Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bogoni, Manuel (2017) Long-term evolution of meandering rivers flowing above heterogeneous floodplains. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
31Mb

Abstract (inglese)

Floodplains, and rivers therein, constitute complex systems whose simulation involves modelling of hydrodynamic, morphodynamic, chemical, and biological processes which act, affecting each other, over a wide range of time scales (from days to centuries). Floodplain morphology and stratigraphy are shaped by the interplay of water flow, erosion, and deposition consequent to repeated flood events, as the river dissecting the floodplain evolves through feedbacks between bars, channels, vegetation and sediment characteristics shaping the floodplain itself.

The first topic of this thesis concerns the mutual interactions that leads to self-formed floodplains, produced by the sedimentary processes associated with the migration of river bends and the formation of abandoned oxbow lakes consequent to the cutoff of mature meanders.
The second topic addresses the presence of internal boundary conditions able to affect the main flow field and thus the curvature-driven flow that drives bend migration.
Point bar deposits and oxbow lakes are the products of lateral bend migration and meander cutoffs. The sediment deposits characterizing these geomorphic units link together the long term evolution of an alluvial river and the surrounding floodplain, altering the soil composition and, hence, bank strength controlling the rate of channel meandering.
On the other hand, a localized forcing internal to the main flow field (e.g., a variation in bed slope or in flow discharge) propagates either upstream or downstream, affecting the river dynamics.
Multivariate statistical and spectral tools may disclose the complexity of the resulting planform geometries, either simulated or natural, ensuring an objective comparison.

Abstract (italiano)

Le piane alluvionali e i relativi fiumi costituiscono complessi sistemi dinamici la cui simulazione numerica richiede la modellazione di processi idrodinamici, morfodinamici, chimici e biologici agenti mutuamente su varie scale temporali (dai giorni ai secoli).
La morfologia e la stratigrafia della piana alluvionale sono determinate dalla mutua interazione tra flussi idrici, erosione e deposito di sedimenti dovuti a ripetuti eventi di piena. Barre alluvionali, canali abbandonati, caratteristiche dei sedimenti e della vegetazione giocano un ruolo chiave nella storia migratoria del fiume che scorre sulla superficie alluvionale.

Il primo argomento di questa tesi riguarda l'interazione mutua tra fiume e piana alluvionale, prodotta dai processi sedimentologici che modificano la struttura della superficie alluvionale influendo sulla migrazione del fiume e, allo stesso tempo, sono determinati dai processi legati dalla migrazione stessa. Tali processi consistono in progressivi depositi nella parte interna delle curve (point bars) fino ai cutoffs che portano alla formazione di anse abbandonate, contribuendo ad alterare la resistenza all'erosione del suolo da parte del fiume stesso.

Il secondo argomento riguarda la presenza di condizioni al contorno interne che sono in grado di influire sulle caratteristiche del campo di moto, il quale è legato alla distribuzione della curvatura planimetrica dei meandri. La presenza di una singolarità (e.g., variazione di portata dovuta alla confluenza con un affluente) genera perturbazioni al campo di moto che si propagano verso monte e verso valle, influendo sulla dinamica a breve e a lungo termine del fiume.

Metodi statistici spettrali e multivariati permettono di analizzare e confrontare oggettivamente le geometrie dei meandri fluviali, sia naturali che generati numericamente.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Stefano, Lanzoni
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:31 Gennaio 2017
Anno di Pubblicazione:31 Gennaio 2017
Parole chiave (italiano / inglese):morfodinamica fluviale, fiumi meandriformi, simulazioni numeriche river morphodynamics, meander evolution, numerical simulations
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/01 Idraulica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:10318
Depositato il:15 Nov 2017 09:55
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aalto, R. E., Lauer, J. W., and Dietrich, W. E. (2008). Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains (Papua New Guinea) over decadal-to-centennial timescales. Journal of Geophysical Research, 113(F1):F01S04. Cerca con Google

Alin, S. R., Aalto, R. E., Goni, M. A., Richey, J. E., and Dietrich, W. E. (2008). Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113(1):1–21. Cerca con Google

Allmendinger, N. E., Pizzuto, J. E., Potter, N., Johnson, T. E., and Hession, W. C. (2005). The influence of riparian vegetation on stream width, eastern Pennsylvania, USA. Bulletin of the Geological Society of America, 117(1-2):229–243. Cerca con Google

Asahi, K., Shimizu, Y., Nelson, J., and Parker, G. (2013). Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118:2208–2229. Cerca con Google

Camporeale, C., Perona, P., Porporato, A., and Ridolfi, L. (2005). On the long-term behavior of meandering rivers. Water Resources Research, 41(12):1–13. Cerca con Google

Camporeale, C., Perucca, E., and Ridolfi, L. (2008). Significance of cutoff in meandering river dynamics. Journal of Geophysical Research: Earth Surface, 113(1):1– 11. Cerca con Google

Constantine, C. R., Dunne, T., and Hanson, G. J. (2009). Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology, 106(3-4):242–252. Cerca con Google

Constantine, J. A., Dunne, T., Pi ́egay, H., and Mathias Kondolf, G. (2010). Controls on the alluviation of oxbow lakes by bed-material load along the Sacramento river, California. Sedimentology, 57(2):389–407. Cerca con Google

Crosato, A. (1990). Simulation of meandering river process. Technical Report 3, Delft university of Tecnology, Delft (NL), Delft. Cerca con Google

David, S. R., Edmonds, D. A., and Letsinger, S. L. (2016). Controls on the occurrence and prevalence of floodplain channels in meandering rivers. Earth Surface Processes and Landforms. Cerca con Google

Day, G., Dietrich, W. E., Rowland, J. C., and Marshall, A. (2008). The depositional web on the floodplain of the Fly River, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113(F1). Cerca con Google

Dunne, T., Mertes, L., Meade, R., Richey, J. E., and Forsberg, B. (1998). Exchanges of sediment between the floodplain and channel of the Amazon River in Brazil. Geological Society of America Bulletin, 110(4):450–467. Cerca con Google

Edwards, B. L., Keim, R. F., Johnson, E. L., Hupp, C. R., Marre, S., and King, S. L. (2016). Geomorphic adjustment to hydrologic modifications along a meandering river: Implications for surface flooding on a floodplain. Geomorphology, 269:149–159. Cerca con Google

Einstein, A. (1926). The cause of the formation of meanders in the courses of rivers and of the so-called baers law. Die Naturwissenschaften, 14(11):223–224. Cerca con Google

Eke, E. C., Parker, G., and Shimizu, Y. (2014). Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of barp ush and bank pull. Journal of Geophysical Research: Earth Surface, 119(2):1–29. Cerca con Google

Engelund, F. and Hansen, E. (1967). A monograph on sediment transport in alluvial stream. Technical report, Technical University of Denmark, Copenhagen. Cerca con Google

Finnegan, N. J. and Dietrich, W. E. (2011). Episodic bedrock strath terrace formation due to meander migration and cutoff. Geology, 39(2):143–146. Cerca con Google

Frascati, A. (2009). Morphodynamic regime and long-term modelling of meandering rivers. PhD thesis. Cerca con Google

Frascati, A. and Lanzoni, S. (2009). Morphodynamic regime and Cerca con Google

long-term evolution of meandering rivers. Journal of Geophysical Research: Earth Surface, 114(2):1–12. Cerca con Google

Frascati, A. and Lanzoni, S. (2010). Long-term river meandering as a part of chaotic dynamics? A contribution from mathematical modelling. Earth Surface Processes and Landforms, 35(7):791–802. Cerca con Google

Frascati, A. and Lanzoni, S. (2013). A mathematical model for meandering rivers with varying width. Journal of Geophysical Research: Earth Surface, 118(3):1641– 1657. Cerca con Google

Frings, R. M. (2008). Downstream fining in large sand-bed rivers. Earth-Science Reviews, 87(1):39–60. Cerca con Google

Gagliano, S. M. and Howard, P. C. (1984). The neck cutoff oxbow lake cycle along the Lower Mississippi River. In CM, E., editor, River Meandering, Proceedings of the Conference Rivers 1983, pages 147–158. ASCE. New Orleans. Cerca con Google

Gautier, E., Brunstein, D., Vauchel, P., Rouler, M., Fuertes, O., Guyot, L., Darozzes, J., and Bourrel, L. (2007). Temporal relation between meander deformation, water discahrge and sediment fluxes in the floodplain of the Rio Beni (Bolivian Amazonia). Earth Surface Processes and Landforms, 32:230–248. Cerca con Google

Gay, G. R., Gay, H. H., Gay, W. H., Martinson, H. A., Meade, R. H., and Moody, J. A. (1998). Evolution of cutoffs across meander nechks in Powder River, Montana, USA. Earth Surface Processes and Landforms, 23:651–662. Cerca con Google

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P. (2002). Advanced spectral methods for climate time series. Reviews of Geophysics, 40(1):1–41. Cerca con Google

Grenfell, M., Aalto, R. E., and Nicholas, A. P. (2012). Chute channel dynamics in large, sand-bed meandering rivers. Earth Surface Processes and Landforms, 37(3):315– 331. Cerca con Google

Guneralp, I. and Rhoads, B. L. (2011). Influence of floodplain erosional heterogeneity on planform complexity of meandering rivers. Geophysical Research Letters, 38(14):2–7. Cerca con Google

Gutierrez, R. R., Abad, J. D., Choi, M., and Montoro, H. (2014). Characterization of confluences in free meandering rivers of the Amazon basin. Geomorphology, 220:1–14. [Han and Endreny, 2014] Han, B. and Endreny, T. (2014). Detailed river stage mapping and head gradient analysis during meander cutoff in a laboratory river. Water Resources Research,50:1689–1703. Cerca con Google

Hooke, J. M. (1995). River channel adjustment to meander cutoffs on the River Bollin and River Dane, northwest England. Geomorphology, 14(3):235–253. Cerca con Google

Hooke, J. M. (2004). Cutoffs galore!: occurrence and causes of multiple cutoffs on a meandering river. Geomorphology, 61(3-4):225–238. Cerca con Google

Hormann, K. and Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Computational Geometry: Theory and Applications, 20(3):131–144. Cerca con Google

Howard, A. (1996). Modelling channel evolution and floodplain morphology. Floodplain Processes, pages 15–62. Cerca con Google

Howard, A. D. and Hemberger, A. T. (1991). Multivariate characterization of meandering. Geomorphology, 4:161.186. Cerca con Google

Howard, A. D. and Knutson, T. R. (1984). Sufficient conditions for river meanering: a simulation approach. Water Resources Research, 20(11):1659–1667. Cerca con Google

Hudson, P. F. and Kesel, R. H. (2000). Channel migration and meanderbend curvature in the lower Mississippi River prior to major human modification. Geology, Cerca con Google

28(6):531–534. Cerca con Google

Ikeda, S., Parker, G., and Sawai, K. (1981). Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics, 112:363–377. Cerca con Google

Johannesson, H. and Parker, G. (1989). Linear theory of river meanders. Water Resources Monograph, 12:181–214. Cerca con Google

Kleinhans, M. G. (2010). Sorting out river channel patterns. Progress in Physical Geography, 34(3):287–326. Cerca con Google

Kleinhans, M. G. and van den Berg, J. H. (2011). River channel and bar patterns explained and predicted by an empirical and a physics-based method. Earth Cerca con Google

Surface Processes and Landforms, 36:721–738. Cerca con Google

Lancaster, S. T. and Bras, R. L. (2002). A simple model of river meandering and its comparison to natural channels. Hydrological Processes, 16(1):1–26. Cerca con Google

Lane, E. W. (1957). A study of the shape of channels formed by natural streams flowing in erodible material. US Army Engineer Division, Missouri River. Cerca con Google

Lanzoni, S. and Seminara, G. (2006). On the nature of meander instability. Journal of Geophysical Research, 111(4):1–14. Cerca con Google

Lanzoni, S., Siviglia, A., Frascati, A., and Seminara, G. (2006). Long waves in erodible channels and morphodynamic influence. Water Resources Research, 42:1–15. Cerca con Google

Latrubesse, E. M. (2008). Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology, 101(1-2):130–145. Cerca con Google

Lauer, J. W. and Parker, G. (2008). Net local removal of floodplain sediment by river meander migration. Geomorphology, 96(1-2):123–149. Cerca con Google

Lazarus, E. D. and Constantine, J. A. (2013). Generic theory for channel sinuosity. PNAS, 110(21):8447–8452. Cerca con Google

Leopold, L. B. and Wolman, M. G. (1957). River channel patterns: braided, meandering, and straight. US Government Printing Office. Cerca con Google

Lewin, J. and Ashworth, P. J. (2014). The negative relief of large river floodplains. Earth-Science Reviews, 129:1–23. Cerca con Google

Makaske, B., Smith, D. G., and Berendsen, H. J. (2002). Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada. Sedimentology, 49(5):1049–1071. Cerca con Google

Marani, M., Lanzoni, S., and Zandolin, D. (2002). Tidal meanders. Water Resources Research, 38(11). Cerca con Google

Miall, A. D. (1985). Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Cerca con Google

Motta, D., Abad, J. D., Langendoen, E. J., and Garcia, M. H. (2012a). A simplified 2d model for meander migration with physically-based bank evolution. Geomorphology, 163:10–25. Cerca con Google

Motta, D., Abad, J. D., Langendoen, E. J., and Garc ́ıa, M. H. (2012b). The effects of floodplain soil heterogeneity on meander planform shape. Water Resources Research, 48(9):1–17. Cerca con Google

Nanson, G. C. (1980). Point bar and floodplain formation of the meandering Beatton River, northeastern British Columbia, Canada. Sedimentology, 27(1):3–29. Cerca con Google

Nicoll, T. J. and Hickin, E. J. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 116(1-2):37– 47. Cerca con Google

Nittrouer, J. A., Mohrig, D., Allison, M. A., and Peyret, A. P. B. (2011). The lowermost Mississippi River: a mixed bedrock-alluvial channel. Sedimentology, 58(7):1914– 1934. Cerca con Google

Nordin, C. F. and Queen, B. S. (1992). Particle size distributions of bed sediments along the thalweg of the Mississippi River, Cairo, Illinois, to Head of Passes, September 1989. Technical report, DTIC Document. Cerca con Google

Orfanidis, S. J. (1995). Introduction to signal processing. Prentice-Hall, Inc. [Parker, 1976] Parker, G. (1976). On the cause and characteristic scales of meandering and braiding in rivers. Journal of fluid mechanics, 76(03):457–480. Cerca con Google

Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4):417–436. Cerca con Google

Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E. C., Abad, J. D., Lauer, J. W., Paola, C., Dietrich, W. E., and Voller, V. R. (2011). A new framework for modeling the migration of meandering rivers. Earth Surface Processes and Landforms, 36(1):70–86. Cerca con Google

Perucca, E., Camporeale, C., and Ridolfi, L. (2005). Nonlinear analysis of the geometry of meandering rivers. Geophysical Research Letters, 32(3):1–4. Cerca con Google

Perucca, E., Camporeale, C., and Ridolfi, L. (2006). Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research: Biogeosciences, 111(1):1–9. Cerca con Google

Perucca, E., Camporeale, C., and Ridolfi, L. (2007). Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resources Research, 43(3):1–10. Cerca con Google

Rowland, J. C., Lepper, K., Dietrich, W. E., Wilson, C. J., and Sheldon, R. (2005). Tie channel sedimentation rates, oxbow formation age and channel migration rate from optically stimulated luminescence (OSL) analysis of floodplain deposits. Earth Surface Processes and Landforms, 30(9):1161–1179. Cerca con Google

Schumm, S. A. (1986). Alluvial river response to active tectonics. Active tectonics, pages 80–94. Cerca con Google

Schuurman, F., Shimizu, Y., Iwasaki, T., and Kleinhans, M. G. (2016). Dynamic meandering in response to upstream perturbations and floodplain formation. Geomorphology, 253:94–109. Cerca con Google

Schwenk, J., Lanzoni, S., and Foufoula-Georgiou, E. (2015). The life of a meander bend : connecting shape and dynamics via analysis of a numerical model. Journal of Geophysical Research: Earth Surface, 120:690–710. Cerca con Google

Seminara, G. (2006). Meanders. Journal of Fluid Mechanics, 554:271–297. [Seminara et al., 2001] Seminara, G., Zolezzi, G., Tubino, M., and Zardi, D. (2001). Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics, 438:213–230. Cerca con Google

Serita, A., Hattori, K., Yoshino, C., Hayakawa, M., and Isezaki, N. (2005). Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. Natural Hazards and Earth System Science, 5(5):685–689. Cerca con Google

Slingerland, R. and Smith, N. D. (2004). River Avulsions and Their Deposits. Annu. Rev. Earth Planet. Sci, 32(Qian 1990):257–285. Cerca con Google

Smith, D. G., Hubbard, S. M., Leckie, D. A., and Fustic, M. (2009). Counter point bar deposits: lithofacies and reservoir significance in the meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology, 56(6):1655–1669. Cerca con Google

Solari, L., van Oorschot, M., Belletti, B., Hendriks, D., Rinaldi, M., and Vargas-Luna, A. (2016). Advances on modelling riparian vegetation hydromorphology interactions. River Research and Applications, 32:164–178. Cerca con Google

Stølum, H. H. (1996). River meandering as a self-organization process. Science, 271(March):1710–1713. Cerca con Google

Stølum, H. H. (1998). Planform geometry and dynamics of meandering rivers. Bulletin of the Geological Society of America, 110(11):1485–1498. Cerca con Google

Sun, T., Meakin, P., Jøssang, T., and Schwarz, K. (1996). A simulation model for meandering rivers. Water Resources Research, 32(9):2937–2954. Cerca con Google

Swanson, K. M., Watson, E., Aalto, R. E., Lauer, J. W., Bera, M. T., Marshall, A., Taylor, M. P., Apte, S. C., and Dietrich, W. E. (2008). Sediment load and floodplain deposition rates: Comparison of the Fly and Strickland rivers, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113(1):2–17. Cerca con Google

Sylvester, Z. and Covault, J. A. (2016). Development of cutoffrelated knickpoints during early evolution of submarine channels. Geology, 44(10):835–838. Cerca con Google

Toonen, W. H., Kleinhans, M. G., and Cohen, K. M. (2012). Sedimentary architecture of abandoned channel fills. Earth Surface Processes and Landforms, 37(4):459–472. Cerca con Google

van De Lageweg, W. I., van Dijk, W. M., Baar, A. W., Rutten, J., and Kleinhans, M. G. (2014). Bank pull or bar push : What drives scroll-bar formation in meandering rivers ? Geology, pages 1–4. Cerca con Google

Van den Berg, J. H. (1995). Prediction of alluvial channel pattern of perennial rivers. Geomorphology, 12(4):259–279. Cerca con Google

van Oorschot, M., Kleinhans, M. G., Geerling, G., and Middelkoop, H. (2016). Distinct patterns of interaction between vegetation and morphodynamics. Earth Surface Processes and Landforms, 41(6):791–808. Cerca con Google

Van Rijn, L. C. (1984a). Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering, 110(11):1613–1641. Cerca con Google

Van Rijn, L. C. (1984b). Sediment transport, part III: bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12):1733–1754. Cerca con Google

Vautard, R. and Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics with appliations to paleoclimatic time series. Physica D, 35:395–424. Cerca con Google

Wickert, A. D., Martin, J. M., Tal, M., Kim, W., Sheets, B., and Paola, C. (2013). River channel lateral mobility: Metrics, time scales, and controls. Journal of Geophysical Research: Earth Surface, 118(2):396–412. Cerca con Google

Wright, S. and Parker, G. (2005). Modeling downstream fining in sand-bed rivers. I: Formulation. Journal of Hydraulic Research, 43(6):613–620. Cerca con Google

Zen, S., Zolezzi, G., Toffolon, M., and Gurnell, A. M. (2016). Biomorphodynamic modelling of inner bank advance in migrating meander bends. Advances in Water Resources, 93:166–181. Cerca con Google

Zolezzi, G. and Seminara, G. (2001). Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics, 438:183–211. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record