Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Di Gaspero, Mattia (2017) Proteins in White Wines: Their Interaction With Tannins And Aroma Compounds. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
4Mb

Abstract (english)

The presence of protein in white wines represents a major problem for the wine industry mainly due to the fact that proteins generate haze in the bottled white wines. Protein instability, which results in wine haze formation, is due to some grape PR-Proteins that thanks to their intrinsic resistance survive the vinification process, pass into the wine where cause the appearance of undesirable haze and deposits, leading to rejection by consumers. Protein hazing of white wines is considered to be a three-step process, involving protein denaturation followed by aggregation into colloidal particles able to scatter the visible light and make the wine turbid. Because of the complexity and the variability of the wine matrix, the factors and mechanisms involved in this process are still largely unknown. Commonly, winemakers prevent haze formation by removing the proteins through the use of bentonite. However, this treatment causes loss of wine and, being unspecific, also the removal of some aroma compounds. It has been calculated that the total cost deriving from bentonite treatments corresponds to a worldwide total amount of 1 billion dollars per year. Therefore, basic and applied research is still needed to solve the problem of protein haze formation in white wines.
Firstly, the present thesis faces the problem of the impairment of aroma due to bentonite fining. In particular, the study arises from a previous investigation which suggested the existence of an interaction between proteins and aroma compounds. In this context, the interaction of the main wine protein VVTL1 with some fatty acid ethyl esters (FAEE), which are important fermentative aroma compounds has been investigated. Due to the difficulty to determine this interaction at the molecular level, Synchrotron Radiation Circular Dichroism (SRCD) has been used to study the secondary structure of the wine protein as affected by the interactions with FAEE having different chain lengths. Subsequently, the research continued with the investigation of the role played by tannins in the phenomena leading to protein instability of white wines. To this purpose, the effects of several polyphenols (deriving from wine and not) on the stability of VVTL1 has been investigated using SRCD. In parallel, the capability of tannins to react with the proteins over time in bottled wine has been evaluated by Dynamic Light Scattering (DLS) studies in a model wine system. In addition, the thermal stability of two purified proteins, which are representative of the major classes of proteins in white wine (i.e. a class IV Chitinase and the VVTL1), has been investigated by Differential Scanning Calorimetry (DSC) in the presence of the tannins purified from wine at different times after bottling. Finally, the last part of the research focuses on the possibility to produce good quantities of grape proteins in pure form starting from the in vitro culture of berry pulp tissues. These proteins can be used for molecular and functional characterisation. In particular, with this technique it is possible to label the proteins by cultivating the cellular tissues in the presence of N15 which allows the study of their fine structure and interactions by spectroscopic methods.

Abstract (italian)

La presenza di proteine nei vini bianchi rappresenta un problema di grande importanza per l’industria del vino, principalmente dovuto alla formazione di torbidità nei vini bianchi in bottiglia. L’instabilità proteica, nonché formazione di torbidità, è associata ad alcune proteine di difesa della pianta che per mezzo della loro intrinseca resistenza e stabilità sopravvivono al processo di vinificazione, passando nel vino dove causano la comparsa dell’indesiderata torbidità e di depositi in bottiglia, la quale non incontra le aspettative del consumatore e viene quindi scartata. La torbidità proteica nei vini bianchi è considerata come un processo a tre stadi, che coinvolge la denaturazione delle proteine seguita dall’aggregazione in particelle colloidali capaci di disperdere la luce visibile e far divenire il vino torbido. Data la complessità e la variabilità della matrice vino, i fattori e meccanismi coinvolti in questo fenomeno sono ancora largamente sconosciuti.
Normalmente gli enologi prevengono la formazione di torbidità rimuovendo le proteine attraverso l’uso della bentonite. Tuttavia questo trattamento causa la perdita di vino, ed essendo aspecifico, causa anche la rimozione di alcuni composti aromatici. È stato calcolato che il costo totale derivante dall’uso di bentonite corrispondi a 1 miliardo di dollari l’anno. Pertanto è ancora necessaria della ricerca di base e applicata per risolvere il problema della formazione di torbidità proteica nei vini bianchi.
La prima parte di questa tesi tratta il tema dell’impoverimento aromatico causato dal trattamento con bentonite. In particolare questo studio prende ispirazione da un precedente lavoro, il quale suggerisce l’esistenza di un’interazione tra le proteine e i composti aromatici. In questo contesto è stata studiata l’interazione della principale proteina dei vini bianchi, la VVTL1, e alcuni esteri etilici degli acidi grassi, i quali sono importanti aromi fermentativi del vino. Data la difficoltà di determinare a livello molecolare questo tipo d’interazione è stata sfruttata la luce di sincrotrone applicata al dicroismo circolare (SRCD) per studiare l’effetto di alcuni esteri etilici di acidi grassi a media catena sulla struttura secondaria della proteina del vino. In seguito, la ricerca è proseguita con lo studio mirato a comprendere l’esatto ruolo dei tannini nel fenomeno che conduce all’instabilità proteica dei vini bianchi. A questo scopo, sono stati studiati tramite sincrotrone gli effetti di diversi polifenoli (derivati o no dal vino) sulla stabilità della VVTL1. In parallelo la capacità nel tempo dei tannini di reagire con le proteine in bottiglia è stata valutata svolgendo degli studi di diffusione dinamica della luce (DLS) in vino modello. Con l’ausilio della Calorimetria differenziale a scansione (DSC), è stato inoltre studiata, la stabilità termica di due tra le più rappresentative proteine del vino (la VVTL1 e la chitinasi classe IV) in presenza di tannini purificati a tempi diversi di evoluzione da vino imbottigliato. Infine, l’ultima parte della ricerca si focalizza nella possibilità di produrre proteine dell’uva in quantità accettabili in forma pura partendo dalla coltivazione in vitro di tessuti di polpa della bacca. Queste proteine possono essere utilizzate per la caratterizzazione strutturale e funzionale. In particolare, con questa tecnica si rende possibile la marcatura delle proteine facendo crescere i tessuti cellulari d’uva in presenza di N15, il quale consentirebbe, per mezzo di metodi spettroscopici, lo studio in dettaglio della loro struttura e delle loro interazioni.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Curioni, Andrea
Supervisor:Vincenzi, Simone
Ph.D. course:Ciclo 29 > Corsi 29 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:vino, proteine, polfenoli, composti aromatici, interazione, instabilità proteica, wine, PR-proteins, polyphenols, Aroma compounds, haze formation, interaction
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/15 Scienze e tecnologie alimentari
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:10320
Depositato il:03 Nov 2017 09:11
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Akin-Idowu, P., E.; Ibitoye, D., O. & Ademoyegun O., T. (2009). Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology, 8(16), 3782–3788. Cerca con Google

Asano K, Shinagawa K & Hashimoto N (1982). Characterization of haze-forming proteins of beer and their roles in chill haze formation. J. Am. Soc. Brew. Chem. 40(4): 147-154. Cerca con Google

Barone G, Capasso S, Del Vecchio P, De Sena C, Fessas D, Giancola C, Graziano G & Tramonti P (1995). Thermal denaturation of bovine serum albumin and its oligomers and derivativespH dependence. Journal of Thermal Analysis 45(6): 1255–1264. Cerca con Google

Bate-Smith, E. C. (1954). Flavonoid compounds in foods. Advances in food research, 5, 261-300; Cheynier, V., M. Moutounet and P. Sarni-Manchado, Les composés phénoliques, in Oenologie - Fondements scientifiques et technologiques, Lavoisier Tec&Doc, Editor. 1998 Cerca con Google

Batista, L., Monteiro, S., Loureiro, V. B., Teixeira, A. R., & Ferreira, R. B. (2010). Protein haze formation in wines revisited. The stabilising effect of organic acids. Food Chemistry, 122(4), 1067-1075. Cerca con Google

Bayly, F. C., & Berg, H. W. (1967). Grape and wine proteins of white wine varietals. American Journal of Enology and Viticulture, 18(1), 18-32. Cerca con Google

Benson EE (2000). In vitro plant recalcitrance: An introduction. In vitro: Cell. Dev. Biol. Plant. 36: 141-148. Cerca con Google

Benucci, I., Esti, M., & Liburdi, K. (2014). Effect of free and immobilised stem bromelain on protein haze in white wine. Australian journal of Grape and Wine Research, 20, 347–352. Cerca con Google

Berndt, P., Hobohm, U., & Langen, H. (1999). Reliable automatic protein identification from MATRIX-Assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis, 20, 3521–3526. Cerca con Google

Bohre, A., Dutta, S., Saha, B., & Abu-Omar, M. M. (2015). Upgrading furfurals to drop-in biofuels: An overview. ACS Sustainable Chemistry & Engineering, 3(7), 1263-1277 Cerca con Google

Brissonnet, F., & Maujean, A. (1991). Identification of some foam-active compounds in champagne base wines. American Journal of Enology and Viticulture, 42(2), 97-102. Cerca con Google

Brissonnet, F., & Maujean, A. (1993). Characterization of foaming proteins in a champagne base wine. American Journal of Enology and Viticulture, 44(3), 297-301. Cerca con Google

Brown, S.L., Stockdale, V.J., Pettolino, F., Pocock, K.F., de Barros Lopes, M., Williams, P.J., Bacic, A., Fincher, G.B., Høj, P.B., & Waters, E. J. (2007). Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Applied microbiology and biotechnology, 73(6), 1363-1376. Cerca con Google

Cabello-Pasini, A., Victoria-Cota, N., Macias-Carranza, V., Hernandez-Garibay, E., & Muñiz-Salazar, R. (2005). Clarification of wines using polysaccharides extracted from seaweeds. American journal of enology and viticulture, 56(1), 52-59 Cerca con Google

Cala, O., Pinaud, N., Simon, C., Fouquet, E., Laguerre, M., Dufourc, E. J., & Pianet, I. (2010). NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. The FASEB Journal, 24(11), 4281-4290. Cerca con Google

Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., Van Damme, J., Osborn, R. W., Guerbette, F., Kader, J. C., & Broekaert, W. F. (1995). A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiology, 109(2), 445-455. Cerca con Google

Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E., Gómez, M. V., Velders, A. H., & Hermosín-Gutiérrez, I. (2008). Flavonol 3-O-glycosides series of Vitis vinifera cv. Petit Verdot red wine grapes. Journal of Agricultural and Food Chemistry, 57(1), 209-219 Cerca con Google

Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2010). Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis, 23(7), 699-705. Cerca con Google

Catarino, S., Madeira, M., Monteiro, F., Rocha, F., Curvelo-Garcia, A. S., & De Sousa, R. B. (2008). Effect of bentonite characteristics on the elemental composition of wine. Journal of Agricultural and Food Chemistry, 56(1), 158-165. Cerca con Google

Chagas, R., et al., Is caffeic acid, as the major metabolite present in Moscatel wine protein haze hydrolysate, involved in protein haze formation?, Food Research International (2016), Cerca con Google

Chagas, R., Ferreira, L. M., Laia, C. A. T., Monteiro, S., & Ferreira, R. B. (2016). The challenging SO 2 -mediated chemical build-up of protein aggregates in wines. Food Chemistry, 192, 460–469. Cerca con Google

Charters, S., & Pettigrew, S. (2003). The intrinsic dimensions of wine quality: an exploratory investigation. In Proceedings of the International Colloquium in wine Marketing (pp. 1-21). Cerca con Google

Charters, S., & Pettigrew, S. (2005). Is wine consumption an aesthetic experience?. Journal of Wine Research, 16(2), 37–52. Cerca con Google

Chatterjee, S., Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2004). Clarification of fruit juice with chitosan. Process Biochemistry, 39(12), 2229-2232. Cerca con Google

Cheng, C. S., Samuel, D., Liu, Y. J., Shyu, J. C., Lai, S. M., Lin, K. F., & Lyu, P. C. (2004). Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry, 43(43), 13628-13636. Cerca con Google

Chevalier, J. (2006) What future for zirconia as a biomaterial?. Biomaterials, 27(4), 535–543. Cerca con Google

Cheynier, V., M. Moutounet and P. Sarni-Manchado (1998), Les composés phénoliques, in Oenologie - Fondements scientifiques et technologiques, Lavoisier Tec&Doc, Editor. Cerca con Google

Cheynier, V. (2005). Polyphenols in foods are more complex than often thought. The American journal of clinical nutrition, 81(1), 223S-229S. Cerca con Google

Chi, E. Y., Krishnan, S., Randolph, T. W., & Carpenter, J. F. (2003). Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharmaceutical research, 20(9), 1325-1336 Cerca con Google

Cilindre, C., Castro, A. J., Clément, C., Jeandet, P., & Marchal, R. (2007). Influence of Botrytis cinerea infection on Champagne wine proteins (characterized by two-dimensional electrophoresis/immunodetection) and wine foaming properties. Food Chemistry, 103(1), 139-149.; Cerca con Google

Clarke, D. T., & Jones, G. (2004). CD12: a new high-flux beamline for ultraviolet and vacuum-ultraviolet circular dichroism on the SRS, Daresbury. Journal of synchrotron radiation, 11(2), 142-149. Cerca con Google

Coelho, E., Reis, A., Domingues, M. R. M., Rocha, S. M., & Coimbra, M. A. (2011). Synergistic effect of high and low molecular weight molecules in the foam- ability and foam stability of sparkling wines. Journal of Agricultural and Food Chemistry, 59(7), 3168-3179. Cerca con Google

Collinge, D. B.; Kragh, K. M.; Mikkelesen, J. D.; Nielsen, K. K.; Rasmussen, U. & Vad, K. (1993). Plant chitinases. The Plant Journal,3(1), 31-40. Cerca con Google

Conde, C., Agasse, A., Glissant, D., Tavares, R., Gerós, H., & Delrot, S. (2006). Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiology, 141(4), 1563-1577. Cerca con Google

Cooper A (1999). Thermodynamics of protein folding and stability. Protein: A Comprehensive Treatise 2: 217–270. Cerca con Google

Cosme, F., Ricardo-da-Silva, J. M., & Laureano, O. (2008). Interactions between protein fining agents and proanthocyanidins in white wine. Food Chemistry, 106(2), 536–544. Cerca con Google

Cosme, F., Capão, I., Filipe-Ribeiro, L., Bennett, R. N., & Mendes-Faia, A. (2012). Evaluating potential alternatives to potassium caseinate for white wine fining: effects on physicochemical and sensory characteristics. LWT-Food Science and Technology, 46(2), 382-387. Cerca con Google

Curioni A., Vincenzi S., & Flamini R. (2008) in: R. Flamini (Ed.), Hyphenated Techniques in Grape and Wine Chemistry, John Wiley, pp. 249–287. Cerca con Google

Dambrouck, T., Marchal, R., Cilindre, C., Parmentier, M., & Jeandet, P. (2005). Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus changes in the total protein content of wine. Relationships with wine foamability. Journal of Agricultural and Food Chemistry, 53(22), 8782-8789. Cerca con Google

Das, D. K., Nirala, N. K., Redoy, M. K., Sopory, S. K., & Upadhyaya, K. C. (2015). Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage and propagation of pathogen-free plant material. VITIS-Journal of Grapevine Research, 45(4), 179. Cerca con Google

Datta, S. K., & Muthukrishnan, S. (Eds.). (1999). Pathogenesis-related proteins in plants. CRC press. Cerca con Google

Dawes, H., Boyes, S., Keene, J., & Heatherbell, D. (1994). Protein instability in wines: influence of protein isoelectric point. American Journal of Enology and Viticulture, 45(3), 319-326. Cerca con Google

Deytieux, C., Geny, L., Lapaillerie, D., Claverol, S., Bonneu, M., & Donèche, B. (2007). Proteome analysis of grape skins during ripening. Journal of Experimental Botany, 58(7), 1851-1862. Cerca con Google

Di Gaspero, M., Ruzza, P., Hussain, R., Vincenzi, S., Biondi, B., Gazzola, D., Siligardi, G., & Curioni, A. (2017). Spectroscopy reveals that ethyl esters interact with proteins in wine. Food Chemistry, 217, 373–378. Cerca con Google

Diz, M. S., Carvalho, A. O., Ribeiro, S. F., Da Cunha, M., Beltramini, L., Rodrigues, R., Nacimento, V.V., Machadoc, O.L.T., & Gomes, V. M. (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α‐amylase inhibitory properties. Physiologia plantarum, 142(3), 233-246. Cerca con Google

Dizy, M., & Bisson, L. F. (1999). White wine protein analysis by capillary zone electrophoresis. American journal of enology and viticulture, 50(1), 120-127. Cerca con Google

Dörnenburg, H., & Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 17(8), 674-684. Cerca con Google

Dufrechou, M., Sauvage, F.-X., Bach, B., & Vernhet, A. (2010). Protein aggregation in white wines: influence of the temperature on aggregation kinetics and mechanisms. Journal of agricultural and food chemistry, 58(18), 10209-10218. Cerca con Google

Dufrechou M, Poncet-Legrand C, Sauvage FX, & Vernhet A (2012). Stability of white wine proteins: Combined effect of pH, ionic strength, and temperature on their aggregation. Journal of Agricultural and Food Chemistry 60(5): 1308–1319. Cerca con Google

Dufrechou, M., Doco, T., Poncet-Legrand, C., Sauvage, F.-X., & Vernhet, A. (2015). Protein/Polysaccharide Interactions and Their Impact on Haze Formation in White Wines. Journal of Agricultural and Food Chemistry, 63(45), 10042–10053. Cerca con Google

Ehrlich F (1904) Uber das naturliche Isomere des Leucins. Ber Dtsch Chem Ges 37:1809–1840 Cerca con Google

Escoriaza, G., Sansberro P., García-Lampasona S., Gatica M., Bottini R., & Piccoli, P. (2013). In vitro cultures of Vitis vinifera L. cv. Chardonnay synthesize the phytoalexin nerolidol upon infection by Phaeoacremonium parasiticum. Phytopathologia Mediterranea, 52(2), 289−297. Cerca con Google

Esteruelas, M., Poinsaut, P., Sieczkowski, N., Manteau, S., Fort, M. F., Canals, J. M., & Zamora, F. (2009). Characterization of natural haze protein in sauvignon white wine. Food Chemistry, 113(1), 28-35. Cerca con Google

Esteruelas, M., Kontoudakis, N., Gil, M., Fort, M. F., Canals, J. M., & Zamora, F. (2011). Phenolic compounds present in natural haze protein of Sauvignon white wine. Food Research International, 44(1), 77-83. Cerca con Google

Falconer, R. J., Marangon, M., Van Sluyter, S. C., Neilson, K. A., Chan, C., & Waters, E. J. (2010). Thermal stability of thaumatin-like protein, chitinase, and invertase isolated from Sauvignon blanc and Semillon juice and their role in haze formation in wine. Journal of agricultural and food chemistry, 58(2), 975-980. Cerca con Google

Ferreira, R., Monteiro, S., Piçarra-Pereira, M.A., Conceiçao-Tanganho, M., Loureiro, V.B. & Teixeira, A.R. (2000). Characterization of the Proteins from Grapes and Wines by Immunological Methods. American journal of enology and viticulture, 51(1), 22-28. Cerca con Google

Ferreira, R. B., Piçarra-Pereira, M. A., Monteiro, S., Loureiro, V. B., & Teixeira, A. R. (2001). The wine proteins. Trends in food science & technology, 12(7), 230-239. Cerca con Google

Ferreira, R. B., Piçarra-Pereira, M. A., Monteiro, S., Loureiro, V. B., & Teixeira, A. R. (2002). The wine proteins. Trends in Food Science & Technology, 12(7), 230–239. Cerca con Google

Ferreira, R.B., Monteiro, S.S., Picarra-Pereira, M.A., & Teixeira, A.R., (2004). Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends in Biotechnology, 22(4), 168-173. Cerca con Google

Ferri, M., Tassoni, A., Franceschetti, M., Righetti, L., Naldrett, M. J., & Bagni, N. (2009). Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics, 9(3), 610-624. Cerca con Google

Feuillat, M.; Brillant, G. & Rochard, J. (1980). Mise en évidence d’une production de protéases exocellulaires par les levures au cours de la fermentation alcoolique du moût de raisin. Connaissance de la Vigne et du Vin, 14, 37-52. Cerca con Google

Feuillat, M., Charpentier, C., & Maujean, A. (1998). Les composés azotés. Oenologie: Fondements scientifiques et technologiques, 94-116. Cerca con Google

Fleet, G. H. (1991). Cell walls. The yeasts, 4, 199-277. Cerca con Google

Franceschetti, Laura, R., M., Ferri, M., Tassoni, A., & Bagni, N. (2007). Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia, 60(1-2), 169-171. Cerca con Google

Francis I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Wine and Grape Research, 11, 114-126 Cerca con Google

Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental cell research, 50(1), 151-158. Cerca con Google

Gambuti A, Rinaldi A, Ugliano M & Moio L (2013). Evolution of phenolic compounds and astringency during aging of red wine: Effect of oxygen exposure before and after bottling. Journal of Agricultural and Food Chemistry, 61(8): 1618–1627. Cerca con Google

García-Olmedo, F., Molina, A., Segura, A., & Moreno, M. (1995). The defensive role of nonspecific lipid-transfer proteins in plants. Trends in microbiology, 3(2), 72-74. Cerca con Google

Gassara, F., Antzak, C., Ajila, C. M., Sarma, S. J., Brar, S. K., & Verma, M. (2015). Chitin and chitosan as natural flocculants for beer clarification. Journal of Food Engineering, 166, 80-85. Cerca con Google

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. E., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server (pp. 571-607). Humana Press. Cerca con Google

Gazzola et al., 2017- in press. Italian Journal of Food Science. Cerca con Google

Gazzola, D., Van Sluyter, S. C., Curioni, A., Waters, E. J., & Marangon, M. (2012). Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments. Journal of Agricultural and Food Chemistry, 60(42), 10666–10673. Cerca con Google

Gerogiannaki-Christopoulou, M., Athanasopoulos, P., Kyriakidis, N., Gerogiannaki, I. A., & Spanos, M. (2006). trans-Resveratrol in wines from the major Greek red and white grape varieties. Food Control, 17(9), 700-706. Cerca con Google

Gorinstein, S., Caspi, A., Zemser, M., & Trakhtenberg, S. (2000). Comparative contents of some phenolics in beer, red and white wines. Nutrition Research, 20(1), 131-139 Cerca con Google

Gougeon, R. D., Soulard, M., Miehé-Brendlé, J., Chézeau, J. M., Le Dred, R., Jeandet, P., & Marchal, R. (2003). Analysis of two bentonites of enological interest before and after commercial activation by solid Na2CO3. Journal of agricultural and food chemistry, 51(14), 4096-4100. Cerca con Google

Grosvenor, A.J., Morton, J.D., & Dyer, J.M. (2010). Profiling of residue-level photo-oxidative damage in peptides. Amino Acids, 39, 285–296. Cerca con Google

Guerbette, F. M., Grosbois, M., Jolliot-Croquin, A., Kader, J. C., & Zachowski, A. (1999). Lipid-transfer proteins from plants: Structure and binding properties. Molecular and Cellular Biochemistry, 192(1–2), 157–161. Cerca con Google

Guttman, A. Capillary sodium dodecyl sulfate‐gel electrophoresis of proteins. Electrophoresis 1996, 17(8), 1333-1341. Cerca con Google

Hammerschmidt, R. (1999). Phytoalexins: what have we learned after 60 years?. Annual review of phytopathology, 37(1), 285-306. Cerca con Google

Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988. Cerca con Google

Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. Journal of Natural Products, 59(2), 205–215. Cerca con Google

Hasni I, Bourassa P, Hamdani S, Samson G, Carpentier R & Tajmir-Riahi HA (2011). Interaction of milk α- and β-caseins with tea polyphenols. Food Chemistry 126: 630-639. Cerca con Google

Heatherbell, D., Ngaba, P., Fombin, J., Watson Jr, B., Garcia, Z., Flores, J., & Hsu, J. (1984). Recent developments in the application of ultrafiltration and protease enzymes to grape juice and wine processing. In Proceedings of the International Symposium in Cool Climate Viticulture and Enology, June (pp. 25-28). Cerca con Google

Hernanz, D., Gallo, V., Recamales, Á. F., Meléndez-Martínez, A. J., González-Miret, M. L., & Heredia, F. J. (2009). Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chemistry, 113(2), 530-537 Cerca con Google

Hsu, J.C., & Heatherbell, D.A. (1987a). Heat-unstable proteins in wine. I. Characterization and removal by bentonite fining and heat treatment. American Journal of Enology and Viticulture, 38(1), 11-16. Cerca con Google

Hsu, J.C., & Heatherbell, D.A. (1987b). Isolation and characterization of soluble proteins in grapes, grape juice, and wine. American Journal of Enology and Viticulture, 38(1), 6-10. Cerca con Google

Hussain, R.; Jávorfi, T.; & Siligardi, G. (2012a). Spectroscopic Analysis: Synchrotron Radiation Circular Dichroism. In E.M. Carreira, & H. Yamamoto (Eds.), B-23 - Comprehensive Chirality (pp. 438-448). Amsterdam: Elsevier publishing Inc. Cerca con Google

Hussain, R., Jávorfi, T., & Siligardi, G. (2012b). Circular dichroism beamline B23 at the Diamond Light Source. Journal Synchrotron Radiatiation, 19, 132–135. Cerca con Google

Hussain, R., Jávorfi, T., & Siligardi, G. (2012c). Circular dichroism beamline B23 at the Diamond Light Source. Journal of synchrotron radiation, 19(1), 132-135. Cerca con Google

Hussain, R., Benning, K., Myatt, D., Javorfi, T., Longo, E., Rudd, T. R., Bulford B., & Siligardi, G. (2015). CDApps: integrated software for experimental planning and data processing at beamline B23, Diamond Light Source. Corrigendum. Journal of synchrotron radiation, 22(3), 862-862. Cerca con Google

Iimure, T., Nankaku, N., Watanabe-sugimoto, M., Hirota, N., & Tiansu, Z. (2009). Identification of novel haze-active beer proteins by proteome analysis. Journal of Cereal Science, 49(1), 141–147. Cerca con Google

Iriti M, Faoro F (2006) Grape phytochemicals: a bouquet of old and new nutraceuticals for human health. Med Hypoth 67:833–838 Cerca con Google

Israel, O. K. (2009). Adsorption of the proteins of white wine onto activated carbon, alumina and titanium dioxide. African Journal of Pure and Applied Chemistry, 3(1), 006-010. Cerca con Google

Israelachvili, J. N. (2011). Intermolecular and surface forces: revised third edition. Academic press. Cerca con Google

Ivanova, V., Stefova, M., Vojnoski, B., Dörnyei, Á., Márk, L., Dimovska, V., Stafilov, T., & Kilár, F. (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Research International, 44(9), 2851-2860. Cerca con Google

Jaeckels, N., Tenzer, S., Rosfa, S., Schild, H., Decker, H., & Wigand, P. (2013). Purification and structural characterisation of lipid transfer protein from red wine and grapes. Food Chemistry, 138(1), 263–269. Cerca con Google

Jaeckels, N., Tenzer, S., Rosch, A., Scholten, G., Decker, H., & Fronk, P. (2015). β-Glucosidase removal due to bentonite fining during wine making. European Food Research and Technology, 241(2), 253-262 Cerca con Google

Jégou S., Conreux A., Villaume S., Hovasse A., Schaeffer C., Cilindre C., Van Dorsselaer A. & Jeandet P. (2009). Analytica chimica acta, 638(1), 75-78. Cerca con Google

Jones, P. R., Gawel, R., Francis, I. L., & Waters, E. J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Quality and Preference, 19(6), 596–607. Cerca con Google

Kader, J. C. (1996). Lipid-transfer proteins in plants. Annual review of plant biology, 47(1), 627-654. Cerca con Google

Kasaai, M. R. (2009). Various methods for determination of the degree of N-acetylation of chitin and chitosan: A review. Journal of Agricultural and Food Chemistry, 57(5), 1667–1676. Cerca con Google

Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1751(2), 119-139. Cerca con Google

Kennedy, J. A., Hayasaka, Y., Vidal, S., Waters, E. J., & Jones, G. P. (2001). Composition of grape skin proanthocyanidins at different stages of berry development. Journal of Agricultural and Food Chemistry, 49(11), 5348-5355, Cerca con Google

Kieran, P. M., MacLoughlin, P. F., & Malone, D. M. (1997). Plant cell suspension cultures: some engineering considerations. Journal of Biotechnology, 59(1), 39-52. Cerca con Google

Koch, J., & Sajak, E. (1959). A review and some studies on grape protein. American Journal of Enology and Viticulture, 10(3), 114-123. Cerca con Google

Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of molecular biology, 157(1), 105-132. Cerca con Google

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227, 680-685. Cerca con Google

Lambrecht, M., & Pretorius, I. S. (2000). Yeast and its importance to wine aroma. S Afr J Enol Vitic, 27, 97-129 Cerca con Google

Lambri, M., Dordoni, R., Silva, A., & De Faveri, D. M. (2010). Effect of bentonite fining on odor-active compounds in two different white wine styles. American Journal of Enology and Viticulture, 61(2), 225-233. Cerca con Google

Lambri, M., Dordoni, R., Giribaldi, M., Violetta, M. R., & Giuffrida, M. G. (2012). Heat-unstable protein removal by different bentonite labels in white wines. LWT-Food Science and Technology, 46(2), 460-467. Cerca con Google

Lambri, M., Dordoni, R., Silva, A., & De Faveri, D.M. (2013). Odor-active Compound Adsorption onto Bentonite in a Model White Wine Solution. American Journal of Enology and Viticulture, 61:2, 225-233. Cerca con Google

Lambri, M., Colangelo, D., Dordoni, R., & Faveri, D. M. De. (2014). The effects of different protein:tannin ratios on the tartrate-holding capacity of wine model solutions. Food Reasearch International, 62, 441–447. Cerca con Google

Laura, R., Franceschetti, M., Ferri, M., Tassoni, A., & Bagni, N. (2007). Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia, 60(1-2), 169-171. Cerca con Google

Le Bourse, D., Jégou, S., Conreux, A., Villaume, S., & Jeandet, P. (2010). Review of preparative and analytical procedures for the study of proteins in grape juice and wine. Analytica Chimica Acta, 667(1), 33–42. Cerca con Google

Le Bourse, D., Conreux, A., Villaume, S., Lameiras, P., Nuzillard, J. M., & Jeandet, P. (2011). Quantification of chitinase and thaumatin-like proteins in grape juices and wines. Analytical and bioanalytical chemistry, 401(5), 1541-1549. Cerca con Google

Lee, T. H. (1985). Protein instability: Nature, characterization and removal by bentonite.Physical Stability of Wine. TH Lee (Ed.), 23-39. Cerca con Google

Lefebvre, S., Sieczkowski, N., & Vidal, F. (2005). Food security in oenology: The case of vegetable proteins. Rev. Fr. Oenol, 210, 23-30. Cerca con Google

Li, H., Guo, A., & Wang, H. (2008). Mechanisms of oxidative browning of wine. Food Chemistry, 108(1), 1-13. Cerca con Google

Liger-Belair, G.; Polidori, G. & Jeandet, P. (2008). Recent advances in the science of Champagne bubbles. Chem. Soc. Rev., 37(11), 2490-2511. Cerca con Google

Liu, S. Q., & Pilone, G. J. (2000). An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. International journal of food science & technology, 35(1), 49-61 Cerca con Google

Liu, S. Q. (2002). Malolactic fermentation in wine–beyond deacidification. Journal of applied microbiology, 92(4), 589-601 Cerca con Google

Liu, W., Liu, C., Yang, C., Wang, L., & Li, S. (2010). Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chemistry, 122(3), 475–481. Cerca con Google

Lloyd, F., Colby, C., O'Neill, B., & Waters, E. (2005). Combined heat/proteolytic enzyme treatment for the removal of protein haze in wine. Proceedings of Chemeca 2005. Cerca con Google

Longo, E., Hussain, R., & Siligardi, G. (2015). Application of circular dichroism and magnetic circular dichroism for assessing biopharmaceuticals formulations photo-stability and small ligands binding properties. International Journal of Pharmaceutics, 480, 84 – 91. Cerca con Google

Lubbers, S., Charpentier, C., & Feuillat, M. (1996). Etude de la retention de composés d’arome par les bentonites en mout, vin et milieux modèles. Vitis, 35, 59-62. Cerca con Google

Luguera, C., Moreno-Arribas, V., Pueyo, E., Bartolome, B., & Polo, M. C. (1998). Fractionation and partial characterization of protein fractions present at different stages of the production of sparkling wines. Food chemistry, 63(4), 465-471. Cerca con Google

Majewski, P., Barbalet, A., & Waters, E. (2011). $1 billion hidden cost of bentonite fining. Australian and New Zealand grapegrower and winemaker, (569), 58-62. Cerca con Google

Mané, C., Souquet, J. M., Olle, D., Verries, C., Veran, F., Mazerolles, G., ... & Fulcrand, H. (2007). Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties. Journal of Agricultural and Food Chemistry, 55(18), 7224-7233. Cerca con Google

Manicone, P.F., Rossi Iommetti, P., & Raffaelli, L. (2007). An overview of zirconia ceramics: basic properties and clinical applications. Journal of Dentistry 35(11), 819–826. Cerca con Google

Manteau, S., Lambert, B., Jeandet, P., & Legendre, L. (2003). Changes in chitinase and thaumatin-like pathogenesis-related proteins of grape berries during the Champagne winemaking process. American journal of enology and viticulture, 54(4), 267-272. Cerca con Google

Marangon, M., Van Sluyter, S. C., Haynes, P. A., & Waters, E. J. (2009). Grape and wine proteins: Their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. Journal of Agricultural and Food Chemistry, 57(10), 4415–4425. Cerca con Google

Marangon M, Vincenzi S, Lucchetta M & Curioni A (2010). Heating and reduction affect the reaction with tannins of wine protein fractions differing in hydrophobicity. Anal. Chim. Acta 660: 110–118. Cerca con Google

Marangon M, Sauvage FX, Waters EJ & Vernhet A (2011a). Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system. Journal of Agricultural and Food Chemistry 59(6): 2652–2662. Cerca con Google

Marangon, M., Lucchetta, M., & Waters, E. J. (2011b). Protein stabilisation of white wines using zirconium dioxide enclosed in a metallic cage. Australian Journal of Grape and Wine Research, 17(1), 28–35. Cerca con Google

Marangon, M., Sauvage, F. X., Waters, E. J., & Vernhet, A. (2011c). Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system. Journal of Agricultural and Food Chemistry, 59(6), 2652–2662. Cerca con Google

Marangon, M., Van Sluyter, S. C., Robinson, E. M., Muhlack, R. A., Holt, H. E., Haynes, P. A., Goddena, P.W., Smith, P.A., & Waters, E. J. (2012a). Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization. Food chemistry, 135(3), 1157-1165. Cerca con Google

Marangon, M., Lucchetta, M., Duan, D., Stockdale, V. J., Hart, A., Rogers, P. J., & Waters, E. J. (2012b). Protein removal from a Chardonnay juice by addition of carrageenan and pectin. Australian Journal of Grape and Wine Research, 18(2), 194-202 Cerca con Google

Marangon, M., Stockdale, V. J., Munro, P., Trethewey, T., Schulkin, A., Holt, H. E., & Smith, P. A. (2013). Addition of carrageenan at different stages of winemaking for white wine protein stabilization. Journal of agricultural and food chemistry, 61(26), 6516-6524; Cerca con Google

Marchal, R., Barret, J., & Maujean, A. (1995). Relation between physico-chemical characteristics of a bentonite and its adsorptive capacity. Journal International des Sciences de la Vigne et du Vin, 29(1), 27-42. Cerca con Google

Marchal, R., Bouquelet, S., & Maujean, A. (1996). Purification and partial biochemical characterization of glycoproteins in a Champenois Chardonnay wine. Journal of Agricutural and Food Chemistry, 44(7), 1716-1722. Cerca con Google

Marchal, R., Marchal-Delahaut, L., Lallement, A., & Jeandet, P. (2002). Wheat gluten used as a clarifying agent of red wines. Journal of agricultural and food chemistry, 50(1), 177-184. Cerca con Google

Martinez-Esteso, M. J., Sellés-Marchart, S., Vera-Urbina, J. C., Pedreño, M. A., & Bru-Martinez, R. (2009). Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. Journal of Proteomics, 73(2), 331-341. Cerca con Google

Maury, C., Sarni-Manchado, P., Lefebvre, S., Cheynier, V., & Moutounet, M. (2001). Influence of fining with different molecular weight gelatins on proanthocyanidin composition and perception of wines. American Journal of Enology and Viticulture, 52, 140–145. Cerca con Google

Meier, M., Jaeckels, N., Tenzer, S., Stoll, M., Decker, H., Fronk, P., Dietrich, H., & Will, F. (2016). Impact of drought stress on concentration and composition of wine proteins in Riesling. European Food Research and Technology, 1-9. Cerca con Google

Mesquita, P.R., Picarra-Pereira, M.A., Monteiro, S., Loureiro, V.B., Teixeira, A.R., & Ferreira, T.B. (2001). Effect of wine composition on protein stability. American Journal of Enology and Viticulture, 52(4), 324-330. Cerca con Google

Michnik A, Michalik K & Drzazga Z (2005). Stability of bovine serum albumin at different pH. J. Therm. Anal. Cal. 80: 399–406. Cerca con Google

Moine-Ledoux, V., & Dubourdieu, D. (1999). An invertase fragment responsible for improving the protein stability of dry white wines. Journal of the Science of Food and Agriculture, 79(4), 537-543. Cerca con Google

Moine-Ledoux, V., & Dubourdieu, D. (2002). Role yeast mannoproteins with regard to tartaric stabilisation of wines. Bulletin e Office International de la Vigne et du Vin, 75, 471-482. Cerca con Google

Monagas M, Bartolomé B & Gómez-Cordovés C (2005). Evolution of polyphenols in red wines from Vitis vinifera L. during aging in the bottle: IIII. Non-anthocyanin phenolic compounds. European Food Research and Technology 220(3–4): 331–340. Cerca con Google

Monteiro, S., Piçarra-Pereira, M. A., Mesquita, P. R., Loureiro, V. B., Teixeira, A., & Ferreira, R. B. (2001). The wide diversity of structurally similar wine proteins. Journal of agricultural and food chemistry, 49(8), 3999-4010. Cerca con Google

Monteiro, S., Piçarra-Pereira, M. A., Teixeira, A. R., Loureiro, V. B., & Ferreira, R. B. (2003). Environmental conditions during vegetative growth determine the major proteins that accumulate in mature grapes. Journal of agricultural and food chemistry, 51(14), 4046-4053 Cerca con Google

Muhlack, R. A., Waters, E. J., Lim, A., O'Neill, B. K., & Colby, C. B. (2007). An alternative method for purification of a major thaumatin‐like grape protein (VVTL1) responsible for haze formation in white wine. Asia‐Pacific Journal of Chemical Engineering, 2(1), 70-74. Cerca con Google

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497. Peschke VM, Phillips RL (1992). Genetic implications of Somaclonal variations in plants. Adv. Genet. 30: 41-75. Cerca con Google

Murphey, J. M., Spayd, S. E., & Powers, J. R. (1989). Effect of grape maturation on soluble protein characteristics of Gewürztraminer and White Riesling juice and wine. American Journal of Enology and Viticulture, 40(3), 199–207. Cerca con Google

Murray, N. J.; Williamson, M. P.; Lilley, T. H., & Haslam, E. (1994). Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H NMR spectroscopy. European Journal of Biochemistry, 219, 923-935. Cerca con Google

O'Connell, J. E., & Fox, P. F. (2001). Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. International Dairy Journal, 11,103–120. Cerca con Google

Okuda, T., Fukui, M., Takayanagi, T., & Yokotsuka, K. (2006). Characterization of major stable proteins in Chardonnay wine. Food science and technology research, 12(2), 131-136. Cerca con Google

Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Research International, 51(2), 954-970. Cerca con Google

Pascal, C., Poncet-Legrand, C., Cabane, B., & Vernhet, A. (2008). Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: effect of protein glycosylation. Journal of agricultural and food chemistry, 56(15), 6724-6732. Cerca con Google

Pastorello, E. A., Farioli, L., Pravettoni, V., Ortolani, C., Fortunato, D., Giuffrida, M. G., Garoffo, L.P., Calamari, A.M., Brenna, O., & Conti A. (2003). Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin. Journal of allergy and clinical immunology, 111(2), 350-359. Cerca con Google

Pecora R (1985), Dynamic light scattering. Plenum Press. Cerca con Google

Pellerin, P., Waters, E. J., Brillouet, J. M., & Moutounet, M. (1994). Effet de polysaccharides sur la formation de trouble protéique dans un vin blanc. Journal international des sciences de la vigne et du vin, 28(3), 213-225. Cerca con Google

Pérez-Serradilla, J. A., & De Castro, M. L. (2008). Role of lees in wine production: A review. Food Chemistry, 111(2), 447-456 Cerca con Google

Peschke, V. M., & Phillips, R. L. (1992). Genetic implications of somaclonal variation in plants. Advances in genetics, 30, 41-75. Cerca con Google

Pickering, G. J., Karthik, A., Inglis, D., Sears, M., & Ker, K. (2007). Determination of Ortho‐and Retronasal Detection Thresholds for 2‐Isopropyl‐3‐Methoxypyrazine in Wine. Journal of food science, 72(7), S468-S472 Cerca con Google

Platt, J.R. (1949). Classification of Spectra of Cata‐Condensed Hydrocarbons. Journal of Chemistry and Physics, 17, 484–495. Cerca con Google

Pocock, K. F., Hayasaka, Y., Peng, Z., Williams, P. J., & Waters, E. J. (1998). The effect of mechanical harvesting and long‐distance transport on the concentration of haze‐forming proteins in grape juice. Australian Journal of Grape and Wine Research, 4(1), 23-29. Cerca con Google

Pocock, K. F., Hayasaka, Y., McCarthy, M. G., & Waters, E. J. (2000). Thaumatin-like Proteins and Chitinases, the Haze-Forming Proteins of Wine, Accumulate during Ripening of Grape (Vitis v inifera) Berries and Drought Stress Does Not Affect the Final Levels per Berry at Maturity. Journal of agricultural and food chemistry, 48(5), 1637-1643. Cerca con Google

Pocock KF, Høj PB, Adams KS, Kwiatkowski MJ & Waters EJ (2003). Combined heat and proteolytic enzyme treatment of white wines reduces haze forming protein content without detrimental effect. Australian Journal of Grape and Wine Research 9(1), 56–63. Cerca con Google

Pocock, K. F., & Waters, E. J. (2006). Protein haze in bottled white wines: How well do stability tests and bentonite fining trials predict haze formation during storage and transport? Australian Journal of Grape and Wine Research, 12(3), 212–220. Cerca con Google

Pocock, K. F., Alexander, G. M., Hayasaka, Y., Jones, P. R., & Waters, E. J. (2007). Sulfate - A candidate for the missing essential factor that is required for the formation of protein haze in white wine. Journal of Agricultural and Food Chemistry, 55(5), 1799–1807. Cerca con Google

Polášková, P., Herszage, J., & Ebeler, E. (2008). Wine flavor: chemistry in a glass. Chemical Society Reviews, 37, 2478 – 2489. Cerca con Google

Poncet-Legrand, C., Edelmann, A., Putaux, J.L., Cartalade, D., Sarni-Manchado, P., & Vernhet, A. (2006). Poly(L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocolloids, 20(5), 687-697. Cerca con Google

Poncet-Legrand, C., Gautier, C., Cheynier, V., & Imberty, A. (2007). Interactions between flavan-3-ols and poly (L-proline) studied by isothermal titration calorimetry: effect of the tannin structure. Journal of agricultural and food chemistry, 55(22), 9235-9240. Cerca con Google

Porter, L. J., Hrstich, L. N., & Chan, B. G. (1985). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25(1), 223-230. Cerca con Google

Pozo-Bayón, M. A., Hernández, M. T., Martín-Álvarez, P. J., & Polo, M. C. (2003). Study of low molecular weight phenolic compounds during the aging of sparkling wines manufactured with red and white grape varieties. Journal of Agricultural and Food Chemistry, 51, 2089-2095 Cerca con Google

Pozo-Bayon, M. Á., Martínez-Rodríguez, A., Pueyo, E., & Moreno-Arribas, M. V. (2009). Chemical and biochemical features involved in sparkling wine production: from a traditional to an improved winemaking technology. Trends in Food Science and Technology, 20(6), 289–299. Cerca con Google

Prigent, S. V. E., Voragen, A. G. J., Van Koningsveld, G. A., Baron, A., Renard, C. M. G. C., & Gruppen, H. (2009). Interactions between globular proteins and procyanidins of different degrees of polymerization. Journal of dairy science, 92(12), 5843-5853. Cerca con Google

Provencher, S. W., & Gloeckner, J. (1981). Estimation of globular protein secondary structure from circular dichroism. Biochemistry, 20(1), 33-37. Cerca con Google

Rao, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances, 20(2), 101-153. Cerca con Google

Rapp, A., & Versini, G. (1995). Influence of nitrogen compounds in grapes on aroma compounds of wines. Developments in Food Science, 37, 1659-1694 Cerca con Google

Ribéreau‐Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Phenolic compounds. Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, Volume 2, 2nd Edition, 141-203 Cerca con Google

Ricardo‐da‐Silva, J. M., Cheynier, V., Souquet, J. M., Moutounet, M., Cabanis, J. C., & Bourzeix, M. (1991). Interaction of grape seed procyanidins with various proteins in relation to wine fining. Journal of the Science of Food and Agriculture, 57(1), 111-125. Cerca con Google

Richard, T., Lefeuvre, D., Descendit, A., Quideau, S., & Monti, J. P. (2006). Recognition characters in peptide–polyphenol complex formation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1760(6), 951-958. Cerca con Google

Rigaud, J., Cheynier, V., Souquet, J. M., & Moutounet, M. (1991). Influence of must composition on phenolic oxidation kinetics. Journal of the Science of Food and Agriculture, 57(1), 55-63 Cerca con Google

Rodríguez-Delgado, M.A.; Malovaná, S.; Montelongo, F.J.; Cifuentes, A. Fast analysis of proteins in wines by capillary gel electrophoresis. European Food Research and Technology 2002, 214(6), 536-540. Cerca con Google

Romero-Pérez, A. I., Ibern-Gómez, M., Lamuela-Raventós, R. M., & de la Torre-Boronat, M. C. (1999). Piceid, the major resveratrol derivative in grape juices. Journal of Agricultural and Food Chemistry, 47(4), 1533-1536 Cerca con Google

Ruzza, P., Hussain, R., Biondi, B., Calderan, A., Tessari, I., Bubacco, L., & Siligardi, G. (2015). Effects of trehalose on thermodynamic properties of alpha-synuclein revealed through synchrotron radiation circular dichroism. Biomolecules, 5(2), 724-734. Cerca con Google

Ruzza, P., Vitale, R. M., Hussain, R., Biondi, B., Amodeo, P., Sechi, G., & Siligardi, G. (2016). Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(10), 2239–2248. Cerca con Google

Sahijram, L., Soneji, J.R., & Bollamma, K.T. (2003). Somaclonal variation in micropropagated bananas (Musa spp.). In Vitro Cellular & Developmental Biology-Plant, 39(6), 551-556. Cerca con Google

Salazar, F.N., Achaerandio, I., Labbe, M.A., Guell, C., & López, F. (2006). Comparative study of protein stabilization in white wine using zirconia and bentonite: physicochemical and wine sensory analysis. Journal of Agricultural and Food Chemistry 54(26), 9955–9958. Cerca con Google

Salazar, F.N., de Bruijn, J.P.F., Seminario, L., Güell, C., & López, F. (2007). Improvement of wine crossflow microfiltration by a new hybrid process. Journal of Food Engineering 79(4), 1329–1336. Cerca con Google

Salcedo, G., Sanchez-Monge, R., Diaz-Perales, A., Garcia-Casado, G., & Barber, D. (2004). Plant non-specific lipid transfer proteins as food and pollen allergens. Clinical & Experimental Allergy, 34(9), 1336–1341. Cerca con Google

Salzman, R. A., Tikhonova, I., Bordelon, B. P., Hasegawa, P. M., & Bressan, R. A. (1998). Coordinate Accumulation of Antifungal Proteins and Hexoses Constitutes a Developmentally Controlled Defense Response during Fruit Ripening in Grape. Plant Physiology 117(2), 465–472. Cerca con Google

Sarmento, M. R., Oliveira, J. C., Slatner, M., & Boulton, R. B. (2000). Influence of intrinsic factors on conventional wine protein stability tests. Food Control, 11(6), 423-432. Cerca con Google

Sarni-Manchado, P., Cheynier, V., & Moutounet, M. (1999). Interactions of grape seed tannins with salivary proteins. Journal of Agricultural and Food Chemistry, 47(1), 42-47. Cerca con Google

Sarni-Manchado, P., Deleris, A., Avallone, S., Cheynier, V., & Moutounet, M. (1999). Analysis and characterization of wine condensed tannins precipitated by proteins used as fining agent in enology. American Journal of Enology and Viticulture, 50(1), 81-86. Cerca con Google

Sarry, J. E., Sommerer, N., Sauvage, F. X., Bergoin, A., Rossignol, M., Albagnac, G., & Romieu, C. (2004). Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics, 4(1), 201-215. Cerca con Google

Saulnier, L., & Brillouet, J. M. (1989). An arabinogalactan-protein from the pulp of grape berries. Carbohydrate Research, 188, 137-144. Cerca con Google

Sauvage, F. X., Bach, B., Moutounet, M., & Vernhet, A. (2010). Proteins in white wines: thermo-sensitivity and differential adsorbtion by bentonite. Food Chemistry, 118(1), 26-34. Cerca con Google

Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1), 199-204. Cerca con Google

Schmidt, S. A., Tan, E. L., Brown, S., Nasution, U. J., Pettolino, F., Macintyre, O. J., ... & Anderson, P. A. (2009). Hpf2 glycan structure is critical for protection against protein haze formation in white wine. Journal of agricultural and food chemistry, 57(8), 3308-3315 Cerca con Google

Schnee, S., Viret, O., & Gindro, K. (2008). Physiological and Molecular Plant Pathology Role of stilbenes in the resistance of grapevine to powdery mildew. Physiological and Molecular Plant Pathology, 72(4–6), 128–133. Cerca con Google

Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in food science & technology, 10(2), 37-51. Cerca con Google

Sharathchandra, R. G., Stander, C., Jacobson, D., Ndimba, B., & Vivier, M. A. (2011). Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PloS One, 6(2), e14708. Cerca con Google

Siebert, K. J., Carrasco, A., & Lynn, P. Y. (1996). Formation of Protein - Polyphenol Haze in Beverages. Journal of Agricultural and Food Chemistry, 44(8), 1997-2005. Cerca con Google

Siebert, K. J. (1999). Effects of protein-polyphenol interactions on beverage haze, stabilization, and analysis. Journal of agricultural and food chemistry, 47(2), 353-362. Cerca con Google

Siebert, K. J. (2006). Haze formation in beverages. LWT - Food Science and Technology, 39(9), 987–994. Cerca con Google

Siebert, T. E., Wood, C., Elsey, G. M., & Pollnitz, A. P. (2008). Determination of rotundone, the pepper aroma impact compound, in grapes and wine. Journal of agricultural and food chemistry, 56(10), 3745-3748 Cerca con Google

Siemann, E. H., & Creasy, L. L. (1992). Concentration of the phytoalexin resveratrol in wine. American Journal of Enology and Viticulture, 43(1), 49-52. Cerca con Google

Siligardi, G., & Hussain, R. (2015). CD Spectroscopy: An Essential Tool for Quality Control of Protein Folding. In: J. O. Raymond (Ed.), Structural Proteomics: High-Throughput Methods in Molecular Biology (pp. 255-276). New York: Springer publishing Inc. Cerca con Google

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. Cerca con Google

Somers, T. C., & Ziemelis, G. (1973). Direct determination of wine proteins. American Journal of Enology and Viticulture, 24(2), 47-50. Cerca con Google

Soto‐Peralta, N. V., Müller, H., & Knorr, D. (1989). Effects of chitosan treatments on the clarity and color of apple juice. Journal of Food Science, 54(2), 495-496. Cerca con Google

Souquet, J.M., V. Cheynier, F. Brossaud and M. Moutounet, Polymeric proanthocyanidins from grape skins. Phytochemistry, 1996. 43(2): p. 509-512 Cerca con Google

Spillman, p. J., sefton, m. A., & gawel, r. (2004). The effect of oak wood source, location of seasoning and coopering on the composition of volatile compounds in oak‐matured wines. Australian journal of grape and wine research, 10(3), 216-226 Cerca con Google

Sreerama, N., & Woody, R.W. (2000). Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287, 252–260. Cerca con Google

Stone, M. T., & Kozlov, M. (2014). Separating proteins with activated carbon. Langmuir, 30(27), 8046-8055. Cerca con Google

Swiegers J, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Environ Microbiol 74:954–960 Cerca con Google

Tarascou, I., Barathieu, K., Simon, C., Ducasse, M. A., André, Y., Fouquet, E., Dufourc, E.J., de Freitas, V., Laguerre, M., & Pianet, I. (2006). A 3D structural and conformational study of procyanidin dimers in water and hydro‐alcoholic media as viewed by NMR and molecular modeling. Magnetic Resonance in Chemistry, 44(9), 868-880. Cerca con Google

Tattersall, D. B., Van Heeswijck, R., & Hoj, P. B. (1997). Identification and characterization of a fruit- specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiology, 1997. 114(3), 759-769. Cerca con Google

Tattersall, D. B., Pocock, K. F., Hayasaka, Y., Adams, K., Van Heeswijck, R., Waters, E. J., & Høj, P. B. (2001). Pathogenesis related proteins-their accumulation in grapes during berry growth and their involvement in white wine heat instability. Current knowledge and future perspectives in relation to winemaking practices. In Molecular biology & biotechnology of the grapevine (pp. 183-201). Springer Netherlands. Cerca con Google

Thurston, p. A., & tubb, r. S. (1981). Screening yeast strains for their ability to produce phenolic off‐flavours: a simple method for determining phenols in wort and beer. Journal of the institute of brewing, 87(3), 177-179 Cerca con Google

Timperio, A. M., d’Alessandro, A., Fagioni, M., Magro, P., & Zolla, L. (2012 Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiology and Biochemistry, 50, 65-71 Cerca con Google

Van Sluyter, S. C., Marangon, M., Stranks, S. D., Neilson, K. A., Hayasaka, Y., Haynes, P. A., Menz, I., A., & Waters, E. J. (2009). Two-step purification of pathogenesis-related proteins from grape juice and crystallization of thaumatin-like proteins. Journal of agricultural and food chemistry, 57(23), 11376-11382. Cerca con Google

Van Sluyter, S. C., McRae, J. M., Falconer, R. J., Smith, P. a., Bacic, A., Waters, E. J., & Marangon, M. (2015). Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. Journal of Agricultural and Food Chemistry, 63(16), 4020–4030. Cerca con Google

Varriano, J. (2011). Wine: A cultural history. Reaktion Books. Cerca con Google

Vernhet, A., Pellerin, P., Prieur, C., Osmianski, J., & Moutounet, M. (1996). Charge properties of some grape and wine polysaccharide and polyphenolic fractions. American Journal of Enology and Viticulture, 47(1), 25-30. Cerca con Google

Vidyasagar K (2006). National Conference on Plant Biotechnology, Lady Doak College, Madurai. Cerca con Google

Vincenzi S, Bierma J, Wickramasekara SI, Curioni A, Gazzola D & Bakalinsky AT (2014). Characterization of a grape class IV chitinase. Journal of Agricultural and Food Chemistry, 62(24): 5660–5668. Cerca con Google

Vincenzi S., Zoccatelli G., Rizzi C., & Curioni A. (2003). in: Lonvaud A., De Revel G., Darriet P. (Eds.), Oenologie 2003, 7e Symposium International d’Oenologie, Tec&Doc, Paris, 2003, pp. 538–541. Cerca con Google

Vincenzi, S., Mosconi, S., Zoccatelli, G., Pellegrina, C. D., Veneri, G., Chignola, R., Peruffo A., Curioni A., & Rizzi, C. (2005). Development of a new procedure for protein recovery and quantification in wine. American Journal of Enology and Viticulture, 56(2), 182-187. Cerca con Google

Vincenzi, S., Polesani, M., & Curioni, A. (2005). Removal of specific protein components by chitin enhances protein stability in a white wine. American journal of enology and viticulture, 56(3), 246-254. Cerca con Google

Vincenzi, S., Marangon, M., Tolin, S., & Curioni, A. (2011). Protein evolution during the early stages of white winemaking and its relations with wine stability. Australian Journal of Grape and Wine Research, 17(1), 20–27. Cerca con Google

Vincenzi, S., Crapisi, A., & Curioni, A. (2014a). Foamability of Prosecco wine: Cooperative effects of high molecular weight glycocompounds and wine PR-proteins. Food Hydrocolloids, 34,202–207. Cerca con Google

Vincenzi, S., Bierma, J., Wickramasekara, S. I., Curioni, A., Gazzola, D., & Bakalinsky, A. T. (2014b). Characterization of a grape class IV chitinase. Journal of Agricultural and Food Chemistry, 62(24), 5660–5668. Cerca con Google

Vincenzi, S., Panighel, A., Gazzola, D., Flamini, R., & Curioni, A. (2015). Study of Combined Effect of Proteins and Bentonite Fining on the Wine Aroma Loss. Journal of Agricultural and Food Chemistry, 63, 2314−2320. Cerca con Google

Volpe, M. G., La Cara, F., Volpe, F., De Mattia, A., Serino, V., Petitto, F., ... & Di Stasio, M. (2009). Heavy metal uptake in the enological food chain. Food Chemistry, 117(3), 553-560. Cerca con Google

Wang, W., Tang, K., Yang, H. R., Wen, P. F., Zhang, P., Wang, H. L., & Huang, W. D. (2010). Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology and Biochemistry, 48(2), 142-152. Cerca con Google

Waters EJ, Alexander G, Muhlack R, Pocock KF, Colby C, O'Neill BK, Høj PB & Jones P (2005). Preventing protein haze in bottled white wine. Aust. J. Grape Wine Res. 11: 215–225. Cerca con Google

Waters EJ, Wallace W & Williams PJ (1991). Heat haze characteristics of fractionated wine proteins. Am. J. Enol. Vitic. 42: 123–127. Cerca con Google

Waters, E.J., W. Wallace & P.J. Williams. (1992). Identification of heat-unstable wine proteins and their resistance to peptidases. Journal of Agricultural and Food Chemistry, 40(9), 1514-1519. Cerca con Google

Waters, E. J., Wallace, W., Tate, M. E., & Williams, P. J. (1993). Isolation and partial characterization of a natural haze protective factor from wine. Journal of Agricultural and Food Chemistry, 41(5), 724–730. Cerca con Google

Waters, E. J., Pellerin, P., & Brillouet, J. M. (1994). A wine arabinogalactan-protein that reduces heat-induced wine protein haze. Bioscience, biotechnology, and biochemistry, 58(1), 43-48. Cerca con Google

Waters, E. J., Peng, Z., Pocock, K. F., & Williams, P. J. (1995). Proteins in white wine, I: Procyanidin occurrence in soluble proteins and insoluble protein hazes and its relationship to protein instability. Australian Journal of Grape and Wine Research, 1(2), 86-93. Cerca con Google

Waters, E.J., N.J. Shirley & P.J. Williams. (1996). Nuisance proteins of wine are grape pathogenesis- related proteins. Journal of Agricultural and Food Chemistry, 44(1), 3-5. Cerca con Google

Waters, E. J.; Alexander, G.; Muhlack, R.; Pocock, K. F.; Colby, C.; O’Neill, B. K.; Høj, P. B. & Jones, P. (2005). Preventing protein haze in bottled white wine. Australian Journal of Grape and Wine Research 2005, 11(2), 215−225. Cerca con Google

Waters, E.J., & Colby, C.B. (2009). Proteins, in Wine chemistry and biochemistry, M.V. Moreno- Arribas and M.C. Polo, Editors , Springer. Cerca con Google

Wigand, P., Tenzer, S., Schild, H., & Decker, H. (2009). Analysis of protein composition of red wine in comparison with rosé and white wines by electrophoresis and high-pressure liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 57(10), 4328–4333. Cerca con Google

Wine: Global Industry Almanac; 2012 Cerca con Google

Xu, G., & Chance, M. R. (2007). Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chemical reviews, 107(8), 3514-3543. Cerca con Google

Zamboni, A., Vrhovsek, U., Kassemeyer, H. H., Mattivi, F., & Velasco, R. (2015). Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). VITIS-Journal of Grapevine Research, 45(2), 63. Cerca con Google

Zottich, U., Da Cunha, M., Carvalho, A. O., Dias, G. B., Silva, N. C., Santos, I. S., Nacimento, V.V., Miguel, E.C., Machadoc, O.L.T., & Gomes, V. M. (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810(4), 375-383. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record