, 75. Cerca con Google

[144] H. J. Chen, L. E. Hakka, R. L. Hinman, A. J. Kresge, E. B. Whipple, The basic strength of carbazole. An estimate of the nitrogen basicity of pyrrole and indole, J. Am. Chem. Soc., 1971, 93, 5102. Cerca con Google

[145] R. L. Hinman, J. Lang, The protonation of indoles. Basicity studies. The dependence of acidity functions on indicator structure, J. Am. Chem. Soc., 1964, 86, 3796. Cerca con Google

[146] Y. Chiang, E. B. Whipple, The protonation of pyrroles, J. Am. Chem. Soc., 1963, 85, 2763. Cerca con Google

[147] C. N. R. Rao, R. Venkataraghavan, The C=S stretching frequency and the “-N-C=S bands” in the infrared, Spectrochim. Acta, 1962, 18, 541. Cerca con Google

[148] F. Bonati, R. Ugo, Organotin(IV) N, N-disubstituted dithiocarbamates, J. Organometal. Chem., 1967, 10, 257. Cerca con Google

[149] R. Kellner, G. S. Nikolov, Far IR spectra of dithiocarbamate complexes – correlations with structure parameters, J. Inorg. Nucl. Chem., 1981, 43, 1183. Cerca con Google

[150] F. A. Cotton, G. Wilkinson, Advanced inorganic chemistry, 3rd ed., 1972, John Wiley & Sons, New York (USA). Cerca con Google

[151] J. Emsley, “Ruthenium”, Nature’s building blocks: an A-Z guide to the Elements, 2003, Oxford University Press, Oxford (UK). Cerca con Google

[152] C. Rao, D. Trivedi, Chemical and electrochemical depositions of platinum group metals and their applications, Coord. Chem. Rev., 2005, 249, 613. Cerca con Google

[153] S. Kanbara, M. Kitano, Y. Inoue, T. Yokoyama, M. Hara, H. Hosono, Mechanism switching of ammonia synthesis over Ru-loaded electride catalyst al metal-insulator transition, J. Am. Chem. Soc., 2015, 137(45), 14517. Cerca con Google

[154] J. Wang, W. Zhu, X. He, S. Yang, Catalytic wet air oxidation of acetic acid over different ruthenium catalysts, Catal. Commun., 2008, 9(13), 2163. Cerca con Google

[155] M. Yoshimura, S. Tanaka, M. Kitamura, Recent topics in catalytic asymmetric hydrogenation of ketones, Tetrahedron Lett., 2014, 55(27), 3635. Cerca con Google

[156] I. Kostova, Ruthenium complexes as anticancer agents, Curr. Med. Chem., 2006, 13(9), 1085. Cerca con Google

[157] F. P. Dwyer, E. C. Gyarfas, W. P. Rogers, J. H. Koch, Biological activity of complex ions, Nature, 1952, 170, 190. Cerca con Google

[158] Handbook of Chemistry and Physics (85th ed.), 2004, D. R. Lide ed., CRC Press, London (UK). Cerca con Google

[159] M. J. Clarke, S. Bitler, D. Rennert, M. Buchbinder, A. D. Kelman, Reduction and subsequent binding of ruthenium ions catalyzed by subcellular components, J. Inorg. Biochem., 1980, 12, 79. Cerca con Google

[160] S. K. Parks, N. M. Mazure, L. Counillon, J. Pouysségur, Hypoxia promotes tumor cell survival in acid conditions by preserving ATP levels, J. Cell., Physiol., 2013, 228(9), 1854. Cerca con Google

[161] P. Schluga, C. G. Hartinger, A. Egger, E. Reisner, M. Galansky, M. A. Jakupec, B. K. Keppler, Redox behavior of tumor-inhibiting ruthenium(III) complexes and effects of physiological reductants on their binding to GMP, Dalton Trans., 2006, 14, 1796. Cerca con Google

[162] M. J. Clarke, Ruthenium metallopharmaceuticals, Coord. Chem. Rev., 2003, 236, 209. Cerca con Google

[163] J. M. Rademaker-Lakhai, D. van den Bongard, D. Pluim, J. H. Beijnen, J. H. M. Schellens, A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororutenate, a novel ruthenium anticancer agent, Clin. Can. Res., 2004, 10(11), 3717. Cerca con Google

[164] S. Leijen, S. A. Burgers, P. Baas, D. Pluim, M. Tibben, E. van Werkhoven, E. Alessio, G. Sava, J. H. Beijnen, J. H. M. Schellens, Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non small cell lung cancer after first line therapy, Invest. New Drugs, 2015, 33, 201. Cerca con Google

[165] M. Cocchietto, S. Zorzet, A. Sorc, G. Sava, Primary tumor, lung, and kidney retention and antimetastatic effect of NAMI-A following different routes of administration, Invest. New Drugs, 2003, 21, 55. Cerca con Google

[166] A. Bergamo, G. Sava, Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs, Dalton Trans., 2011, 40, 7817. Cerca con Google

[167] P. Som, Z. H. Oster, K. Matsui, G. Guglielmi, B. R. Persson, M. L. Pellettieri, S. C. Srivastava, P. Richards, H. L. Atkins, A. B. Brill, 97Ru-transferrin uptake in tumo and abscess, Eur. J. Nucl. Med., 1983, 8, 491. Cerca con Google

[168] J. C. Pessoa, I. Tomaz, Transport of therapeutic vanadium and ruthenium complexes by blood plasma components, Curr. Med. Chem., 2010, 17(31), 3701. Cerca con Google

[169] W. Guo, W. Zheng, Q. Luo, X. Li, Y. Zhao, S. Xiong, F. Wang, Transferrin serve sas mediator to deliver organometallic Ru(II) anticancer complexes into cells, Inorg. Chem., 2013, 52(9), 5328. Cerca con Google

[170] K. Spiewak, G. Stochel, M. Brindell, Influence of redox activation of NAMI-A on affinity to serum proteins: transferrin and albumin. J. Coord. Chem., 2015, 68, 3181. Cerca con Google

[171] V. Brabec, DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair, Prog. Nucleic Acisd Res. Mol. Bio., 2002, 71, 1. Cerca con Google

[172] J. Reedijk, Metal-ligand exchange kinetics in platinum and ruthenium complexes. Plat Met. Rev., 2008, 45(2), 2. Cerca con Google

[173] V. Brabec, O. Novakoa, DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity, Drug Resist. Updates, 2006, 9, 111. Cerca con Google

[174] J. Iida, E. T. Bell-Loncella, M. L. Purazo, Y. Lu, J. Dorchak, R. Clancy, J. Slavik, M. L. Cutler, C. D. Shriver, Inhibition of cancer cell growth by ruthenium complexes, J. Transl. Med., 2016, 14, 48. Cerca con Google

[175] S. Betanzos-Lara, O. Novakova, R. J. Deeth, A. M. Pizarro, G. J. Clarkson, B. Liskova, V. Brabec, P. J. Sadler, A. Habtemariam, Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity, J. Biol. Inorg. Chem., 2012, 17(7), 1033. Cerca con Google

[176] W. Han Ang, A. Casini, G. Sava, P. J. Dyson, Organometallic ruthenium-based antitumor compounds with novel mode of action, J. Organomet. Chem., 2011, 696(5), 989. Cerca con Google

[177] Z. Adhireksan, G. E. Davey, P. Campomanes, M. Groessl, C. M. Clavel, H. Yu, A. A. Nazarov, C. H. F. Yeo, W. Han Ang, et al., Ligand substitution between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity, Nat. Commun., 2014, 5, 1. Cerca con Google

[178] R. Trondl, P. Heffeter, C. R. Kovol, M. A. Jakupec, W. Berger, B. K. Keppler, NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application, Chem. Sci., 2014, 5, 2925. Cerca con Google

[179] C. G. Hartinger, M. A. Jakupec, M. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P. J. Dyson, B. K. Keppler, KP1019, a new redox-active anticancer agent – preclinical development and results of a clinical phase I study in tumor patients, Chem. Biodiv., 2008, 5, 2140. Cerca con Google

[180] L. Malatesta, Sui ditiocarbammati di rutenio, rodio e palladio, Gazz. Chim. Ital., 1938, 68, 195. Cerca con Google

[181] A. R. Hendrickson, J. M. Hop, R. L. Martin, Tris- and pentakis-dialkyldithiocarbamates of ruthenium, [Ru(S2CNR2)3]n and [Ru2(S2CNR2)5]n (n= +1, 0, and -1): chemical and electrochemical interrelations. J. Chem. Soc., Dalton Trans., 1976, 20, 2032. Cerca con Google

[182] L. Pignolet, D. J. Duffy, L. Que, Stereochemically nonrigid ruthenium(III) and cobalt(III) tris-chelate complexes, J. Amer. Chem. Soc., 1973 , 95(1), 295. Cerca con Google

[183] L. Pignolet, Dynamic stereochemistry of tris-chelate complexes. IV. Crystal structure of tris(N,N-diethyldithiocarbamato)ruthenium(III), Inorg. Chem., 1974, 13, 2051. Cerca con Google

[184] B. M. Mattson, J. R. Himan, L. Pignolet, Oxidation of tris(N,N-disubstituted-dithiocarbamato) complexes of ruthenium(III). X-ray structure determination of bis(N,N-diethyldithiocarbamato)-μ-tris(N,N-diethyldithiocarbamato)-diruthenium(III) tetrafluorobarate, [Ru2(Et2dtc)5]BF4, Inorg. Chem., 1976, 15, 564. Cerca con Google

[185] L. Giovagnini, S. Sitran, I. Castigliuolo, P. Brun, M. Corsini, P. Zanello, A. Zoleo, A. Maniero, B. Biondi, D. Fregona, Ru(III)-based compounds with sulfur donor ligands: synthesis, characterization, electrochemical behavior and anticancer activity, Dalton Trans., 2008, 37, 6699. Cerca con Google

[186] E. M. Nagy, C. Nardon, L. Giovagnini, L. Marchiò, A. Trevisan, D. Fregona, Promising anticancer mono- and dinuclear ruthenium(III) dithiocarbamato complexes: systematic solution studies, Dalton Trans., 2011, 40, 11885. Cerca con Google

[187] E. M. Nagy, A. Pettenuzzo, G. Boscutti, L. Marchiò, L. Dalla Via, D. Fregona, Ruthenium (II/III)-based compounds with encouraging antiproliferative activity against non-small-cell lung cancer, Chem. Eur. J., 2012, 12, 14464. Cerca con Google

[188] B. R. Cameron, M. C. Darkes, I. R. Baird, R. T. Skerlj, Z. L. Santucci, S. P. Fricker, Ruthenium(III) triazacyclononane dithiocarbamate, pyridinecarboxylate, or aminocarboxylate complexes as scavengers of nitric oxide, Inorg. Chem., 2003, 42, 4102. Cerca con Google

[189] C. J. Marmion, B. R. Cameron, C. Mulcahy, S. P. Fricker, Ruthenium as an effective nitric oxide scavenger, Curr. Top. Med. Chem., 2004, 4, 1585. Cerca con Google

[190] N. B. Janakiram, R. Chinthalapallay, Nitric oxide: immune modulation of tumor growth, in Nitric oxide and cancer: pathogenesis and therapy, 2015, B. Bonavida ed., Springer, San Diego (USA). Cerca con Google

[191] L. Giovagnini, E. Mancinetti, L. Ronconi, S. Sitran, L. Marchiò, I. Castigliuolo, P. Brun, A. Trevisan, D. Fregona, Preliminary chemico-biological studies on Ru(III) compounds with S-methyl pyrrolidine/dimethyl dithiocarbamate, J. Inorg. Biochem., 2009, 103, 774. Cerca con Google

[192] C. Mari, V. Pierroz, S. Ferrari, G. Gasser, Combination of Ru(II) complexes and light: new frontiers in cancer therapy., Chem. Sci., 2015, 6, 2660. Cerca con Google

[193] C. Mari, G. Gasser, Lightening up ruthenium complexes to fight cancer?, Chimia, 2015, 69(4), 176. Cerca con Google

[194] N. J. Wheate, J. G. Collins, Multi-nuclear platinum complexes as anticancer drugs, Coord. Chem. Rev., 2003, 241, 133. Cerca con Google

[195] C. G. Hartinger, A. D. Phillips, A. A. Nazarov, Polynuclear ruthenium, osmium and gold complexes. The quest for innovative anticancer chemotherapeutics, Curr. Top. Med. Chem., 2011, 11, 2688. Cerca con Google

[196] C. S. Allardyce, P. J. Dyson, Metal-based drugs that break the rules, Dalton Trans., 2016, 45, 3201. Cerca con Google

[197] X. Li, K. Heimann, X. T. Dinh, F. R. Keene, J. G. Collins, Biological processing of dinuclear ruthenium complexes in eukaryotic cells, Mol. BioSyst., 2016, 10, 3032. Cerca con Google

[198] K. T. Stanislaw, K. Kurzak, S. L. Randzio, Reactions of commercial ruthenium chlorides with O-donor ligands. Reaction with water: UV-Vis investigation of soluble products; analysis, thermogravimetry and IR study of precipitated solids, Transition Met. Chem., 1995, 20, 330. Cerca con Google

[199] A. R. Hendrickson, R. L. Martin, D. Taylor, A binuclear rhodium(III) dithiocarbamate complex, [Rh2(Me2NCS2)5]BF4, Aust. J. Chem., 1976, 29, 269. Cerca con Google

[200] C. L. Raston, A. H. White, Structural studies in the ruthenium-dithiocarbamate system. Part I. Crystal structure of tris(morpholyldithiocarbamato)ruthenium(III)-2.5 chloroform, J. Chem. Soc. Dalton Trans., 1975, 22, 2405. Cerca con Google

[201] C. Preti, G. Tosi, P. Zannini, Synthesis and characterization of ruthenium dithiocarbamate complexes, J. Inorg. Nucl. Chem., 1979, 41, 485. Cerca con Google

[202] F. Rastrelli, A. Bagno, Predicting the 1H and 13C NMR spectra of paramagnetic Ru(III) complexes by DFT, Magn. Reson. Chem., 2010, 48, S132. Cerca con Google

[203] M. C. Palazzotto, D. J. Duffy, B. L. Edgar, L. Que Jr., L. H. Pignolet, Dynamic stereochemistry of tris-chelate complexes. I. Tris(dithiocarbamato) complexes of iron, cobalt, and rhodium, J. Am. Chem. Soc., 1973, 95(14), 4537. Cerca con Google

[204] L. Que Jr., L. H. Pignolet, Dynamic stereochemistry of tris-chelate complexes. II. Tris(dithiocarbamato) complexes of manganese(III), vanadium(III), chromium(III), gallium(III), and indium(III), Inorg. Chem., 1974, 13(2), 351. Cerca con Google

[205] D. J. Duffy, L. H. Pignolet, Dynamic stereochemistry of tris-chelate complexes. III. Tris(dithiocarbamato) complexes of ruthenium(III), Inorg. Chem., 1974, 13(9), 2045. Cerca con Google

[206] L. H. Pignolet, Dynamic stereochemistry of tris-chelate complexes. IIII. Crystal structure of tris(N,N-diethyldithiocarbamato)ruthenium(III), Inorg. Chem., 1974, 13(9), 2051. Cerca con Google

[207] A. Rodger, B. F. G. Johnson, Which is more likely: the Ray-Dutt twist or the Bailar Twist?, Inorg. Chem., 1988, 27(18), 3061. Cerca con Google

[208] H. S. Rzepa, M. E. Cass, In search of the Bailar and Ray-Dutt twist mechanism that racemize chiral trischelates: a computational study of Sc(III), Ti(IV), Co(III), Zn(II), Ga(III), and Ge(IV) complexes of a ligand analogue of acetylacetonate, Inorg. Chem., 2007, 46(19), 8024. Cerca con Google

[209] D. A. Brown, W. K. Glass, M. A. Burke, The general use of IR spectral criteria in discussion of the bonding and structure of metal dithiocarbamates, Spectrochim. Acta Mol. Biomol. Spectrosc., 1976, 32, 137. Cerca con Google

[210] F. Forghieri, G. Graziosi, C. Preti, G. Tosi, Cyclic substituted dithiocarbamates as ligands. Vanadium(III) and oxovanadium(IV, V) complexes, Transiton Met. Chem., 1983, 8, 372. Cerca con Google

[211] R. D. Bereman, M. R. Churchill, D. Nalewajek, Coordination chemistry of new sulfur-containing ligands. 16. Crystal and molecular structure of tris(pyrrole-N-carbodithioato)iron(III)-hemikis(dichloromethane), Fe(S2CNC4H4)3∙0.5CH2Cl2, a low spin dithiocarbamate complex of iron(III), Inorg. Chem., 1979, 18, 3112. Cerca con Google

[212] C. O’Connor, J. D. Gilbert, G. Wilkinson, Unidentate dithiocarbamate complexes of rhodium and iron: dithiocarbamate and dithiocarbonate complexes of ruthenium, J. Chem. Soc. (A), 1969, 0, 84. Cerca con Google

[213] L. Ronconi, L. Giovagnini, C. Marzano, F. Bettio, R. Graziani, G. Pilloni, D. Fregona, Gold dithiocarbamate derivative sas potential antineoplastic agents: design, spectroscopic properties, and in vitro antitumor activity, Inorg. Chem., 2005, 44(6), 1867. Cerca con Google

[214] G. E. Manoussakis, C. A. Bolos, Synthesis and characterization of a series of new mixed ligand complexes of manganese(III), iron(III), nickel(II), copper(II) and zinc(II) with Schiff bases of N,N-diethylamino-dithiocarbamate as ligands, Inorg. Chim. Acta, 1985, 108, 215. Cerca con Google

[215] C. K. Jorgensen, Absorption spectra of transition group complexes of Sulphur-containing ligands, J. Inorg. Nucl. Chem., 1952, 24, 1571. Cerca con Google

[216] J. F. Endicott, M. J. Uddin, Correlations of optical and thermal charge transfer, Coord. Chem. Rev., 2001, 219-221, 287. Cerca con Google

[217] S. F. A. Kettle, Physical Inorganic Chemistry: a coordination chemistry approach, 2004, Spectrum Academic Publishers, Oxford (UK). Cerca con Google

[218] M. Jo, J. Seo, M. L. Seo, K. S. Choi, S. K. Cha, L. F. Lindoy, S. S. Lee, Donor-set-induced coordination sphere and oxidation-state switching in the copper complexes of O2S2X (X = S, O and NH) macrocycles, Inorg. Chem., 2009, 48(17), 8186. Cerca con Google

[219] M. C. Linder, Ceruloplasmin and other copper binding components of blood plasma and their functions: an update, Metallomics, 2016, 8(9), 887. Cerca con Google

[220] M. Gerloch, The sense of Jahn-Teller distortions in octahedral Cu(II) and othe transition-metal complexes, Inorg. Chem., 1981, 20(2), 638. Cerca con Google

[221] S. Kida, Y. Nishida, M. Sakamoto, Absorption band in the near-ultraviolet region observed for binuclear copper(II) complexes, Bull. Chem. Soc. Jpn., 1973, 46(8), 2428. Cerca con Google

[222] J. Gaǎzo, I.B. Bersuker, J. Garaj;, M. Kabešová, J. Kohout, H. Langfelderová, M. Melník, M. Serator, F. Valach, Plasticity of the coordination sphere of copper(II) complexes, its manifestation and causes, Coord. Chem. Rev., 1976, 19(3), 253. Cerca con Google

[223] A. K. Boal, A. C. Rosenzweig, Structural biology of copper trafficking, Chem. Rev., 2009, 109, 4760. Cerca con Google

[224] R. R. Crichton, J. L. Pierre, Old iron, young copper: from Mars to Venus, BioMetals, 2001, 14, 99. Cerca con Google

[225] W. Kaim, J. Rall, Copper- A modern bioelement, Angew. Chem. Int. Ed. Engl., 1996, 35, 43. Cerca con Google

[226] S. Samantha, N. Lehnert, Metalloproteins: a switch for blue copper proteins?, Nat. Chem., 2016, 8, 639. Cerca con Google

[227] N. Kitajima, Y. Moro-oka, Copper-dioxigen complexes. Inorganic and bioinorganic perspectives, Chem. Rev., 1994, 94(3), 737. Cerca con Google

[228] G. A. Hamilton, P. K. Adolf, J. De Jersey, G. C. DuBois, G. R. Dyrkacz, R. D. Libby, Trivalent copper, superoxide, and galactose oxidase, J. Am. Chem. Soc., 1978, 100, 1899. Cerca con Google

[229] F. Himo, L. A. Eriksson, F. Maseras, P. E. M. Siegbahn, Catalytic mechanism of galactose oxidase: a theoretical study, J. Am. Chem. Soc., 2000, 122, 8031. Cerca con Google

[230] E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Copper active sites in biology, Chem. Rev., 2014, 114, 3659. Cerca con Google

[231] S. Lutsenko, N. L. Barnes, M. Y. Bartee, O. Y. Dmitriev, Function and regulation of human copper-transporting ATPases, Physiol. Rev., 2007, 87(3), 1011. Cerca con Google

[232] M. Bost, S. Houdart, M. Oberli, E. kalonji, J.-F. Huneau, I. Margaritis, Dietary copper and human heatlh: current evidence and unresolved issues, J. Trace Elem. Med. Biol., 2016, 35, 107. Cerca con Google

[233] E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis), Chem. Rev., 2006, 106, 1995. Cerca con Google

[234] J. F. B. Mercer, The molecular basis of Copper-Transport diseases, Trends Mol. Med., 2001, 7(2), 64. Cerca con Google

[235] H. Kim, X. Wu, J. Lee, SLC31 (CTR) family of copper transporters in health and disease, Mol. Aspect. Med., 2013, 34, 561. Cerca con Google

[236] L. Banci, I. Bertini, F. Cantini, S. C. Baffoni, Cellular copper distribution: a mechanistic system biology approach, Cell. Mol. Life Sci., 2010, 67, 2563. Cerca con Google

[237] C. J. De Feo, S. G. Aller, G. S. Siluvai, N. J. Blackburn, V. M. Unger, Three-dimensional structure of the human copper transporter hCTR1, Proc. Natl. Acad. Sci. USA, 2009, 106, 4237. Cerca con Google

[238] J. F. Eisses, J. H. Kaplan, The mechanism of copper uptake mediated by human CTR1: a mutational analysis, J. Biol. Chem., 2005, 280, 37159. Cerca con Google

[239] X. Wu, D. Sinani, H. Kim, J. Lee, Copper transport activity of yeast Ctr1 is downregulated via its C terminus in response to excess copper, J. Biol. Chem., 2009, 284, 4112. Cerca con Google

[240] P. J. Schmidt, C. Kunst, V. C. Culotta, Copper activation of superoxide dismutase 1 (SOD1) in vivo, J. Biol. Chem., 2000, 275, 33771. Cerca con Google

[241] D. Horn, A. Barrientos, Mitochondrial copper metabolism and delivery to cytochrome c oxidase, IUBMB Life, 2008, 60, 421. Cerca con Google

[242] G. Inesi, R. Pilankatta, F. Tadini-Buoninsegni, Biochemical characterization of P-type copper ATPases, Biochem. J., 2014, 463, 167. Cerca con Google

[243] B. Ruttakay-Nedecky, L. Nejdl, J. Gumulec, O. Zitka, M. Masarik, T. Eckschalager, M. Stiborova, V. Adam, R. Kizek, The role of metallothionein in oxidative stress, Int. J. Mol. Sci., 2013, 14, 6044. Cerca con Google

[244] Z. Tumer, An overview and update of ATP7A leading to Menkes disease and occipital horn syndrome, Hum. Mutat., 2013, 34, 417. Cerca con Google

[245] L. T. Braiterman, A. Murthy, S. Jayakanthan, L. Nyasae, E. Tzeng, G. Gromadzka, T. B. Woolf, S. Lutsenko, A. L. Hubbard, Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B, Proc. Natl. Acad. Sci. USA, 2014, 111, E1364. Cerca con Google

[246] M. L. Turski, D. J. Thiele, New roles for copper metabolism in cell proliferation, signaling and disease, J. Biol. Chem., 2009, 284, 717. Cerca con Google

[247] M. R. Bleackley, R. T. A. MacGillivray, Transition metal homeostasis: from yeast to human disease, BioMetals, 2011, 24(5), 785. Cerca con Google

[248] M. Zowczak, M. Iskra, L. Torlinski, S. Cofta, Analysis of serum copper and zinc concentrations in cancer patients, Biol. Trace Elem. Res., 2001, 82, 1. Cerca con Google

[249] M. Denoyer, S. Masaldan, S. La Fontaine, M. A. Carter, Targeting copper in cancer therapy: “Copper that cancer”, Metallomics, 2015, 7, 1459. Cerca con Google

[250] P. Carmeliet, Angiogenesis in life, disease and medicine, Nature, 2005, 438, 932. Cerca con Google

[251] Y. Jiang, C. Reynolds, C. Xiao, W. Feng, Z. Zhou, W. Rodriguez, S. C. Tyagi, J. W. Eaton, J. T. Saari, Y. J. Kang, Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice, J. Exp. Med., 2007, 204(3), 657. Cerca con Google

[252] Q. Li, X. Ding, Y. J. Kang, Copper promotion of angiogenesis in isolated rat aortic ring: role of vascular endothelial growth factor, J. Nut. Bio., 2014, 25, 44. Cerca con Google

[253] D. C. Rigiracciolo, A. Scarpelli, R. Lappano, A. Pisano, M. F. Santolla, P. De Marco, F. Cirillo, A. R. Cappello, V. Dolce, A. Belfiore, M. Maggiolini, E. M. De Francesco, Copper activates HIF-1α/GPER/VEGF signaling in cancer cells, Oncotarget, 2015, 6, 34158. Cerca con Google

[254] L. Finney, S. Mandava, L. Ursos, W. Zhang, D. Rodi, S. Vogt, D. Legnini, J. Maser, F. Ikpatt, O. I. Olopade, D. Glesne, X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis, Proc. Natl. Acad. Sci. USA, 2007, 104, 2247. Cerca con Google

[255] S. Tardito, L. Marchiò, Copper compounds in anticancer strategies, Curr. Med. Chem., 2009, 16, 1325. Cerca con Google

[256] D. Krajčiováa, M. Melníka, E. Havráneka, A. Forgácsováa, P. Mikušab, Copper compounds in nuclear medicine and oncology, J. Coord. Chem., 2014, 1. Cerca con Google

[257] S. K. Das, K. Ray, Wilson’s disease: an update, Nat. Clin. Pract. Neurol., 2006, 2, 482. Cerca con Google

[258] J. Yoshii, H. Yoshiji, S. Kuriyama, Y. Ikenaka, R. Noguchi, H. Okuda, H. Tsujinoue, T. Nakatani, H. Kishida, D. Nakae, D. E. Gomez, M. S. De Lorenzo, A. M. Teira, H. Fukui, The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells, Int. J. Cancer, 2001, 94, 768. Cerca con Google

[259] Q. Pan, D. T. Rosenthal, L. Bao, C. G. Kleer, S. D. Merajver, Antiangiogenic tetrathiomolybdate protects against Her2/neu-induced breast carcinoma by hypoplastic remodeling of the mammary gland, Clin. Cancer Res., 2009, 15(23), 7441. Cerca con Google

[260] S. Brem, S. A. Grossman, K. A. Carson, P. New, S. Phuphanich, J. B. Alavi, T. Mikkelsen, J. D. Fisher, Phase 2 trial of copper depletion and penicilamine as antioangiogenesis therapy of glioblastoma, Neuro-Oncol., 2005, 7, 246. Cerca con Google

[261] C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Advances in copper complexes as anticancer agents, Chem. Rev., 2014, 114, 815. Cerca con Google

[262] L. Tjioe, A. Meininger, T. Joshi, L. Spiccia, B. Graham, Efficient plasmid DNA cleavage by copper(II) complexes of 1,4,7-triazacyclononane ligands featuring xylyl-linked guanidinium groups, Inorg. Chem., 2011, 50(10), 4327. Cerca con Google

[263] H.-L. Seng, W.-S- Wang, S.-M. Kong, A. H.-K. Alan Ong, Y.-F. Win, R. N. Z. Raja Abd. Rahman, M. Chikira, W.-K. Leong, M. Ahmad, A. S.-B. Khoo, C.-H. Ng, Biological and cytoselective anticancer properties of copper(II)-polypyridil complexes modulated by auxiliary methylated glycine ligand, BioMetals, 2012, 25, 1061. Cerca con Google

[264] B. M. Zeglis, V. Divilov, J. S. Lewis, Role of metalation in the Topoisomerase Iiα inhibition and antiproliferation activity of a series of α-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes, J. Med. Chem., 2011, 54, 2391. Cerca con Google

[265] V. Milacic, D. Chen, L. Giovagnini, A. Diez, D. Fregona, Q. P. Dou, Pyrrolidine dithiocarbamate-zinc(II) and copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity, Toxicol. Appl. Pharmacol., 2008, 231, 24. Cerca con Google

[266] P. T. Beurskens, J. A. Cras, J. J. Steggerda, Structures and properties of dibromo-N,N-di-n-buthyldithiocarbamato complexes of copper(III) and gold(III), Inorg. Chem., 1968, 7(4), 1968. Cerca con Google

[267] A. R. Hendrickson, R. L. Martin, N. M. Rhode, Dihiocarbamates of Cu(I), Cu(II) and Cu(III). An electrochemical study, Inorg. Chem., 1976, 15(9), 2116, Cerca con Google

[268] J. A. Cras, J. Willemse, A. W. Gal, B. G. M. C. Hummelink-Peters, Preparation, structure and properties of compounds containing the dipositive tri-copper hexa (N,N-di-n-buthyldithiocarbamato) ion, compounds with copper in the oxidation states II and III, Recl. Trav. Chim. Pays-Bas, 1973, 92, 641. Cerca con Google

[269] P. J. H. A. M van de Leemput, J. Willemse, J. A. Cras,Preparation and properties of copper dithiocarbamate complexes with copper in the oxidation states I and III, Recl. Trav. Chim. Pays-Bas, 1976, 95, 53. Cerca con Google

[270] C. S. I. Nobel, M. Kimland, B. Lind, S. Orrenius, A. F. G. Slater, Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper, J. Biol. Chem., 1995, 270, 26202. Cerca con Google

[271] H. Schenk, M. Klein, W. Erdbrugger, W. Droge, K. Schulze-Osthoff, Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NK-kappa B and AP-1, Proc. Natl. Acad. Sci. USA, 1994, 91, 1972. Cerca con Google

[272] H.-H. Wu, J. A. Thomas, J. Momand, p53 protein oxidation in cultured cells in response to pyrrolidine dithiocarbamate: a novel method for relating the amount of p53 oxidation in vivo to the regulation of p53-responsive genes, Biochem. J., 2000, 351, 87. Cerca con Google

[273] S. Furuta, F. Ortiz, X. Zhu Sun, H.-H. Wu, A. Mason, J. Momand, Copper uptake is required for pyrrolidine dithiocarbamate-mediated oxidation and protein level increase of p53 in cells, Biochem. J., 2002, 365, 639. Cerca con Google

[274] W. Erl, C. Weber, G. K. Hansson, Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density and the presence of Cu2+ and Zn2+, Am. J. Phys. Cell Phys., 2000, 278, C1116. Cerca con Google

[275] D. Cen, D. Brayton, B. Shahandeh, F. L. Meyskens, P. J. Farmer, Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells, J. Med. Chem., 2004, 47, 6914. Cerca con Google

[276] K. G. Daniel, D. Chen, S. Orlu, Q. C. Cui, F. R. Miller, Q. P. Dou, Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells, Breast Cancer Res., 2005, 7, R897. Cerca con Google

[277] L. Giovagnini, S. Sitran, M. Montopoli, L. Caparrotta, M. Corsini, C. Rosani, P. Zanello, Q. Ping Dou, D. Fregona, Chemical and biological profiles of novel copper(II) complexes containing S-donor ligands for the treatment of cancer, Inorg. Chem., 2008, 47(14), 6336. Cerca con Google

[278] B. Akella Radha, M. Seshasayee, G. Aravamudan, Structures of bis(piperidine-1-dithiocarbamato)nickel(II) and bis8piperidine-1-dithiocarbamato)copper(II), Acta. Cryst., 1988, C44, 1378. Cerca con Google

[279] B. eliott, K. Yang, A. M. Rao, H. D. Arman, W. T. Pennington, L. Echegoyen, A reassignement of the EPR spectra previously attributed to Cu@C60, Chem. Comm., 2007, 20, 2083. Cerca con Google

[280] D. F. Schoener, M. A. Olsen, P. G. Cummings, C. Basic, Electronspray ionization mass spectrometry: principles and clinical applications, Clin. Biochem. Rev., 2003, 24, 3. Cerca con Google

[281] N. N. Murthy, K. D. Karlin, I. Bertini, C. Luchinat, NMR and electronic relaxation in paramagnetic dicopper(II) compounds, J. Am. Chem. Soc., 1997, 119, 2156. Cerca con Google

[282] K. A. Hotzer, A. Klingert, T. Klumpp, E. Krissinel, D. Burssner, U. E. Steiner, Temperature-dependent spin relaxation: a major factor in electron backward transfer following the quenching of *Ru(bpy)32+ by methyl viologen, J. Phys. Chem. A, 2002, 106, 2207. Cerca con Google

[283] I. Bertini, A. dei, A. Scozzafava, Proton magnetic resonance spectra of bis(N-alkylsalicylaldiminato)copper(II) complexes, Inorg. Chem., 1975, 14(7), 1526. Cerca con Google

[284] B. J. Corden, P. H. Rieger, Electron spin resonance study of the kinetics and equilibrium of adduct formation by copper(II) dibutyldithiocarbamate with nitrogen bases, Inorg. Chem., 1971, 10(2), 263. Cerca con Google

[285] B. I. Libutt, B. B. Wayland, A. F. Garito, Axial ligation of copper(II) bis(t-butylacetoacetate) by pyridine donors. Thermodynamics and solvent effect, Inorg. Chem., 1969, 8(7), 1510. Cerca con Google

[286] H. O. Desseyn, A. C. fabretti, F. Forghieri, C. Preti, Isotopic infrared study of some nickel(II) and copper(II) complexes containing heterocyclic dithiocarbamate ligands, Spectrochim. Acta A, 1985, 41(9), 1105. Cerca con Google

[287] C. Furlani, G. Polzonetti, C. Preti, G. Tosi, XPS of coordination compounds: data on the electronic structure of a series of Cu(II) N,N’-cyclic substituted dithiocarbamates, Inorg. Chim. Acta, 1983, 73, 105. Cerca con Google

[288] B. Morzyk-Ociepa, K. Dysz, I. Turowska-Tyrk, D. Michalska, New trans-dihcloropalladium(II) complexes of 7-azaindole: crystal and molecular structures, FT-IR, FT-Raman and DFT studies, J. Mol. Struct., 2016, 1103, 202. Cerca con Google

[289] F. Takami, S. Wakahara, T. Maeda, The UV spectra and dissociation constants of some dithiocarbamates (1), Tetrahedron Lett., 1971, 12(28), 2645. Cerca con Google

[290] D. Oktavec, J. stefanec, B. Siles, E. Beinrohr, V. Konecny, J. Garaj, The electronic spectra of the bis8dithiocarbamate) chelates of Cu(II) and Zn(II), Collect. Czech. Chem. Commun., 1982, 47, 2867. Cerca con Google

[291] M. V. Vedis, G. H. Schreiber, T. E. Gough, G. U. Palenik, Jahn-Teller distortions in octahedral copper(II) complexes, J. Am. Chem. Soc., 1969, 91(7), 1859. Cerca con Google

[292] S. Choi, E. R. Menzel, J. R. Wasson, Electronic spectra of copper(II) dithiocarbamates, J. Inorg. Nucl. Chem., 1977, 39, 417. Cerca con Google

[293] R. L. Carlin, Electronic spectra of transition metal complexes, J. Chem. Ed., 1963, 40(3), 135. Cerca con Google

[294] H. G. Raubenheimer, H. Schmidbaur, The late start and amazing upswing in gold chemistry, J. Chem. Ed., 2014, 91, 2014. Cerca con Google

[295] H. Schmidbaur, S. Cronje, B. Djordjevic, O. Schuster, Understanding gold chemistry through relativity, Chem. Phys., 2005, 311, 151. Cerca con Google

[296] K. S. Pitzer, Relativistic effects on chemical properties, Acc. Chem. Res., 1979, 12(8), 271. Cerca con Google

[297] P. Pyykko, J.-P. Desclaux, Relativity and the periodic system of elements, Acc. Chem. Res., 1979, 12(8), 276. Cerca con Google

[298] M. Seth, M. Dolg., P. Fulde, P. Schwerdtfeger, Lanthanide and actinide contractions: relativistic and shell structure effects, J. Am. Chem. Soc., 1995, 117(24), 6597. Cerca con Google

[299] E. van Lenthe, J. G. Snijders, E. J. Baerends, The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules, J. Chem. Phys., 1996, 105(15), 6505. Cerca con Google

[300] M. Jansen, Effect of relativistic motion of electrons on the chemistry of gold and platinum, Solid State Sci., 2005, 7, 1464. Cerca con Google

[301] P. Pyykko, Theoretical chemistry of gold, Angew. Chem. In. Ed., 2004, 43, 4412. Cerca con Google

[302] D. C. Calabro, B. A. Harrison, G. Todd Palmer, M. K. Moguel, R. L. Rebbert, J. L. Burmeister, Thiocyanation, selenocyanation, and halogenation reactions of dithiocarbamate complexes of gold(I) and silver(I). Generation of gold(II) and silver(II) complexes, Inorg. Chem., 1981, 20, 4311. Cerca con Google

[303] A. Laguna, M. Laguna, Coordination chemistry of gold(II) complexes, Coord. Chem. Rev., 1999, 193-195, 837. Cerca con Google

[304] Z. Huaizhi, N. Yuantao, China’s ancient gold drugs, Gold Bull., 2001, 34(1), 24. Cerca con Google

[305] G. J. Higby, Gold in medicine. A review of its use in the west before 1900, Gold Bull., 1982, 15(4), 130. Cerca con Google

[306] T. G. Benedek, The history of gold therapy for tuberculosis, J. Hist. Med. Allied. Sci., 2004, 59, 50. Cerca con Google

[307] A. R. Sannella, a. Casini, C. Gabbiani, L. Messori, A. R. Bilia, F. F. Vincieri, G. Majori, C. Severini, New uses for old drugd. Auranofin, a clinically established antiarthritic metallodrug, exhibits antimalarial effects in vitro: mechanistic and pharmacological implications, FEBS Lett., 2008, 582, 844. Cerca con Google

[308] A. Chircorian, A. M. Barrios, Inhibition of lysosomal cysteineby chrysotherapeutic compounds: a possible mechanism for the antiarthritic activity of Au(I), Bioorg. Med. Chem. Lett., 2004, 14, 5113. Cerca con Google

[309] E. Weidauer, Y. Yasuda, B. K. Biswal, M. Cherny, M. N. James, D. Bromme, Effect of disease modifying anti-rheumatic drugs (DMARDs) on the activities of rheumatoid arthritis-associated cathepsins K and S, Biol. Chem., 2007, 388, 331. Cerca con Google

[310] S. Gromer, L. D. Arscott, C. H. Williams Jr., R. H. Schirmer, K. Becker, Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds, J. Biol. Chem., 1998, 273, 20096. Cerca con Google

[311] K. Becker, S. Gromer, R. H. Schirmer, S. Muller, Thioredoxin reductase as a pathophysiological factor and drug target, Eur. J. Biochem., 2000, 267(20), 6118. Cerca con Google

[312] A. Bindoli, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini, L. Messori, Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs, Coord. Chem. Rev., 2009, 253, 11-12, 1692. Cerca con Google

[313] I. Ott, On the medicinal chemistry of gold complexes as anticancer agents, Coord. Chem. Rev., 2009, 253, 1670. Cerca con Google

[314] T. Zou, C. T. Lum, C.-N. Lok, J.-J. Zhang, C.-M. Che, Chemical biology of anticancer gold(III) and gold(I) complexes, Chem. Soc. Rev., 2015, 44, 8786. Cerca con Google

[315] C. Nardon, N. Pettenuzzo, D. Fregona, Gold complexes for therapeutic purpose: an updated patent review (2010-2015), Curr. Med. Chem., 2016, 23(29), 3374. Cerca con Google

[316] M. Stallings-Mann, L. Jamieson, R. P. Regala, C. Weems, N. R. Murray, A. P. Fields, A novel small-molecule inhibitor of protein kinase CI blocks transformed growth of non-small-cell lung cancer cells, Cancer Res., 2006, 66, 1767. Cerca con Google

[317] A. F. Oryschak, F. N. Ghadially, Aurosome formation in articular tissues after parental administration of gold, J. Path., 1976, 119, 183. Cerca con Google

[318] F. N. Ghadially, The aurosome, J. Rheumatol. Suppl., 1979, 5, 45. Cerca con Google

[319] S. J. Berners-Price, A. Filipovska, Gold compounds as therapeutic agents for human disease, Metallomics, 2011, 3, 863. Cerca con Google

[320] B. Bertrand, A. Casini, A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds, Dalton Trans., 2014, 43, 4209. Cerca con Google

[321] J. Henry-Mowatt, C. Dive, J.-C. Martinou, D. James, Role of mitochondrial membrane permeabilization in apoptosis and cancer, Oncogene, 2004, 23, 2850. Cerca con Google

[322] V. Andemark, K. Goke, M. Kokoschka, M. A. Abu el Maaty, C. T. Lum, T. Zou, R. Wai-Tin Sun, E. Aguilo, L. Oehninger, L. Rodriguez, H. Bunjes, S. Wolfi, C.-M. Che, I. Ott, Alkynyl gold(I) phosphane complexes: evaluation of structure-activity-relationship for the phosphane ligands, effects on key signaling proteins and preliminary in-vivo studies with a nanoformulated complex, J. Inorg. Biochem., 2016, 160, 140. Cerca con Google

[323] K. Yan, C.-N. Lok, K. Bierla, C.-M. Che, Gold(I) complexes of N,N’-disubstituted cyclic thiourea with in vitro and in vivo anticancer properties – potent tight-binding inhibition of tioredoxin reductase, Chem. Commun., 2010, 46, 7691. Cerca con Google

[324] P. I. da Silva Maia, V. M. Deflon, U. Abram, Gold(III) complexes in medicinal chemistry, Fut. Med. Chem., 2014, 6(13), 1515. Cerca con Google

[325] A. de Almeida, L. Oliveira, J. Correia, G. Soveral, A. Casini, Emerging protein targets for metal-based pharmaceutical agents: an update, Coord. Chem. Rev., 2013, 257, 2689. Cerca con Google

[326] G. Marcon, S. Carotti, M. Coronnello, L. Messori, E. Mini, P. Orioli, T. Mazzei, M. A. Cinellu, G. Minghetti, Gold(III) complexes with pipyridil ligands: solution chemistry, cytotoxicity, and DNA binding properties, J. Med. Chem., 2002, 45, 1672. Cerca con Google

[327] C. T. Lum, A. S. Wong, M. C. Lin, C.-M. Che, R. W. Sun, A gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells, Chem. Commun., 2013, 49(39), 4364. Cerca con Google

[328] R. Sun, C.-N. Lok, T. Fong, C. Li, Z. Fan Yang, T. Zou, A. Siu, C.-M. Che, A dinuclear cyclometalated gold(III)-phosphine complex targeting thioredoxin reductase inhibits hepatocellular carcinoma in vivo, Chem. Sci., 2013, 4, 1979. Cerca con Google

[329] R. G. Buckley, A. M. Elsome, S. P. Fricker, G. R. Henderson, B. R. C. Theobald, R. V. Parish, B. P. Howe, L. R. Kelland, Antitumor properties of some 2-[(dimethylamino)methyl]phenylgold(III) complexes, J. Med. Chem., 1996, 39, 5208. Cerca con Google

[330] T. Zou, C. T. Lum, S. Chui, C.-M. Che, Gold(III) complexes containing N-heterocyclic carbene ligands: thiol “switch-on” fluorescent probes and anticancer agents, Angew. Chem. Int. Ed., 2013, 52, 2930. Cerca con Google

[331] C. Nardon, G. Boscutti, D. Fregona, Beyond platinums: gold complexes as anticancer agents, Anticancer Res., 2014, 34(1), 487. Cerca con Google

[332] C. Nardon, S. M. Schmitt, H. Yang, J. Zuo, D. Fregona, Q. P. Dou, Gold(III)-dithiocarbamato peptidomimetics in the forefront of the targeted anticancer therapy: preclinical studies against human breast neoplasia, Plos ONE, 2014, 9, e84248. Cerca con Google

[333] L. Ronconi, D. Aldinucci, Q. P. Dou, D. Fregona, Latest insight into the reactivity of gold(III)-dithiocarbamato complexes, Anticancer Agents Med. Chem., 2010, 10, 283. Cerca con Google

[334] M. Delepine, Thiosulfocarbamates métalliques: preparation des sulfocarbimides de la série grasse, Compt. Rend., 1907, 144, 1125. Cerca con Google

[335] A. Burawoy, C. S. Gibson, The organic compounds of gold. Part IV. N-propyl compounds, J. Chem. Soc., 1935, 219. Cerca con Google

[336] H. J. A. Blaauw, R. J. F. Nivard, G. J. M. van der Kerk, Syntheses and properties of dihalogold(III) N,N-dialkyldithiocarbamates and dialkylgold(IIII) N,N-dialkyldithiocarbamates, J. Organomet. Chem., 1964, 2, 236. Cerca con Google

[337] P. T. Beurskens, H. J. A. Blauw, J. A. Cras, J. J. Steggerda, Preparation, structure and properties of bis(N,N-di-n-buthyldithiocarbamato)gold(III) dihaloaurate(I), Inorg. Chem., 1968, 7(4), 805. Cerca con Google

[338] P. T. Beurskens, J. A. Cras, J. J. Steggerda, Structure and properties of dibromo-N,N-di-n-buthyldithiocarbamato complexes of copper(III) and gold(III), Inorg. Chem., 1968, 7(4), 810. Cerca con Google

[339] P. T. Beurskens, J. A. Cras, J. G. M. van der Linden, Preparation, structure, and properties of bis(N,N- di-n-buthyldithiocarbamato)gold(III) bromide and bis(N,N- di-n-buthyldithiocarbamato)gold(III) tetrabromoaurate(III), 1970, Inorg. Chem., 1970, 9(3), 475. Cerca con Google

[340] F. Forghieri, C. Preti, L. Tassi, G. Tosi, Preparation, properties and reactivity of gold complexes with some heterocyclic dithiocarbamates as ligands, Polyhedron, 1988, 7(14), 1231. Cerca con Google

[341] V. Milacic, D. Fregona, Q. P. Dou, Gold complexes as prospective metal-based anticancer drugs, Histol. Histopathol., 2008, 23(1), 101. Cerca con Google

[342] D. Fregona, L. Ronconi, The Midas touch in cancer chemotherapy: from platinum- to gold-dithiocarbamato complexes, 2009, Dalton Trans., 48, 10670. Cerca con Google

[343] A. A. Mohamed, A. E. Bruce, M. R. M. Bruce, The electrochemistry of gold and silver complexes, in Patai’s chemistry of functional groups, 2009, John Wiley & Soons. Cerca con Google

[344] L. Cattaruzza, D. Fregona, M. Mongiat, L. Ronconi, A. Fassina, A. Colombatti, D. Aldinucci, Antitumor activity of gold(III)-dithiocarbamato derivatives on prostate cancer cells and xenografts, Int. J. Cancer, 2011, 128, 206. Cerca con Google

[345] C. Marzano, L. Ronconi, F. Chiara, M. C. Giron, I. Faustinelli, P. Cristofori, A. Trevisan, D. Fregona, Gold(III)-dithiocarbamato anticancer agents: activity, toxicological and histopathological studies in rodents, Int. J. Cancer, 2011, 129, 487. Cerca con Google

[346] C. Nardon, D. Fregona, Gold(III) complexes in the oncological preclinical arena: from aminoderivatives to peptidomimetics, Curr. Top. Med. Chem., 2016, 16, 360. Cerca con Google

[347] C. U. Nielsen, B. Brodin, F. S. Jorgensen, S. Frokjaer, B. Steffansen, Human peptide transporters: therapeutic applications, Expert Opin. Ther. Patents, 2002, 12, 1329. Cerca con Google

[348] M. Celegato, D. Fregona, M. Mongiat, L. Ronconi, C. Borgese, V. Canzonieri, N. Casagrande, C. Nardon, A. Colombatti, D. Aldinucci, Preclinical activity of multiple-targeted gold(III)-dithiocarbamato peptidomimetics in prostate cancer cells and xenografts, Fut. Med. Chem., 2014, 6, 1249. Cerca con Google

[349] V. Milacic, D. Chen, L. Ronconi, K. R. Landis-Piwowar, D. Fregona, Q. P. Dou, A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts, Cancer Res., 2006, 66, 10478. Cerca con Google

[350] D. Saggioro, M. P. Rigobello, L. Paloschi, A. Folda, S. A. Moggach, S. Parsons, L. Ronconi, D. Fregona, A. Bindoli, Gold(III)-dithiocarbamato complexes induce cancer cell death triggered by thioredoxin redox system inhibition and activation of ERK pathway, Chem. Biol., 2007, 14, 1128. Cerca con Google

[351] L. Cattalini, G. Chessa, G. Michelon, B. Pitteri, M. L. Tobe, A. Zanardo, Ligand substitution kinetics and equilibria in the systems formed by tetrabromoaurate(III) anion and heterocyclic nitrogen donors, Inorg. Chem., 1985, 24(21), 3409. Cerca con Google

[352] H. W. Chen, C. Paparizos, J. P. Fackler Jr., Dimethylgold(III) complexes. Synthesis of several compounds with AuC2S2 coordination. The crystal and molecular structure of [(CH3)2AuSC2H5]2, Inorg. Chim. Acta, 1985, 96, 137. Cerca con Google

[353] F. Basolo, Substitution reactions of square planar complexes, in Mechanism of Inorganic Reactions, 1965, Advances in Chemistry 49(4), 81, J. Kleinberg, R. K. Murmann, R. T. M. fraser, J. Bauman eds. Cerca con Google

[354] J. Cordon, G. Jimenez-Oses, J. M. Lopez de Luzuiaga, M. Monge, M. E. Olmos, D. Pascual, Experimental and theoretical study of gold(III)-catalyzed hydration of alkynes, Organometallics, 2014, 33, 3823. Cerca con Google

[355] D. D. Heinrich, J.-C. Wang, J. P. Fackler Jr., Stricture of Au2[S2CN(C2H5)2]2 bis(diethyldithiocarbamate)digold(I), Acta Cryst., 1990, C46, 1444. Cerca con Google

[356] M. Altaf, A. A. Isab, J. Vanco, Z. Dvorak, Z. Travnicek, H. Stoeckli-Evans, Synthesis, characterization and in vitro cytotoxicity of gold(III) dialkyl/diaryldithiocarbamato complexes, RSC Adv., 2015, 5(99), 81599. Cerca con Google

[357] F. A. Allen, O. Kennard, D. G. Watson, L. Brammer, A. Guy Orpen, R. Taylor, Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds, J. Chem. Soc., Perkin Trans. 2, 1987, S1. Cerca con Google

[358] H. Schmidbaur, The aurophilicity phenomenon: a decade of experimental findings, theoretical concepts and emerging application, Gold Bull., 2000, 33(1), 3. Cerca con Google

[359] L. Ronconi, C. Maccato, D. Barreca, R. Saini, M. Zancato, D. Fregona, Gold(III) dithiocarbamate derivatives of N-methylglycine: an experimental and theoretical investigation, Polyhedron, 2005, 24, 521. Cerca con Google

[360] F. K. Keter, I. A. Guzei, M. Nell, W. E. van Zyl, J. Darkwa, Phosphinogold(I) dithiocarbamate complexes: effect of the nature of phosphine ligand on anticancer properties, Inorg. Chem., 2014, 53, 2058. Cerca con Google

[361] R. Hesse, P. Jennische, The crystal and molecular structure of the gold(I) dipropyldithiocarbmatae dimer, Acta Chem. Scand., 1972, 26, 3855. Cerca con Google

[362] H. O. Desseyn, A. C. Fabretti, F. Forghieri, C. Preti, Isotopic infrared study of some nickel(II) and copper(II) complexes containing heterocyclic dithiocarbamate ligands, Spectrochim. Acta A, 1985, 41, 1105. Cerca con Google

[363] A. Lapinski, R. Swietlik, L. A. Kushch, Infrared spectra of [Ni(dddt)2]3(AuBr2)2 and [Pd(dddt)2]2X (X= TeCl6, SbF6, AuBr2) crystals, Adv. Funct. Mat., 1996, 6, 321. Cerca con Google

[364] A. Sabatini, L. Sacconi, V. Schettino, Far-infrared spectra and vibrational force constants of the ions AuCl4-, AuBr4- and PtCl42, Inorg. Chem., 1964, 3(12), 1775. Cerca con Google

[365] H. B. Gray, C. J. Ballhausen, A molecular orbital theory for square planar metal complexes, Inorg. Chem., 1963, 85(5), 260. Cerca con Google

[366] W. R. Mason III, H. B. Gray, Electronic structures and spectra of square-planar gold(III) complexes, Inorg. Chem., 1968, 7(1), 55. Cerca con Google

[367] D.H. Brown, G. C. McKinlay, W.E. Smith, The electronic spectra of some gold(III) complexes, Iorg. Chim. Acta, 1979, 32, 117. Cerca con Google

[368] C. C. Hadjikostas, G. A. Katsoulos, S. K. Shakatreh, Synthesis and spectral studies of some new palladium(II) and platinum(II) dithiocarbamato complexes. Reactions of bases with the corresponding N-alkyldithiocarbamates, Inorg. Chim. Acta, 1987, 133, 129. Cerca con Google

[369] A. K. Gangopadhayay, A. Chakravorty, Charge transfer spectra of some gold(III) complexes, J. Chem. Phys., 1961, 35, 2206. Cerca con Google

[370] R. Narayanaswamy, M. A. Young, E. Parkhurst, M. Ouellette, M. E. Kerr, M. H. Douglas, R. C. Elder, A. E. Bruce,M. R. M. Bruce, Synthesis, structure, and electronic spectroscopy of neutral, dinuclear gold(I) complexes. Gold(I)-gold(I) interactions in solution and in the solid state, Inorg. Chem., 1993, 32, 2506. Cerca con Google

[371] H.-R. Jaw, M. M. Savas, W. R. Mason, Electronic absorption and MCD spectra for the binuclear three-coordinate gold(I) complex Au2(dmpm)32+ (dmpm = bis(dimethylphosphino)methane), Inorg. Chem., 1989, Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record