Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Maiorani, Orlando (2017) EMILIN1 role in tumor growth after enzymatic degradation. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
5Mb

Abstract (english)

EMILIN1 is a ECM glycoprotein involved in several cellular processes. In particular, EMILIN1 is involved in elastogenesis processes and in the maintenance of lymphatic vessels structures. EMILIN1 presents several regulatory properties exercised through its EMI domain that is located at N-terminal region and is able to regulate homeostasis of blood pressure, and its gC1q domain located at C-terminal region. In particular, gC1q domain is involved in the regulation of both cell adhesion and cell proliferation through the binding with α4β1 integrin. EMILIN1-/- mice present an increase of tumoral cell proliferation; this is due to the loss of the interaction between gC1q domain-α4β1 integrin, that determines the activation of the MAPK pathway, resulting in upregulation of cell proliferation. Studies previously published in our laboratory demonstrated that neutrophil elastase, released by neutrophils present in tumor microenvironment, is able to degrade EMILIN1 resulting in the loss of its regulatory functions.
Other authors have proposed EMILIN1 a possible substrate of several matrix metalloproteinases: matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase 14 (MT1-MMP). We demonstrated that among these MMPs only MT1-MMP shows a weak proteolytic activity on EMILIN1. Moreover, we observed that MT1-MMP was not able to impair EMILIN1 functions. On the contrary we observe that the digestion of EMILIN1 with neutrophil elastase was able to impair EMILIN1 tumor suppressor role. At this step, we wanted to analyze the capability of neutrophil elastase to degrade the gC1q domain. We digested the gC1q domain with several proteases and we observed that among the tested proteases only neutrophil elastase was able to degrade the gC1q domain and to impair its functionality. Thus, we wanted to pinpoint the neutrophil elastase cleavage site on gC1q domain, in order to generate a mutant of gC1q domain resistant to neutrophil elastase cleavage. We consulted several peptidase database that contained predicted neutrophile elastase cleavage sites, on these basis we generated several gC1q mutants. Among these mutants that generated, we found that the mutant R914W, in which aminoacid arginine was substituted with aminoacid tryptophan, was resistant to neutrophil elastase cleavage. Functional adhesion and proliferation assays confirmed the capability of R914 mutant to maintain its properties after neutrophil elastase treatment.

Abstract (italian)

EMILIN1 è una glicoproteina della matrice extracellulare coinvolta in molti processi cellulari. Nella sua interezza è in grado di governare processi di elastogenesi dei tessuti e ha un ruolo importante nella regolazione della struttura dei vasi linfatici. Inoltre, è una proteina multi dominio, e, grazie ai suoi diversi domini funzionali, regola numerosi altri processi. Ad esempio, EMILIN1 regola l’omeostasi della pressione sanguigna tramite il suo dominio N-terminale, chiamato EMI domain; la regolazione dell’adesione e della proliferazione cellulare, invece, avviene tramite l’interazione tra il suo dominio C-terminale, chiamato gC1q, e l’integrina α4β1. L’effetto dell’interazione del dominio gC1q con l’integrina α4β1 è del tutto peculiare. Generalmente l’interazione delle molecole della matrice extracellulare con i recettori integrinici determina un aumento della proliferazione piuttosto una diminuizione come nel caso dell’interazione gC1q l’integrina α4β1. Studi condotti su topi EMILIN1-/- in cui non è possibile l’interazione gC1q-integrina α4β1, hanno messo in evidenza l’attivazione del pathway delle MAP chinasi, che induce un aumento della proliferazione cellulare. Dati precedentemente pubblicati nel nostro laboratorio hanno dimostrato che nel microambiente tumorale EMILIN1 viene degradata dalla elastasi rilasciata dai neutrofili, perdendo così le sue proprietà funzionali. Altri autori hanno ipotizzato, mediante l’uso di un approccio proteomico, che EMILIN1 può essere un substrato di alcune metalloproteasi, in particolare le metalloproteasi 3, 9 e 14. Nel presente lavoro si dimostra che queste tre metalloproteasi non sono in grado di svolgere un’ azione proteolitica rilevante. Tra queste tre metalloproteasi, infatti, soltanto la metalloproteasi 14 sembra esercitare un’azione proteolitica, anche se minima, su EMILIN1. Questa attività proteolitica comunque non è paragonabile a quella esercitata dall’elastasi neutrofila, ed inoltre, cosa ancora più importante, le proprietà funzionali di EMILIN1 non vengono compromesse dopo il trattamento della proteina con la metalloproteasi 14, come è stato dimostrato mediante saggi di adesione e proliferazione cellulare. Al contrario, il trattamento con l’elastasi neutrofila determina la perdita delle proprietà regolatorie di EMILIN1, causando una diminuzione dell’adesione ed un aumento della proliferazione cellulare e suggerendo che la degradazione avviene nel dominio gC1q. Tra gli enzimi testati, infatti, solo l’elastasi neutrofila è in grado di degradare e, quindi, compromettere le funzioni regolatorie del dominio funzionale gC1q. E’ nata, quindi, l’esigenza di identificare il sito/i di taglio dell’elastasi neutrofila sul dominio funzionale gC1, per poi, costruire un mutante resistente all’azione proteolitica dell’elastasi neutrofila. Consultando vari database riportanti i siti di taglio predetti sperimentalmente dell’elastasi neutrofila e mediante un approccio di mutagenesi sito-specifica, abbiamo creato vari mutanti. Tra questi un mutante che presentava la sostituzione dell’aminoacido arginina con l’aminoacido triptofano, il mutante R914W, si è dimostrato resistente all’azione proteolitica dell’elastasi neutrofila. Saggi funzionali di adesione e proliferazione hanno confermato la capacità, da parte di questo mutante, di preservare le sue proprietà regolatorie.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Bernardi, Paolo
Ph.D. course:Ciclo 29 > Corsi 29 > BIOSCIENZE E BIOTECNOLOGIE
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:EMILIN1, Extracellular matrix, Neutrophil elastase, Matrix metalloproteinase EMILIN1, Matrice extracellulare, elastasi neutrofila, metalloproteinasi
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:10314
Depositato il:06 Nov 2017 15:23
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

References Cerca con Google

[1] D. Hubmacher and S. S. Apte, “The biology of the extracellular matrix: novel insights.,” Curr. Opin. Rheumatol., vol. 25, no. 1, pp. 65–70, 2013. Cerca con Google

[2] R. P. Mecham, “Overview of extracellular matrix,” Curr. Protoc. Cell Biol., no. SUPPL.57, 2012. Cerca con Google

[3] J. D. Humphrey, E. R. Dufresne, and M. a. Schwartz, “Mechanotransduction and extracellular matrix homeostasis,” Nat. Rev. Mol. Cell Biol., vol. 15, no. 12, pp. 802–812, 2014. Cerca con Google

[4] J. Rosenbloom, W. R. Abrams, and R. Mecham, “Extracellular matrix 4: the elastic fiber.,” FASEB J., vol. 7, pp. 1208–1218, 1993. Cerca con Google

[5] M. A. Gibson, G. Hatzinikolas, J. S. Kumaratilake, L. B. Sandberg, J. K. Nicholl, G. R. Sutherland, and E. G. Cleary, “Further characterization of proteins associated with elastic fiber microfibrils including the molecular cloning of MAGP-2 (MP25),” J. Biol. Chem., vol. 271, no. 2, pp. 1096–1103, 1996. Cerca con Google

[6] G. M. Bressan, D. Daga-Gordini, A. Colombatti, I. Castellani, V. Marigo, and D. Volpin, “Emilin, a component of elastic fibers preferentially located at the elastin-microfibrils interface,” J. Cell Biol., vol. 121, no. 1, pp. 201–212, 1993. Cerca con Google

[7] P. N. Robinson and M. Godfrey, “The molecular genetics of Marfan syndrome and related microfibrillopathies.,” J. Med. Genet., vol. 37, no. 1, pp. 9–25, 2000. Cerca con Google

[8] G. Veit, B. Kobbe, D. R. Keene, M. Paulsson, M. Koch, and R. Wagener, “Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain,” J. Biol. Chem., vol. 281, no. 6, pp. 3494–3504, 2006. Cerca con Google

[9] J. Brinckmann, “Collagens at a glance,” Topics in Current Chemistry, vol. 247. pp. 1–6, 2005. Cerca con Google

[10] S. Ricard-Blum, F. Ruggiero, and M. Van Der Rest, “The collagen superfamily,” Top. Curr. Chem., vol. 247, pp. 35–84, 2005. Cerca con Google

[11] D. E. Birk, “Type V collagen: Heterotypic type I/V collagen interactions in the regulation of fibril assembly,” Micron, vol. 32, no. 3. pp. 223–237, 2001. Cerca con Google

[12] S. Chakravarti, T. Magnuson, J. H. Lass, K. J. Jepsen, C. LaMantia, and H. Carroll, “Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican,” J. Cell Biol., vol. 141, no. 5, pp. 1277–1286, 1998. Cerca con Google

[13] F. H. Silver, J. W. Freeman, and G. P. Seehra, “Collagen self-assembly and the development of tendon mechanical properties,” Journal of Biomechanics, vol. 36, no. 10. pp. 1529–1553, 2003. Cerca con Google

[14] W. HENKEL and R. W. GLANVILLE, “Covalent Crosslinking between Molecules of Type I and Type III Collagen. The Involvement of the N-Terminal, Nonhelical Regions of the alphal(I) and al(III) Chains in the Formation of Intermolecular Crosslinks,” Eur. J. Biochem., vol. 122, no. 1, pp. 205–213, 1982. Cerca con Google

[15] A. J. Bailey, S. Bazin, T. J. Sims, M. Le Lous, C. Nicoletis, and A. Delaunay, “Characterization of the collagen of human hypertrophic and normal scars,” BBA - Protein Struct., vol. 405, no. 2, pp. 412–421, 1975. Cerca con Google

[16] T. Moriguchi and D. Fujimoto, “Crosslink of collagen in hypertrophic scar,” J. Invest. Dermatol., vol. 72, no. 3, pp. 143–145, 1979. Cerca con Google

[17] K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. T. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, and V. M. Weaver, “Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling,” Cell, vol. 139, no. 5, pp. 891–906, 2009. Cerca con Google

[18] R. Fleischmajer, S. Gay, J. S. Perlish, and J. P. Cesarini, “Immunoelectron microscopy of type III collagen in normal and scleroderma skin,” J. Invest. Dermatol., vol. 75, no. 2, pp. 189–191, 1980. Cerca con Google

[19] B. Sykes, B. Puddle, M. Francis, and R. Smith, “The estimation of two collagens from human dermis by interrupted gel electrophoresis,” Biochem. Biophys. Res. Commun., vol. 72, no. 4, pp. 1472–1480, 1976. Cerca con Google

[20] T. H. E. Occurrence, O. F. Collagen, and I. N. Reticulin, “SEROLOGICAL AND IMMUNOHISTOLOGICAL INVESTIGATION OF THE OCCURRENCE OF COLLAGEN TYPE III , FIBRONECTIN AND THE NON-COLLAGENOUS GLYCOPROTEIN OF PRAS AND GLYNN,” pp. 154–166, 1982. Cerca con Google

[21] G. S. Montes, R. M. Krisztán, K. M. Shigihara, R. Tokoro, P. A. S. Mourão, and L. C. U. Junqueira, “Histochemical and morphological characterization of reticular fibers,” Histochemistry, vol. 65, no. 2, pp. 131–141, 1980. Cerca con Google

[22] T. Ushiki, “Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint.,” Archives of Histology and Cytology, vol. 65, no. 2. pp. 109–126, 2002. Cerca con Google

[23] J. E. Wagenseil and R. P. Mecham, “New insights into elastic fiber assembly,” Birth Defects Research Part C - Embryo Today: Reviews, vol. 81, no. 4. pp. 229–240, 2007. Cerca con Google

[24] P. J. McLaughlin, Q. Chen, M. Horiguchi, B. C. Starcher, J. B. Stanton, T. J. Broekelmann, A. D. Marmorstein, B. McKay, R. Mecham, T. Nakamura, and L. Y. Marmorstein, “Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice.,” Mol. Cell. Biol., vol. 26, no. 5, pp. 1700–9, 2006. Cerca con Google

[25] B. A. Kozel, B. J. Rongish, A. Czirok, J. Zach, C. D. Little, E. C. Davis, R. H. Knutsen, J. E. Wagenseil, M. A. Levy, and R. P. Mecham, “Elastic fiber formation: A dynamic view of extracellular matrix assembly using timer reporters,” J. Cell. Physiol., vol. 207, no. 1, pp. 87–96, 2006. Cerca con Google

[26] L. Shapiro and P. E. Scherer, “The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor,” Curr. Biol., vol. 8, no. 6, pp. 335–340, 1998. Cerca con Google

[27] U. Kishore, C. Gaboriaud, P. Waters, A. K. Shrive, T. J. Greenhough, K. B. M. Reid, R. B. Sim, and G. J. Arlaud, “C1q and tumor necrosis factor superfamily: Modularity and versatility,” Trends in Immunology, vol. 25, no. 10. pp. 551–561, 2004. Cerca con Google

[28] R. Doliana, M. Mongiat, F. Bucciotti, E. Giacomello, R. Deutzmann, D. Volpin, G. M. Bressan, and A. Colombatti, “EMILIN, a component of the elastic fiber and a new member of the C1q/tumor necrosis factor superfamily of proteins,” J. Biol. Chem., vol. 274, no. 24, pp. 16773–16781, 1999. Cerca con Google

[29] Y. T. Tang, T. Hu, M. Arterburn, B. Boyle, J. M. Bright, S. Palencia, P. C. Emtage, and W. D. Funk, “The complete complement of C1q-domain-containing proteins in Homo sapiens,” Genomics, vol. 86, no. 1, pp. 100–111, 2005. Cerca con Google

[30] R. Ghai, P. Waters, L. T. Roumenina, M. Gadjeva, M. S. Kojouharova, K. B. M. Reid, R. B. Sim, and U. Kishore, “C1q and its growing family,” Immunobiology, vol. 212, no. 4–5, pp. 253–266, 2007. Cerca con Google

[31] A. Colombatti, G. M. Bressan, I. Castellani, and D. Volpin, “Glycoprotein 115, a glycoprotein isolated from chick blood vessels, is widely distributed in connective tissue,” J. Cell Biol., vol. 100, no. 1, pp. 18–26, 1985. Cerca con Google

[32] R. Doliana, S. Bot, G. Mungiguerra, A. Canton, S. Paron Cilli, and A. Colombatti, “Isolation and Characterization of EMILIN-2, a New Component of the Growing EMILINs Family and a Member of the EMI Domain-containing Superfamily,” J. Biol. Chem., vol. 276, no. 15, pp. 12003–12011, 2001. Cerca con Google

[33] C. P. M. Hay Ward, J. W. Smith, P. Horsewood, T. E. Warkentin, and J. G. Kelton, “p-155, a multimeric platelet protein that is expressed on activated platelets,” J. Biol. Chem., vol. 266, no. 11, pp. 7114–7120, 1991. Cerca con Google

[34] D. B. Kershaw, P. E. Thomas, B. L. Wharram, M. Goyal, J. E. Wiggins, C. I. Whiteside, and R. C. Wiggins, “Molecular cloning, expression, and characterization of podocalyxin-like protein 1 from rabbit as a transmembrane protein of glomerular podocytes and vascular endothelium,” J. Biol. Chem., vol. 270, no. 49, pp. 29439–29446, 1995. Cerca con Google

[35] C. Leimeister, C. Steidl, N. Schumacher, S. Erhard, and M. Gessler, “Developmental Expression and Biochemical Characterization of Emu Family Members,” Dev. Biol., vol. 249, no. 2, pp. 204–218, 2002. Cerca con Google

[36] G. M. Bressan, I. Castellani, A. Colombatti, and D. Volpin, “Isolation and characterization of a 115,000-dalton matrix-associated glycoprotein from chick aorta,” J. Biol. Chem., vol. 258, no. 21, pp. 13262–13267, 1983. Cerca con Google

[37] M. Mongiat, G. Mungiguerra, S. Bot, M. T. Mucignat, E. Giacomello, R. Doliana, and A. Colombatti, “Self-assembly and supramolecular organization of EMILIN,” J. Biol. Chem., vol. 275, no. 33, pp. 25471–25480, 2000. Cerca con Google

[38] J. M. Hurle, G. Corson, K. Daniels, R. S. Reiter, L. Y. Sakai, and M. Solursh, “Elastin exhibits a distinctive temporal and spatial pattern of distribution in the developing chick limb in association with the establishment of the cartilaginous skeleton.,” J. Cell Sci., vol. 107 ( Pt 9, pp. 2623–34, 1994. Cerca con Google

[39] J. M. Hurle and a Colombatti, “Extracellular matrix modifications in the interdigital spaces of the chick embryo leg bud during the formation of ectopic digits.,” Anat. Embryol. (Berl)., vol. 193, no. 4, pp. 355–64, 1996. Cerca con Google

[40] R. Doliana, S. Bot, P. Bonaldo, and A. Colombatti, “EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization,” FEBS Lett., vol. 484, no. 2, pp. 164–168, 2000. Cerca con Google

[41] A. Colombatti, R. Doliana, S. Bot, A. Canton, M. Mongiat, G. Mungiguerra, S. Paron-Cilli, and P. Spessotto, “The EMILIN protein family,” Matrix Biology, vol. 19, no. 4. pp. 289–301, 2000. Cerca con Google

[42] B. Berger, D. B. Wilson, E. Wolf, T. Tonchev, M. Milla, and P. S. Kim, “Predicting coiled coils by use of pairwise residue correlations.,” Proc. Natl. Acad. Sci. U. S. A., vol. 92, no. 18, pp. 8259–8263, 1995. Cerca con Google

[43] E. Wolf, P. S. Kim, and B. Berger, “MultiCoil: a program for predicting two- and three-stranded coiled coils.,” Protein Sci., vol. 6, no. 6, pp. 1179–89, 1997. Cerca con Google

[44] S. D. Zhang, J. Kassis, B. Olde, D. M. Mellerick, and W. F. Odenwald, “Pollux, a novel Drosophila adhesion molecule, belongs to a family of proteins expressed in plants, yeast, nematodes, and man,” Genes Dev., vol. 10, no. 9, pp. 1108–1119, 1996. Cerca con Google

[45] J. A. Pearlman, P. A. Powaser, S. J. Elledge, and C. T. Caskey, “Troponin T is capable of binding dystrophin via a leucine zipper,” FEBS Lett., vol. 354, no. 2, pp. 183–186, 1994. Cerca con Google

[46] P. Spessotto, M. Cervi, M. T. Mucignat, G. Mungiguerra, I. Sartoretto, R. Doliana, and A. Colombatti, “β1 integrin-dependent cell adhesion to EMILIN-1 is mediated by the gC1q domain,” J. Biol. Chem., vol. 278, no. 8, pp. 6160–6167, 2003. Cerca con Google

[47] L. Zacchigna, C. Vecchione, A. Notte, M. Cordenonsi, S. Dupont, S. Maretto, G. Cifelli, A. Ferrari, A. Maffei, C. Fabbro, P. Braghetta, G. Marino, G. Selvetella, A. Aretini, C. Colonnese, U. Bettarini, G. Russo, S. Soligo, M. Adorno, P. Bonaldo, D. Volpin, S. Piccolo, G. Lembo, and G. M. Bressan, “Emilin1 links TGF- β maturation to blood pressure homeostasis,” Cell, vol. 124, no. 5, pp. 929–942, 2006. Cerca con Google

[48] C. Danussi, P. Spessotto, A. Petrucco, B. Wassermann, P. Sabatelli, M. Montesi, R. Doliana, G. M. Bressan, and A. Colombatti, “Emilin1 deficiency causes structural and functional defects of lymphatic vasculature.,” Mol. Cell. Biol., vol. 28, no. 12, pp. 4026–39, 2008. Cerca con Google

[49] C. Danussi, A. Petrucco, B. Wassermann, E. Pivetta, T. M. E. Modica, L. D. B. Belluz, A. Colombatti, and P. Spessotto, “EMILIN1-α4/α9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation,” J. Cell Biol., vol. 195, no. 1, pp. 131–145, 2011. Cerca con Google

[50] M. Zanetti, P. Braghetta, P. Sabatelli, I. Mura, R. Doliana, A. Colombatti, D. Volpin, P. Bonaldo, and G. M. Bressan, “EMILIN-1 deficiency induces elastogenesis and vascular cell defects.,” Mol. Cell. Biol., vol. 24, no. 2, pp. 638–50, 2004. Cerca con Google

[51] M. A. Swartz and M. Skobe, “Lymphatic function, lymphangiogenesis, and cancer metastasis,” Microsc. Res. Tech., vol. 55, no. 2, pp. 92–99, 2001. Cerca con Google

[52] P. Pelosi, P. R. M. Rocco, D. Negrini, and A. Passi, “The extracellular matrix of the lung and its role in edema formation,” An. Acad. Bras. Cienc., vol. 79, no. 2, pp. 285–297, 2007. Cerca con Google

[53] P. Spessotto, R. Bulla, C. Danussi, O. Radillo, M. Cervi, G. Monami, F. Bossi, F. Tedesco, R. Doliana, and A. Colombatti, “EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall.,” J. Cell Sci., vol. 119, no. Pt 21, pp. 4574–84, 2006. Cerca con Google

[54] G. Verdone, A. Corazza, S. A. Colebrooke, D. Cicero, T. Eliseo, J. Boyd, R. Doliana, F. Fogolari, P. Viglino, A. Colombatti, I. D. Campbell, and G. Esposito, “NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1,” J. Biomol. NMR, vol. 43, no. 2, pp. 79–96, 2009. Cerca con Google

[55] G. Verdone, R. Doliana, A. Corazza, S. A. Colebrooke, P. Spessotto, S. Bot, F. Bucciotti, A. Capuano, A. Silvestri, P. Viglino, I. D. Campbell, A. Colombatti, and G. Esposito, “The solution structure of EMILIN1 globular C1q domain reveals a disordered insertion necessary for interaction with the ??4??1 integrin,” J. Biol. Chem., vol. 283, no. 27, pp. 18947–18956, 2008. Cerca con Google

[56] M. S. Johnson, N. Lu, K. Denessiouk, J. Heino, and D. Gullberg, “Integrins during evolution: Evolutionary trees and model organisms,” Biochimica et Biophysica Acta - Biomembranes, vol. 1788, no. 4. pp. 779–789, 2009. Cerca con Google

[57] M. Barczyk, S. Carracedo, and D. Gullberg, “Integrins,” Cell and Tissue Research, vol. 339, no. 1. pp. 269–280, 2010. Cerca con Google

[58] R. O. Hynes, “Integrins: Bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6. pp. 673–687, 2002. Cerca con Google

[59] Y. Takada, X. Ye, and S. Simon, “The integrins.,” Genome Biol., vol. 8, no. 5, p. 215, 2007. Cerca con Google

[60] B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions.,” Nat. Rev. Mol. Cell Biol., vol. 10, no. 1, pp. 21–33, 2009. Cerca con Google

[61] M. Chen and K. L. O’Connor, “Integrin alpha6beta4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells.,” Oncogene, vol. 24, no. 32, pp. 5125–5130, 2005. Cerca con Google

[62] J. M. Linton, G. R. Martin, and L. F. Reichardt, “The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression.,” Development, vol. 134, no. 13, pp. 2501–9, 2007. Cerca con Google

[63] A. M. Høye, J. R. Couchman, U. M. Wewer, K. Fukami, and A. Yoneda, “The newcomer in the integrin family: Integrin α9 in biology and cancer,” Advances in Biological Regulation, vol. 52, no. 2. pp. 326–339, 2012. Cerca con Google

[64] A. C. and P. S. Eliana Pivetta, “A Rare Bird among Major Extracellular Matrix Proteins: EMILIN1 and the Tumor Suppressor Function,” J. Carcinog. Mutagen., 2013. Cerca con Google

[65] D. M. Rose, R. Alon, and M. H. Ginsberg, “Integrin modulation and signaling in leukocyte adhesion and migration,” Immunological Reviews, vol. 218, no. 1. pp. 126–134, 2007. Cerca con Google

[66] B. Holzmann, U. Gosslar, and M. Bittner, “alpha 4 integrins and tumor metastasis,” Curr. Top. Microbiol. Immunol., vol. 231, pp. 125–141, 1998. Cerca con Google

[67] J. Iida, A. M. Meijne, R. C. Spiro, E. Roos, L. T. Furcht, and J. B. McCarthy, “Spreading and focal contact formation of human melanoma cells in response to the stimulation of both melanoma-associated proteoglycan (NG2) and alpha 4 beta 1 integrin,” Cancer Res, vol. 55, no. 10, pp. 2177–2185, 1995. Cerca con Google

[68] S. A. Lund, C. L. Wilson, E. W. Raines, J. Tang, C. M. Giachelli, and M. Scatena, “Osteopontin mediates macrophage chemotaxis via α4 and α9 integrins and survival via the α4 integrin,” J. Cell. Biochem., vol. 114, no. 5, pp. 1194–1202, 2013. Cerca con Google

[69] X. Z. Huang, J. F. Wu, R. Ferrando, J. H. Lee, Y. L. Wang, R. V Farese Jr., and D. Sheppard, “Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1,” Mol Cell Biol, vol. 20, no. 14, pp. 5208–5215, 2000. Cerca con Google

[70] M. D. Allen, R. Vaziri, M. Green, C. Chelala, A. R. Brentnall, S. Dreger, S. Vallath, H. Nitch-Smith, J. Hayward, R. Carpenter, D. L. Holliday, R. A. Walker, I. R. Hart, and J. L. Jones, “Clinical and functional significance of alpha9beta1 integrin expression in breast cancer: a novel cell-surface marker of the basal phenotype that promotes tumour cell invasion,” J Pathol, vol. 223, no. 5, pp. 646–658, 2011. Cerca con Google

[71] S. K. Gupta, S. Oommen, M.-C. Aubry, B. P. Williams, and N. E. Vlahakis, “Integrin alpha9beta1 promotes malignant tumor growth and metastasis by potentiating epithelial-mesenchymal transition.,” Oncogene, vol. 32, no. 2, pp. 141–150, 2013. Cerca con Google

[72] D. J. Leahy, I. Aukhil, and H. P. Erickson, “2.0 A° crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region,” Cell, vol. 84, no. 1, pp. 155–164, 1996. Cerca con Google

[73] A. Komoriya, L. J. Green, M. Mervic, S. S. Yamada, K. M. Yamada, and M. J. Humphries, “The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine,” J. Biol. Chem., vol. 266, no. 23, pp. 15075–15079, 1991. Cerca con Google

[74] R. C. Cherny, M. A. Honan, and P. Thiagarajan, “Site-directed mutagenesis of the arginine-glycine-aspartic acid in vitronectin abolishes cell adhesion,” J. Biol. Chem., vol. 268, no. 13, pp. 9725–9729, 1993. Cerca con Google

[75] M. D. Pierschbacher and E. Ruoslahti, “Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule,” Nature, vol. 309, no. 5963, pp. 30–33, 1984. Cerca con Google

[76] M. Michishita, V. Videm, and M. Amin Arnaout, “A novel divalent cation-binding site in the a domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding,” Cell, vol. 72, no. 6, pp. 857–867, 1993. Cerca con Google

[77] E. Ruoslahti and M. D. Pierschbacher, “New perspectives in cell adhesion: RGD and integrins.,” Science, vol. 238, no. 4826, pp. 491–7, 1987. Cerca con Google

[78] R. Soldi, S. Mitola, M. Strasly, P. Defilippi, G. Tarone, and F. Bussolino, “Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2.,” EMBO J., vol. 18, no. 4, pp. 882–92, 1999. Cerca con Google

[79] E. Ruoslahti, “Fibronectin and its integrin receptors in cancer.,” Adv. Cancer Res., vol. 76, pp. 1–20, 1999. Cerca con Google

[80] I. D. Campbell, “Studies of focal adhesion assembly,” Biochem Soc Trans, vol. 36, no. Pt 2, pp. 263–266, 2008. Cerca con Google

[81] R. Milner and I. L. Campbell, “The Extracellular Matrix and Cytokines Regulate Microglial Integrin Expression and Activation,” J. Immunol., vol. 170, no. 7, pp. 3850–3858, 2003. Cerca con Google

[82] C. Danussi, A. Petrucco, B. Wassermann, T. M. E. Modica, E. Pivetta, L. Del Bel Belluz, A. Colombatti, and P. Spessotto, “An EMILIN1-negative microenvironment promotes tumor cell proliferation and lymph node invasion,” Cancer Prev. Res., vol. 5, no. 9, pp. 1131–1143, 2012. Cerca con Google

[83] C. Danussi, L. Del Bel Belluz, E. Pivetta, T. M. E. Modica, A. Muro, B. Wassermann, R. Doliana, P. Sabatelli, A. Colombatti, and P. Spessotto, “EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.,” Mol. Cell. Biol., vol. 33, no. 22, pp. 4381–94, 2013. Cerca con Google

[84] A. Mantovani, A. Mantovani, P. Allavena, P. Allavena, A. Sica, A. Sica, F. Balkwill, and F. Balkwill, “Cancer-related inflammation.,” Nature, vol. 454, no. 7203, pp. 436–44, 2008. Cerca con Google

[85] B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, and A. Zychlinsky, “Neutrophil Function: From Mechanisms to Disease,” Annu. Rev. Immunol., vol. 30, no. 1, pp. 459–489, 2012. Cerca con Google

[86] A. Mantovani, P. Allavena, S. Sozzani, A. Vecchi, M. Locati, and A. Sica, “Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors,” Seminars in Cancer Biology, vol. 14, no. 3. pp. 155–160, 2004. Cerca con Google

[87] L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. Cerca con Google

[88] N. Borregaard, “Development of neutrophil granule diversity,” in Annals of the New York Academy of Sciences, 1997, vol. 832, pp. 62–68. Cerca con Google

[89] S. M. Rankin, “The bone marrow: a site of neutrophil clearance.,” J. Leukoc. Biol., vol. 88, no. 2, pp. 241–251, 2010. Cerca con Google

[90] C. Cascão, R. H. Rosário, and F. J. Fonseca, “Neutrophils warriors and commanders in immune mediated inflammatory diseases,” Acta Reumatologica Portuguesa, vol. 34, no. 2 B. pp. 313–326, 2009. Cerca con Google

[91] T. H. E. E. Donnall and T. Lecture, “The Machinery,” no. April, pp. 1–7, 1994. Cerca con Google

[92] K. Futosi, S. Fodor, and A. Mócsai, “Neutrophil cell surface receptors and their intracellular signal transduction pathways,” Int. Immunopharmacol., vol. 17, no. 3, pp. 638–650, 2013. Cerca con Google

[93] J. R. Forehand, M. J. Pabst, W. A. Phillips, and R. B. Johnston, “Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium,” J. Clin. Invest., vol. 83, no. 1, pp. 74–83, 1989. Cerca con Google

[94] J. Fleischmann, D. W. Golde, R. H. Weisbart, and J. C. Gasson, “Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils.,” Blood, vol. 68, no. 3, pp. 708–11, 1986. Cerca con Google

[95] G. M. Vercellotti, H. Q. Yin, K. S. Gustafson, R. D. Nelson, and H. S. Jacob, “Platelet-activating factor primes neutrophil responses to agonists: role in promoting neutrophil-mediated endothelial damage.,” Blood, vol. 71, no. 4, pp. 1100–7, 1988. Cerca con Google

[96] L. A. Guthrie, L. C. McPhail, P. M. Henson, and R. B. Johnston, “Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme.,” J. Exp. Med., vol. 160, no. 6, pp. 1656–71, 1984. Cerca con Google

[97] R. L. Berkow, D. Wang, J. W. Larrick, R. W. Dodson, and T. H. Howard, “Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor,” J Immunol, vol. 139, no. 11, pp. 3783–3791, 1987. Cerca con Google

[98] A. M. Condliffe, E. R. Chilvers, C. Haslett, and I. Dransfield, “Priming differentially regulates neutrophil adhesion molecule expression/function.,” Immunology, vol. 89, no. 1, pp. 105–11, 1996. Cerca con Google

[99] M. E. Doerfler, R. L. Danner, J. H. Shelhamer, and J. E. Parillo, “Bacterial lipopolysaccharides prime human neutrophils for enhanced production of leukotriene B4,” J. Clin. Invest., vol. 83, no. 3, pp. 970–977, 1989. Cerca con Google

[100] M. E. Doerfler, J. Weiss, J. D. Clark, and P. Elsbach, “Bacterial lipopolysaccharide primes human neutrophils for enhanced release of arachidonic acid and causes phosphorylation of an 85-kD cytosolic phospholipase A2,” J. Clin. Invest., vol. 93, no. 4, pp. 1583–1591, 1994. Cerca con Google

[101] C. Fittschen, R. a Sandhaus, G. S. Worthen, and P. M. Henson, “Bacterial lipopolysaccharide enhances chemoattractant-induced elastase secretion by human neutrophils.,” J. Leukoc. Biol., vol. 43, no. 6, pp. 547–56, 1988. Cerca con Google

[102] L. Koenderman, D. Kanters, B. Maesen, J. Raaijmakers, J. W. Lammers, J. de Kruif, and T. Logtenberg, “Monitoring of neutrophil priming in whole blood by antibodies isolated from a synthetic phage antibody library.,” J. Leukoc. Biol., vol. 68, no. 1, pp. 58–64, 2000. Cerca con Google

[103] N. D. Burg and M. H. Pillinger, “The neutrophil: function and regulation in innate and humoral immunity.,” Clin. Immunol., vol. 99, no. 1, pp. 7–17, 2001. Cerca con Google

[104] K. L. Moore, K. D. Patel, R. E. Bruehl, L. Fugang, D. A. Johnson, H. S. Lichenstein, R. D. Cummings, D. F. Bainton, and R. P. McEver, “P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin,” J. Cell Biol., vol. 128, no. 4, pp. 661–671, 1995. Cerca con Google

[105] K. D. Patel, M. U. Nollert, and R. P. McEver, “P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils,” J. Cell Biol., vol. 131, no. 6 II, pp. 1893–1902, 1995. Cerca con Google

[106] J. Xu, F. Wang, A. Van Keymeulen, M. Rentel, and H. R. Bourne, “Neutrophil microtubules suppress polarity and enhance directional migration.,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 19, pp. 6884–9, 2005. Cerca con Google

[107] A. Van Keymeulen, K. Wong, Z. A. Knight, C. Govaerts, K. M. Hahn, K. M. Shokat, and H. R. Bourne, “To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front,” J. Cell Biol., vol. 174, no. 3, pp. 437–445, 2006. Cerca con Google

[108] R. Pick, D. Brechtefeld, and B. Walzog, “Intraluminal crawling versus interstitial neutrophil migration during inflammation,” Molecular Immunology, vol. 55, no. 1. pp. 70–75, 2013. Cerca con Google

[109] T. Kang, J. Yi, A. Guo, X. Wang, C. M. Overall, W. Jiang, R. Elde, N. Borregaard, and D. Pei, “Subcellular Distribution and Cytokine- and Chemokine-regulated Secretion of Leukolysin/MT6-MMP/MMP-25 in Neutrophils,” J. Biol. Chem., vol. 276, no. 24, pp. 21960–21968, 2001. Cerca con Google

[110] C. A. Owen, M. A. Campbell, P. L. Sannes, S. S. Boukedes, and E. J. Campbell, “Cell surface-bound elastase and cathepsin G on human neutrophils: A novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases,” J. Cell Biol., vol. 131, no. 3, pp. 775–789, 1995. Cerca con Google

[111] E. J. Campbell, M. A. Campbell, S. S. Boukedes, and C. A. Owen, “Quantum proteolysis by neutrophils: Implications for pulmonary emphysema in α1-antitrypsin deficiency,” J. Clin. Invest., vol. 104, no. 3, pp. 337–344, 1999. Cerca con Google

[112] K. Takeyama, C. Agustí, I. Ueki, J. Lausier, L. O. Cardell, and J. a Nadel, “Neutrophil-dependent goblet cell degranulation: role of membrane-bound elastase and adhesion molecules.,” Am. J. Physiol., vol. 275, no. 2, pp. L294-302, 1998. Cerca con Google

[113] S. Marastoni, G. Ligresti, E. Lorenzon, A. Colombatti, and M. Mongiat, “Extracellular matrix: a matter of life and death.,” Connect. Tissue Res., vol. 49, no. 3, pp. 203–206, 2008. Cerca con Google

[114] R. O. Hynes, “The extracellular matrix: not just pretty fibrils.,” Science, vol. 326, no. 5957, pp. 1216–9, 2009. Cerca con Google

[115] E. Cukierman and D. E. Bassi, “The mesenchymal tumor microenvironment: A drug-resistant niche,” Cell Adhesion and Migration, vol. 6, no. 3. pp. 285–296, 2012. Cerca con Google

[116] K. Kessenbrock, V. Plaks, and Z. Werb, “Matrix Metalloproteinases: Regulators of the Tumor Microenvironment,” Cell, vol. 141, no. 1. pp. 52–67, 2010. Cerca con Google

[117] P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: A dynamic niche in cancer progression,” Journal of Cell Biology, vol. 196, no. 4. pp. 395–406, 2012. Cerca con Google

[118] I. J. Huijbers, M. Iravani, S. Popov, D. Robertson, S. Al-Sarraj, C. Jones, and C. M. Isacke, “A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion,” PLoS One, vol. 5, no. 3, pp. 1–12, 2010. Cerca con Google

[119] G. G. Zhu, L. Risteli, M. Makinen, J. Risteli, A. Kauppila, and F. Stenback, “Immunohistochemical study of type I collagen and type I pN-collagen in benign and malignant ovarian neoplasms,” Cancer, vol. 75, no. 4, pp. 1010–1017, 1995. Cerca con Google

[120] J. Pathol, F. Stenback, J. Risteli, a Jukkola, and L. Risteli, “Aberrant type I and type III collagen gene expression in human breast cancer in vivo,” J. Pathol., vol. 268, no. July, pp. 262–268, 1998. Cerca con Google

[121] J. M. López-Nouoa and M. A. Nieto, “Inflammation and EMT: An alliance towards organ fibrosis and cancer progression,” EMBO Molecular Medicine, vol. 1, no. 6–7. pp. 303–314, 2009. Cerca con Google

[122] S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub, “A molecular signature of metastasis in primary solid tumors.,” Nat. Genet., vol. 33, no. 1, pp. 49–54, 2003. Cerca con Google

[123] M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell, vol. 8, no. 3, pp. 241–254, 2005. Cerca con Google

[124] E. H. J. Danen, P. Sonneveld, A. Sonnenberg, and K. M. Yamada, “Dual stimulation of Ras/Mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression,” J. Cell Biol., vol. 151, no. 7, pp. 1413–1422, 2000. Cerca con Google

[125] D. Mu, S. Cambier, L. Fjellbirkeland, J. L. Baron, J. S. Munger, H. Kawakatsu, D. Sheppard, V. Courtney Broaddus, and S. L. Nishimura, “The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1,” J. Cell Biol., vol. 157, no. 3, pp. 493–507, 2002. Cerca con Google

[126] E. A. Klein, L. Yin, D. Kothapalli, P. Castagnino, F. J. Byfield, T. Xu, I. Levental, E. Hawthorne, P. A. Janmey, and R. K. Assoian, “Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening,” Curr. Biol., vol. 19, no. 18, pp. 1511–1518, 2009. Cerca con Google

[127] J. C. Friedland, M. H. Lee, and D. Boettiger, “Mechanically activated integrin switch controls alpha5beta1 function.,” Science, vol. 323, no. 5914, pp. 642–644, 2009. Cerca con Google

[128] R. N. Kaplan, R. D. Riba, S. Zacharoulis, H. Anna, L. Vincent, C. Costa, D. D. Macdonald, D. K. Jin, S. A. Kerns, Z. Zhu, D. Hicklin, Y. Wu, J. L. Port, E. R. Port, D. Ruggero, S. V Shmelkov, K. K. Jensen, S. Rafii, and D. Lyden, “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005. Cerca con Google

[129] R. N. Kaplan, S. Rafii, and D. Lyden, “Preparing the ‘soil’: The premetastatic niche,” Cancer Research, vol. 66, no. 23. pp. 11089–11093, 2006. Cerca con Google

[130] P. Tremble, C. H. Damsky, and Z. Werb, “Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals,” J. Cell Biol., vol. 129, no. 6, pp. 1707–1720, 1995. Cerca con Google

[131] Z. Werb, P. M. Tremble, O. Behrendtsen, E. Crowley, and C. H. Damsky, “Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression,” J. Cell Biol., vol. 109, no. 2, pp. 877–889, 1989. Cerca con Google

[132] F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus-independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited,” Journal of Cell Biology, vol. 185, no. 1. pp. 11–19, 2009. Cerca con Google

[133] D. Öhlund, O. Franklin, E. Lundberg, C. Lundin, and M. Sund, “Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop.,” BMC Cancer, vol. 13, p. 154, 2013. Cerca con Google

[134] M. Seandel, K. Noack-Kunnmann, D. Zhu, R. T. Aimes, and J. P. Quigley, “Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen,” Blood, vol. 97, no. 8, pp. 2323–2332, 2001. Cerca con Google

[135] A. Zijlstrat, R. T. Aimes, D. Zhu, K. Regazzoni, T. Kupriyanova, M. Seandel, E. I. Deryugina, and J. P. Quigley, “Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3),” J. Biol. Chem., vol. 279, no. 26, pp. 27633–27645, 2004. Cerca con Google

[136] M. S. O’Reilly, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman, “Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.,” Cell, vol. 88, no. 2, pp. 277–285, 1997. Cerca con Google

[137] Y. Hamano and R. Kalluri, “Tumstatin, the NC1 domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth,” Biochemical and Biophysical Research Communications, vol. 333, no. 2. pp. 292–298, 2005. Cerca con Google

[138] Y. Maeshima, M. Manfredi, C. Reimerli, K. A. Holthaus, H. Hopfert, B. R. Chandamuri, S. Kharbanda, and R. Kalluri, “Identification of the Anti-angiogenic Site within Vascular Basement Membrane-derived Tumstatin,” J. Biol. Chem., vol. 276, no. 18, pp. 15240–15248, 2001. Cerca con Google

[139] P. Nyberg, L. Xie, H. Sugimoto, P. Colorado, M. Sund, K. Holthaus, A. Sudhakar, T. Salo, and R. Kalluri, “Characterization of the anti-angiogenic properties of arresten, an α1β1 integrin-dependent collagen-derived tumor suppressor,” Exp. Cell Res., vol. 314, no. 18, pp. 3292–3305, 2008. Cerca con Google

[140] G. D. Kamphaus, P. C. Colorado, D. J. Panka, H. Hopfer, R. Ramchandran, A. Torre, Y. Maeshima, J. W. Mier, V. P. Sukhatme, and R. Kalluri, “Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth,” J. Biol. Chem., vol. 275, no. 2, pp. 1209–1215, 2000. Cerca con Google

[141] D. C. Hocking and K. Kowalski, “A cryptic fragment from fibronectin’s III1 module localizes to lipid rafts and stimulates cell growth and contractility,” J. Cell Biol., vol. 158, no. 1, pp. 175–184, 2002. Cerca con Google

[142] N. Zoppi, M. Ritelli, A. Salvi, M. Colombi, and S. Barlati, “The FN13 peptide inhibits human tumor cells invasion through the modulation of αvβ3 integrins organization and the inactivation of ILK pathway,” Biochim. Biophys. Acta - Mol. Cell Res., vol. 1773, no. 6, pp. 747–763, 2007. Cerca con Google

[143] G. Giannelli, J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson, and V. Quaranta, “Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5.,” Science (80-. )., vol. 277, no. 5323, pp. 225–228, 1997. Cerca con Google

[144] N. Koshikawa, T. Minegishi, A. Sharabi, V. Quaranta, and M. Seiki, “Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin y2 chain,” J. Biol. Chem., vol. 280, no. 1, pp. 88–93, 2005. Cerca con Google

[145] K. Bein and M. Simons, “Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity,” J. Biol. Chem., vol. 275, no. 41, pp. 32167–32173, 2000. Cerca con Google

[146] J. Lawler and M. Detmar, “Tumor progression: The effects of thrombospondin-1 and -2,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 6. pp. 1038–1045, 2004. Cerca con Google

[147] A. R. Albig and W. P. Schiemann, “Fibulin-5 function during tumorigenesis.,” Future Oncol., vol. 1, no. 1, pp. 23–35, 2005. Cerca con Google

[148] A. R. Albig and W. P. Schiemann, “Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells.,” DNA Cell Biol., vol. 23, no. 6, pp. 367–79, 2004. Cerca con Google

[149] A. R. Albig, J. R. Neil, and W. P. Schiemann, “Fibulins 3 and 5 antagonize tumor angiogenesis in vivo,” Cancer Res., vol. 66, no. 5, pp. 2621–2629, 2006. Cerca con Google

[150] W. P. Schiemann, G. C. Blobe, D. E. Kalume, A. Pandey, and H. F. Lodish, “Context-specific effects of Fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-β and affects protein kinase cascades,” J. Biol. Chem., vol. 277, no. 30, pp. 27367–27377, 2002. Cerca con Google

[151] A. Wlazlinski, R. Engers, M. J. Hoffmann, C. Hader, V. Jung, M. Müller, and W. A. Schulz, “Downregulation of several fibulin genes in prostate cancer,” Prostate, vol. 67, no. 16, pp. 1770–1780, 2007. Cerca con Google

[152] H. D. Møller, U. Ralfkjær, N. Cremers, M. Frankel, R. T. Pedersen, J. Klingelhöfer, H. Yanagisawa, M. Grigorian, P. Guldberg, J. Sleeman, E. Lukanidin, and N. Ambartsumian, “Role of fibulin-5 in metastatic organ colonization.,” Mol. Cancer Res., vol. 9, no. 5, pp. 553–63, 2011. Cerca con Google

[153] V. Todorovi, C. C. Chen, N. Hay, and L. F. Lau, “The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts,” J. Cell Biol., vol. 171, no. 3, pp. 559–568, 2005. Cerca con Google

[154] E. Pivetta, B. Wassermann, L. Del Bel Belluz, C. Danussi, T. M. E. Modica, O. Maiorani, G. Bosisio, F. Boccardo, V. Canzonieri, A. Colombatti, and P. Spessotto, “Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model.,” Clin. Sci. (Lond)., vol. 130, no. 14, pp. 1221–36, 2016. Cerca con Google

[155] M. Ming and Y.-Y. He, “PTEN: new insights into its regulation and function in skin cancer.,” J. Invest. Dermatol., vol. 129, no. 9, pp. 2109–12, 2009. Cerca con Google

[156] N. Komazawa, A. Suzuki, S. Sano, K. Horie, N. Matsuura, T. W. Mak, T. Nakano, J. Takeda, and G. Kondoh, “Tumorigenesis facilitated by Pten deficiency in the skin: Evidence of p53-Pten complex formation on the initiation phase,” Cancer Sci., vol. 95, no. 8, pp. 639–643, 2004. Cerca con Google

[157] C. Segrelles, S. Ruiz, P. Perez, C. Murga, M. Santos, I. V Budunova, J. Martinez, F. Larcher, T. J. Slaga, J. S. Gutkind, J. L. Jorcano, and J. M. Paramio, “Functional roles of Akt signaling in mouse skin tumorigenesis,” Oncogene, vol. 21, no. 1, pp. 53–64, 2002. Cerca con Google

[158] E. M. Schindler, A. Hindes, E. L. Gribben, C. J. Burns, Y. Yin, M.-H. Lin, R. J. Owen, G. D. Longmore, G. E. Kissling, J. S. C. Arthur, and T. Efimova, “p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice.,” Cancer Res., vol. 69, no. 11, pp. 4648–4655, 2009. Cerca con Google

[159] K. Edlund, C. Lindskog, A. Saito, A. Berglund, F. Pontén, H. Göransson-Kultima, A. Isaksson, K. Jirström, M. Planck, L. Johansson, M. Lambe, L. Holmberg, F. Nyberg, S. Ekman, M. Bergqvist, P. Landelius, K. Lamberg, J. Botling, A. Östman, and P. Micke, “CD99 is a novel prognostic stromal marker in non-small cell lung cancer,” Int. J. Cancer, vol. 131, no. 10, pp. 2264–2273, 2012. Cerca con Google

[160] R. Salani, I. Neuberger, R. J. Kurman, R. E. Bristow, H.-W. Chang, T.-L. Wang, and I.-M. Shih, “Expression of extracellular matrix proteins in ovarian serous tumors.,” Int. J. Gynecol. Pathol., vol. 26, no. 2, pp. 141–6, 2007. Cerca con Google

[161] U. N. M. Rao, B. L. Hood, J. M. Jones-Laughner, M. Sun, and T. P. Conrads, “Distinct profiles of oxidative stress-related and matrix proteins in adult bone and soft tissue osteosarcoma and desmoid tumors: A proteomics study,” Hum. Pathol., vol. 44, no. 5, pp. 725–733, 2013. Cerca con Google

[162] E. Pivetta, C. Danussi, B. Wassermann, T. M. E. Modica, L. Del Bel Belluz, V. Canzonieri, A. Colombatti, and P. Spessotto, “Neutrophil elastase-dependent cleavage compromises the tumor suppressor role of EMILIN1,” Matrix Biol., vol. 34, pp. 22–32, 2014. Cerca con Google

[163] A. M. Houghton, D. M. Rzymkiewicz, H. Ji, A. D. Gregory, E. E. Egea, H. E. Metz, D. B. Stolz, S. R. Land, L. A. Marconcini, C. R. Kliment, K. M. Jenkins, K. A. Beaulieu, M. Mouded, S. J. Frank, K. K. Wong, and S. D. Shapiro, “Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth.,” Nat. Med., vol. 16, no. 2, pp. 219–23, 2010. Cerca con Google

[164] C. Stegemann, A. Didangelos, J. Barallobre-Barreiro, S. R. Langley, K. Mandal, M. Jahangiri, and M. Mayr, “Proteomic identification of matrix metalloproteinase substrates in the human vasculature,” Circulation: Cardiovascular Genetics, vol. 6, no. 1. pp. 106–117, 2013. Cerca con Google

[165] E. Hajjar, T. Broemstrup, C. Kantari, V. Witko-Sarsat, and N. Reuter, “Structures of human proteinase 3 and neutrophil elastase so similar yet so different.,” FEBS J., vol. 277, no. 10, pp. 2238–54, 2010. Cerca con Google

[166] K. Felix and M. M. Gaida, “Neutrophil-derived proteases in the microenvironment of pancreatic cancer-active players in tumor progression,” Int. J. Biol. Sci., vol. 12, no. 3, pp. 302–313, 2016. Cerca con Google

[167] Z. Sun and P. Yang, “Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression.,” Lancet Oncol., vol. 5, no. 3, pp. 182–190, 2004. Cerca con Google

[168] H. Neurath, “Evolution of proteolytic enzymes.,” Science, vol. 224, no. 4647, pp. 350–7, 1984. Cerca con Google

[169] S. Shapiro, E. Campbell, R. Senior, and H. Welgus, “Proteinases secreted by human mononuclear phagocytes,” J.Rheumatol.Suppl, vol. 27, pp. 95–98, 1991. Cerca con Google

[170] D. Garwicz, A. Lennartsson, S. E. W. Jacobsen, U. Gullberg, and A. Lindmark, “Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model,” Haematologica, vol. 90, no. 1, pp. 38–44, 2005. Cerca con Google

[171] M. Zimmer, R. L. Medcalf, T. M. Fink, C. Mattmann, P. Lichter, and D. E. Jenne, “Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter.,” Proc. Natl. Acad. Sci. U. S. A., vol. 89, no. 17, pp. 8215–9, 1992. Cerca con Google

[172] D. Garwicz, a Lindmark, T. Hellmark, M. Gladh, J. Jögi, and U. Gullberg, “Characterization of the processing and granular targeting of human proteinase 3 after transfection to the rat RBL or the murine 32D leukemic cell lines.,” J. Leukoc. Biol., vol. 61, no. 1, pp. 113–123, 1997. Cerca con Google

[173] U. Gullberg, E. Andersson, D. Garwicz, A. Lindmark, and I. Olsson, “Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development.,” Eur. J. Haematol., vol. 58, no. 3, pp. 137–153, 1997. Cerca con Google

[174] B. Korkmaz, M. Horwitz, D. Jenne, and F. Gauthier, “Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases,” Pharmacol. Rev., vol. 62, no. 4, pp. 726–759, 2010. Cerca con Google

[175] G. Salvesen and J. J. Enghild, “An unusual specificity in the activation of neutrophil serine proteinase zymogens,” Biochemistry, vol. 29, no. 22, pp. 5304–5308, 1990. Cerca con Google

[176] C. T. N. Pham, “Neutrophil serine proteases: specific regulators of inflammation.,” Nat. Rev. Immunol., vol. 6, no. 7, pp. 541–50, 2006. Cerca con Google

[177] N. V. Rao, G. V. Rao, B. C. Marshall, and J. R. Hoidal, “Biosynthesis and processing of proteinase 3 in U937 cells: Processing pathways are distinct from those of cathepsin G,” J. Biol. Chem., vol. 271, no. 6, pp. 2972–2978, 1996. Cerca con Google

[178] M. Horwitz, K. F. Benson, Z. Duan, F. Q. Li, and R. E. Person, “Hereditary neutropenia: Dogs explain human neutrophil elastase mutations,” Trends in Molecular Medicine, vol. 10, no. 4. pp. 163–170, 2004. Cerca con Google

[179] C. U. Niemann, M. Åbrink, G. Pejler, R. L. Fischer, E. I. Christensen, S. D. Knight, and N. Borregaard, “Neutrophil elastase depends on serglycin proteoglycan for localization in granules,” Blood, vol. 109, no. 10, pp. 4478–4486, 2007. Cerca con Google

[180] B. Korkmaz, T. Moreau, and F. Gauthier, “Neutrophil elastase, proteinase 3 and cathepsin G: Physicochemical properties, activity and physiopathological functions,” Biochimie, vol. 90, no. 2, pp. 227–242, 2008. Cerca con Google

[181] W. Bode, A. Z. Wei, R. Huber, E. Meyer, J. Travis, and S. Neumann, “X-ray crystal structure of the complex of human leukocyte elastase (PMN elastase) and the third domain of the turkey ovomucoid inhibitor.,” EMBO J., vol. 5, no. 10, pp. 2453–8, 1986. Cerca con Google

[182] L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. Cerca con Google

[183] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next generation,” Cell, vol. 144, no. 5. pp. 646–674, 2011. Cerca con Google

[184] A. D. Gregory, P. Hales, D. H. Perlmutter, and A. M. Houghton, “Clathrin pit-mediated endocytosis of neutrophil elastase and cathepsin G by cancer cells,” J. Biol. Chem., vol. 287, no. 42, pp. 35341–35350, 2012. Cerca con Google

[185] M. Baggiolini, B. Dewald, and B. Moser, “Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines.,” Adv. Immunol., vol. 55, pp. 97–179, 1994. Cerca con Google

[186] C. A. Owen and E. J. Campbell, “The cell biology of leukocyte-mediated proteolysis.,” J. Leukoc. Biol., vol. 65, no. 2, pp. 137–50, 1999. Cerca con Google

[187] K. Kawabata, T. Hagio, S. Matsumoto, S. Nakao, S. Orita, Y. Aze, and H. Ohno, “Delayed neutrophil elastase inhibition prevents subsequent progression of acute lung injury induced by endotoxin inhalation in hamsters,” Am. J. Respir. Crit. Care Med., vol. 161, no. 6, pp. 2013–2018, 2000. Cerca con Google

[188] J. P. Motta, L. G. Bermudez-Humaran, C. Deraison, L. Martin, C. Rolland, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat, J. P. Vinel, L. Alric, E. Mas, J. M. Sallenave, P. Langella, and N. Vergnolle, “Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis.,” Sci. Transl. Med., vol. 4, no. 158, p. 158ra144-158ra144, 2012. Cerca con Google

[189] S. D. Shapiro, N. M. Goldstein, A. M. Houghton, D. K. Kobayashi, D. Kelley, and A. Belaaouaj, “Neutrophil Elastase Contributes to Cigarette Smoke-Induced Emphysema in Mice.,” Am. J. Pathol., vol. 163, no. 6, pp. 2329–35, 2003. Cerca con Google

[190] E. Demettre, L. Bastide, A. D’Haese, K. De Smet, K. De Meirleir, K. P. Tiev, P. Englebienne, and B. Lebleu, “Ribonuclease L proteolysis in peripheral blood mononuclear cells of chronic fatigue syndrome patients.,” J. Biol. Chem., vol. 277, no. 38, pp. 35746–35751, 2002. Cerca con Google

[191] K. Kakimoto, A. Matsukawa, M. Yoshinaga, and H. Nakamura, “Suppressive effect of a neutrophil elastase inhibitor on the development of collagen-induced arthritis,” Cell. Immunol., vol. 165, no. 1, pp. 26–32, 1995. Cerca con Google

[192] S. Talukdar, D. Y. Oh, G. Bandyopadhyay, D. Li, J. Xu, J. McNelis, M. Lu, P. Li, Q. Yan, Y. Zhu, J. Ofrecio, M. Lin, M. B. Brenner, and J. M. Olefsky, “Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase,” Nat. Med., vol. 18, no. 9, pp. 1407–1412, 2012. Cerca con Google

[193] P. Kuna, M. Jenkins, C. D. O’Brien, and W. A. Fahy, “AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/ formoterol in patients with COPD,” Respir. Med., vol. 106, no. 4, pp. 531–539, 2012. Cerca con Google

[194] C. L. Mainardi, S. N. Dixit, and A. H. Kang, “Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules,” J. Biol. Chem., vol. 255, no. 11, pp. 5435–5441, 1980. Cerca con Google

[195] P. Shamamian, J. D. Schwartz, B. J. Z. Pocock, S. Monea, D. Whiting, S. G. Marcus, and P. Mignatti, “Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: A role for inflammatory cells in tumor invasion and angiogenesis,” J. Cell. Physiol., vol. 189, no. 2, pp. 197–206, 2001. Cerca con Google

[196] U. Gaur and B. B. Aggarwal, “Regulation of proliferation, survival and apoptosis by members of the TNF superfamily,” in Biochemical Pharmacology, 2003, vol. 66, no. 8, pp. 1403–1408. Cerca con Google

[197] P. Scuderi, P. A. Nez, M. L. Duerr, B. J. Wong, and C. M. Valdez, “Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin,” Cell. Immunol., vol. 135, no. 2, pp. 299–313, 1991. Cerca con Google

[198] T. Yamauchi, K. Yasushi, K. Ueki, Y. Tsuji, G. R. Stark, I. M. Kerr, T. Tsushima, Y. Akanuma, I. Komuro, K. Tobe, Y. Yazaki, and T. Kadowaki, “Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase,” J. Biol. Chem., vol. 273, no. 25, pp. 15719–15726, 1998. Cerca con Google

[199] E. A. Mittendorf, G. Alatrash, N. Qiao, Y. Wu, P. Sukhumalchandra, L. S. St. John, A. V. Philips, H. Xiao, M. Zhang, K. Ruisaard, K. Clise-Dwyer, S. Lu, and J. J. Molldrem, “Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response,” Cancer Res., vol. 72, no. 13, pp. 3153–3162, 2012. Cerca con Google

[200] G. T. Thomas, M. P. Lewis, and P. M. Speight, “Matrix metalloproteinases and oral cancer,” Oral Oncology, vol. 35, no. 3. pp. 227–233, 1999. Cerca con Google

[201] L. Yadav, N. Puri, V. Rastogi, P. Satpute, R. Ahmad, and G. Kaur, “Matrix metalloproteinases and cancer - Roles in threat and therapy,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 3. pp. 1085–1091, 2014. Cerca con Google

[202] C. Gialeli, A. D. Theocharis, and N. K. Karamanos, “Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting,” FEBS Journal, vol. 278, no. 1. pp. 16–27, 2011. Cerca con Google

[203] A. M. Weaver, “Invadopodia: Specialized cell structures for cancer invasion,” Clinical and Experimental Metastasis, vol. 23, no. 2. pp. 97–105, 2006. Cerca con Google

[204] I. Van Hove, K. Lemmens, S. Van De Velde, M. Verslegers, and L. Moons, “Matrix metalloproteinase-3 in the central nervous system: A look on the bright side,” Journal of Neurochemistry, vol. 123, no. 2. pp. 203–216, 2012. Cerca con Google

[205] H. Nagase, R. Visse, and G. Murphy, “Structure and function of matrix metalloproteinases and TIMPs,” Cardiovascular Research, vol. 69, no. 3. pp. 562–573, 2006. Cerca con Google

[206] L. J. McCawley, H. C. Crawford, L. E. King, J. Mudgett, and L. M. Matrisian, “A protective role for matrix metalloproteinase-3 in squamous cell carcinoma,” Cancer Res., vol. 64, no. 19, pp. 6965–6972, 2004. Cerca con Google

[207] J. P. Witty, T. Lempka, R. J. Coffey Jr., and L. M. Matrisian, “Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis,” Cancer Res, vol. 55, no. 7, pp. 1401–1406, 1995. Cerca con Google

[208] M. D. Sternlicht, A. Lochtest, C. J. Sympson, B. Huey, J. P. Rougier, J. W. Gray, D. Pinkel, M. J. Bissell, and Z. Werb, “The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis,” Cell, vol. 98, no. 2, pp. 137–146, 1999. Cerca con Google

[209] A. R. Farina and A. R. Mackay, “Gelatinase B/MMP-9 in tumour pathogenesis and progression,” Cancers, vol. 6, no. 1. pp. 240–296, 2014. Cerca con Google

[210] I. Sopata and A. M. Dancewicz, “Presence of a gelatin-specific proteinase and its latent form in human leucocytes,” BBA - Enzymol., vol. 370, no. 2, pp. 510–523, 1974. Cerca con Google

[211] B. Dewald, U. Bretz, and M. Baggiolini, “Release of gelatinase from a novel secretory compartment of human neutrophils,” J. Clin. Invest., vol. 70, no. 3, pp. 518–525, 1982. Cerca con Google

[212] J. M. Shipley, G. A. R. Doyle, C. J. Fliszar, Q. Z. Ye, L. L. Johnson, S. D. Shapiro, H. G. Welgus, and R. M. Senior, “The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases: Role of the fibronectin type II-like repeats,” J. Biol. Chem., vol. 271, no. 8, pp. 4335–4341, 1996. Cerca con Google

[213] H. F. Bigg, A. D. Rowan, M. D. Barker, and T. E. Cawston, “Activity of matrix metalloproteinase-9 against native collagen types I and III,” FEBS J., vol. 274, no. 5, pp. 1246–1255, 2007. Cerca con Google

[214] J. a Eble, a Ries, a Lichy, K. Mann, H. Stanton, J. Gavrilovic, G. Murphy, and K. Kühn, “The recognition sites of the integrins alpha1beta1 and alpha2beta1 within collagen IV are protected against gelatinase A attack in the native protein.,” J. Biol. Chem., vol. 271, no. 48, pp. 30964–70, 1996. Cerca con Google

[215] R. H. Farnsworth, M. Lackmann, M. G. Achen, and S. a Stacker, “Vascular remodeling in cancer.,” Oncogene, vol. 33, no. May, pp. 3496–505, 2014. Cerca con Google

[216] V. W. M. Van Hinsbergh, M. A. Engelse, and P. H. A. Quax, “Pericellular proteases in angiogenesis and vasculogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 4. pp. 716–728, 2006. Cerca con Google

[217] M. Karlou, V. Tzelepi, and E. Efstathiou, “Therapeutic targeting of the prostate cancer microenvironment.,” Nat. Rev. Urol., vol. 7, no. 9, pp. 494–509, 2010. Cerca con Google

[218] G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch.,” Nat. Rev. Cancer, vol. 3, no. 6, pp. 401–410, 2003. Cerca con Google

[219] S. Huang, M. Van Arsdall, S. Tedjarati, M. McCarty, W. Wu, R. Langley, and I. J. Fidler, “Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice.,” J. Natl. Cancer Inst., vol. 94, no. 15, pp. 1134–1142, 2002. Cerca con Google

[220] G. Bergers, R. Brekken, G. McMahon, T. H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan, “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis.,” Nat. Cell Biol., vol. 2, no. 10, pp. 737–44, 2000. Cerca con Google

[221] L. M. Coussens, C. L. Tinkle, D. Hanahan, and Z. Werb, “MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.,” Cell, vol. 103, no. 3, pp. 481–490, 2000. Cerca con Google

[222] B. Heissig, Z. Werb, S. Rafii, and K. Hattori, “Role of c-kit/Kit ligand signaling in regulating vasculogenesis,” Thrombosis and Haemostasis, vol. 90, no. 4. pp. 570–576, 2003. Cerca con Google

[223] E. Mira, R. A. Lacalle, J. M. Buesa, G. G. de Buitrago, S. Jiménez-Baranda, C. Gómez-Moutón, C. Martínez-A, and S. Mañes, “Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface.,” J. Cell Sci., vol. 117, no. Pt 9, pp. 1847–1857, 2004. Cerca con Google

[224] D. Gao, D. Nolan, K. McDonnell, L. Vahdat, R. Benezra, N. Altorki, and V. Mittal, “Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression,” Biochimica et Biophysica Acta - Reviews on Cancer, vol. 1796, no. 1. pp. 33–40, 2009. Cerca con Google

[225] M. Toth, S. Hernandez-Barrantes, P. Osenkowski, M. Margarida Bernardo, D. C. Gervasi, Y. Shimura, O. Meroueh, L. P. Kotra, B. G. Gálvez, A. G. Arroyo, S. Mobashery, and R. Fridman, “Complex pattern of membrane type 1 matrix metalloproteinase shedding. Regulation by autocatalytic cell surface inactivation of active enzyme,” J. Biol. Chem., vol. 277, no. 29, pp. 26340–26350, 2002. Cerca con Google

[226] Y. Itoh, “MT1-MMP: a key regulator of cell migration in tissue.,” IUBMB Life, vol. 58, no. 10, pp. 589–96, 2006. Cerca con Google

[227] C.-C. Yang, L.-F. Zhu, X.-H. Xu, T.-Y. Ning, J.-H. Ye, and L.-K. Liu, “Membrane Type 1 Matrix Metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells.,” BMC Cancer, vol. 13, p. 171, 2013. Cerca con Google

[228] V. S. Golubkov and A. Y. Strongin, “Proteolysis-driven oncogenesis,” Cell Cycle, vol. 6, no. 2. pp. 147–150, 2007. Cerca con Google

[229] N. Wali, K. Hosokawa, S. Malik, H. Saito, K. Miyaguchi, S. Imajoh-Ohmi, Y. Miki, and A. Nakanishi, “Centrosomal BRCA2 is a target protein of membrane type-1 matrix metalloproteinase (MT1-MMP),” Biochem. Biophys. Res. Commun., vol. 443, no. 4, pp. 1148–1154, 2014. Cerca con Google

[230] T. Takino, Y. Watanabe, M. Matsui, H. Miyamori, T. Kudo, M. Seiki, and H. Sato, “Membrane-type 1 matrix metalloproteinase modulates focal adhesion stability and cell migration,” Exp. Cell Res., vol. 312, no. 8, pp. 1381–1389, 2006. Cerca con Google

[231] M. A. Lafleur, D. Xu, and M. E. Hemler, “Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis.,” Mol. Biol. Cell, vol. 20, no. 7, pp. 2030–40, 2009. Cerca con Google

[232] G. A. Watkins, E. F. Jones, M. Scott Shell, H. F. VanBrocklin, M. H. Pan, S. M. Hanrahan, J. J. Feng, J. He, N. E. Sounni, K. A. Dill, C. H. Contag, L. M. Coussens, and B. L. Franc, “Development of an optimized activatable MMP-14 targeted SPECT imaging probe,” Bioorganic Med. Chem., vol. 17, no. 2, pp. 653–659, 2009. Cerca con Google

[233] K. Zarrabi, A. Dufour, J. Li, C. Kuscu, A. Pulkoski-Gross, J. Zhi, Y. Hu, N. S. Sampson, S. Zucker, and J. Cao, “Inhibition of Matrix Metalloproteinase 14 (MMP-14)-mediated cancer cell migration,” J. Biol. Chem., vol. 286, no. 38, pp. 33167–33177, 2011. Cerca con Google

[234] T. Tomari, N. Koshikawa, T. Uematsu, T. Shinkawa, D. Hoshino, N. Egawa, T. Isobe, and M. Seiki, “High throughput analysis of proteins associating with a proinvasive MT1-MMP in human malignant melanoma A375 cells,” Cancer Sci., vol. 100, no. 7, pp. 1284–1290, 2009. Cerca con Google

[235] J. Cao, C. Chiarelli, O. Richman, K. Zarrabi, P. Kozarekar, and S. Zucker, “Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer.,” J. Biol. Chem., vol. 283, no. 10, pp. 6232–40, 2008. Cerca con Google

[236] M. A. Shields, S. Dangi‑Garimella, A. J. Redig, and H. G. Munshi, “Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression,” Biochem. J., vol. 441, no. 2, pp. 541–552, 2011. Cerca con Google

[237] N. E. Sounni, C. Roghi, V. Chabottaux, M. Janssen, C. Munaut, E. Maquoi, B. G. Galvez, C. Gilles, F. Frankenne, G. Murphy, J. M. Foidart, and A. Noel, “Up-regulation of Vascular Endothelial Growth Factor-A by Active Membrane-type 1 Matrix Metalloproteinase Through Activation of Src-Tyrosine Kinases,” J. Biol. Chem., vol. 279, no. 14, pp. 13564–13574, 2004. Cerca con Google

[238] P. Spessotto, E. Giacomello, and R. Perri, “Improving fluorescence-based assays for the in vitro analysis of cell adhesion and migration.,” Mol. Biotechnol., vol. 20, no. 3, pp. 285–304, 2002. Cerca con Google

[239] A. Doucet and C. M. Overall, “Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to edman sequencing.,” Mol. Cell. Proteomics, vol. 10, no. 5, p. M110.003533, 2011. Cerca con Google

[240] N. Abramowitz, I. Schechter, and A. Berger, “On the size of the active site in proteases II. Carboxypeptidase-A,” Biochem. Biophys. Res. Commun., vol. 29, no. 6, pp. 862–867, 1967. Cerca con Google

[241] L. Hedstrom, “Serine protease mechanism and specificity,” Chem. Rev., vol. 102, no. 12, pp. 4501–4523, 2002. Cerca con Google

[242] N. A. Tamarina, W. D. McMillan, V. P. Shively, and W. H. Pearce, “Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta,” in Surgery, 1997, vol. 122, no. 2, pp. 264–272. Cerca con Google

[243] B. A. Kelly, B. C. Bond, and L. Poston, “Gestational profile of matrix metalloproteinases in rat uterine artery,” Mol Hum Reprod, vol. 9, no. 6, pp. 351–358, 2003. Cerca con Google

[244] R. Kowalewski, K. Sobolewski, M. Wolanska, and M. Gacko, “Matrix metalloproteinases in the vein wall,” Int. Angiol., vol. 23, no. 2, pp. 164–169, 2004. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record