Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Baso, Giacomo (2017) Toward a Universal Model for the Mass Accretion History of Dark Matter Halos in Cosmological Simulations. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
12Mb

Abstract (english)

It is now well established that a large percentage of the energy density of the universe is in the form of non-baryonic dark matter, a still unidentified type of matter that does not emit or interact with electromagnetic radiation. At the present time, most of the dark matter is virialized in large structures called ‘halos’ which formed via hierarchical clustering, a series of subsequent mergers of smaller halos originating from the growth of the perturbations of the density field of the early universe. The study of this tree of mergers, and of its main branch, is of primary importance in understanding the properties of halos at the present time.

The primary tools for the study of the evolution of structures in the non-linear regime are large numerical simulations, that evolve some suitable initial conditions by numerical integration of the gravity equations. We will present our set of simulations, partly developed in the context of this work. By exploiting the large statistic and dynamical range provided, we will present our refinement and expansion of a previous model for the mass accretion history of the halos, greatly expanding its applicability. In particular, our model will allow us to characterize both the median mass accretion history as well as the full halo-to-halo distribution, and we will discuss some applications. Studying the scatter of the distribution, we will present a preliminary analysis of the percentile distributions of mass accretion histories. Despite non-conclusive results, we will provide a characterization that can be useful in checking the validity of methods to generate synthetic merger trees.

We will argue for the universality of the model, which allows us to apply our results to massive neutrino cosmologies. Multiple experiments in recent years confirmed the existence of flavor oscillations in the propagation of neutrino fluxes, a phenomenon usually interpreted as the effect of a nonzero mass for the neutrinos together with a mixing of the flavor and mass eigenstates. The presence of non-zero neutrino masses has severe cosmological implications, causing in particular a slowdown in the growth and evolution of the structures on small scales. We will illustrate how to modify our model to account for these effects.

Abstract (italian)

È ormai ben accettato che una grande percentuale della densità di energia dell’universo è sotto forma di materia oscura non barionica, un tipo ancora identificato di materia che non emette o interagisce con la radiazione elettromagnetica. Attualmente, la maggior parte della materia oscura è virializzata in grandi strutture chiamate ‘aloni’ formatisi tramite clustering gerarchico, una serie di fusioni successive di aloni più piccoli originatisi dalla crescita delle perturbazioni del campo di densità dell’universo primordiale. Lo studio di questo albero di fusioni, e del suo ramo principale, è di primaria importanza per la comprensione delle proprietà degli aloni al tempo attuale.

Gli strumenti principali per lo studio dell’evoluzione delle strutture in regime non lineare sono grandi simulazioni numeriche, che evolvono opportune condizioni iniziali per integrazione numerica delle equazioni della gravità. Presenteremo il nostro set di simulazioni, in parte sviluppate nel contesto di questo lavoro. Sfruttando l’ampia statistica e gamma dinamica fornita, presenteremo il nostro raffinamento ed espansione di un modello precedente per la storia di accrescimento di massa degli aloni, ampliando notevolmente la sua applicabilità. In particolare, il nostro modello ci permette di caratterizzare sia la storia di formazione mediana sia la distribuzione completa degli aloni, e ne discuteremo qualche applicazione. Studiando lo scatter della distribuzione, presenteremo un’analisi preliminare delle distribuzioni percentili delle storie di accrescimento di massa. Nonostante i risultati non siano conclusivi, forniremo una caratterizzazione che può risultare utile per controllare la validità di metodi per generare alberi di fusioni sintetici.

Discuteremo dell’universalità del modello, che ci permette di applicare i nostri risultati a cosmologie di neutrini massivi. Diversi esperimenti negli ultimi anni hanno confermato l’esistenza di oscillazioni di sapore nella propagazione di flussi di neutrini, un fenomeno di solito interpretato come l’effetto di una massa non nulla per i neutrini insieme ad un mixing degli autostati di sapore e di massa. La presenza di masse non nulle dei neutrini ha grandi implicazioni cosmologiche, provocando in particolare un rallentamento della crescita e dell’evoluzione delle strutture su piccola scala. Illustreremo come modificare il nostro modello per tenere conto di questi effetti.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Tormen, Giuseppe
Ph.D. course:Ciclo 29 > Corsi 29 > ASTRONOMIA
Data di deposito della tesi:31 January 2017
Anno di Pubblicazione:31 January 2017
Key Words:methods: analytical, methods: statistical, methods: numerical, galaxies: haloes, cosmology: theory, dark matter
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:10329
Depositato il:09 Nov 2017 12:05
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

S. Abe, T. Ebihara, S. Enomoto, K. Furuno, Y. Gando, K. Ichimura, H. Ikeda, K. Inoue, Y. Kibe, Y. Kishimoto, M. Koga, A. Kozlov, Y.Minekawa, T.Mitsui, K.Nakajima, K.Nakajima, K.Nakamura,M.Nakamura, K. Owada, I. Shimizu, Y. Shimizu, J. Shirai, F. Suekane, A. Suzuki, Y. Takemoto, K. Tamae, A. Terashima, H. Watanabe, E. Yonezawa, S. Yoshida, J. Busenitz, T. Classen, C. Grant, G. Keefer, D. S. Leonard, D. McKee, A. Piepke, M. P. Decowski, J. A. Detwiler, S. J. Freedman, B. K. Fujikawa, F. Gray, E. Guardincerri, L. Hsu, R. Kadel, C. Lendvai, K.-B. Luk, H. Murayama, T. O’Donnell, H. M. Steiner, L. A. Winslow, D. A. Dwyer, C. Jillings, C. Mauger, R. D. McKeown, P. Vogel, C. Zhang, B. E. Berger, C. E. Lane, J.Maricic, T.Miletic, M. Batygov, J. G. Learned, S.Matsuno, S. Pakvasa, J. Foster, G. A. Horton-Smith, A. Tang, S. Dazeley, K. E. Downum, G. Gratta, K. Tolich,W. Bugg, Y. Efremenko, Y. Kamyshkov, O. Perevozchikov, H. J. Karwowski, D. M.Markoff,W. Tornow, K. M.Heeger, F. Piquemal, and J.-S. Ricol. Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Physical Review Letters, 100(22):221803, June 2008. doi: 10.1103/PhysRevLett.100.221803. Cerca con Google

Q. R. Ahmad, R. C. Allen, T. C. Andersen, J.D. Anglin, G. Bühler, J. C. Barton, E.W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay,M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. Clifford, J. H. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N.McCauley, A. B.McDonald, D. S.McDonald, K.McFarlane, G.McGregor,W.McLatchie, R. M. Drees, H.Mes, C.Mifflin, G. G.Miller, G.Milton, B. A.Moffat, M.Moorhead, C.W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O’Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M.W. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin,M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. van Berg, R. G. van deWater, C. J. Virtue, C. E.Waltham, J.-X.Wang, D. L.Wark, N.West, J. B.Wilhelmy, J. F.Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh. Measurement of the Rate of {$\nu$}$_{e}$ + d $\rightarrow$ p + p + e$^{-}$ Interactions Produced by $^{8}$B Solar Neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters, 87(7):071301, August 2001. doi: 10.1103/PhysRevLett.87.071301. Cerca con Google

B. Banneheka and G. Ekanayake. A new point estimator for the median of gamma distribution. Vidyodaya Journal of Science, 14(1), jan 2010. URL http://vjs.sljol.info/articles/abstract/1534/. Vai! Cerca con Google

G. Baso. simulation planner. http://goo.gl/N9NmTA, February 2014. Vai! Cerca con Google

J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser. Excursion set mass functions for hierarchical Gaussian fluctuations. ApJ, 379:440–460, October 1991. doi: 10.1086/170520. Cerca con Google

J. Brandbyge, S. Hannestad, T. Haugbølle, and Y. Y. Y.Wong. Neutrinos in non-linear structure formation — the effect on halo properties. JCAP, 9:014, September 2010. doi: 10.1088/1475-7516/2010/09/014. Cerca con Google

P.J. Brown, W.A. Fuller, American Mathematical Society, Institute of Mathematical Statistics, Society for Industrial, and Applied Mathematics. Statistical Analysis of Measurement Error Models and Applications: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held June 10-16, 1989, with Support from the National Science Foundation and the U.S. Army Research Office. Conm Ser : Vol.112. American Mathematical Society, 1990. ISBN 9780821851173. URL https://books.google.it/books?id=TRkcCAAAQBAJ. Vai! Cerca con Google

G. L. Bryan andM. L. Norman. Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons. ApJ, 495:80–99, March 1998. doi: 10.1086/305262. Cerca con Google

J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov, A. A. Klypin, J. R. Primack, and A. Dekel. Profiles of dark haloes: evolution, scatter and environment. MNRAS, 321:559–575, March 2001. doi: 10.1046/j.1365-8711.2001.04068.x. Cerca con Google

E. Castorina, C. Carbone, J. Bel, E. Sefusatti, and K. Dolag. DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos. JCAP, 7:043, July 2015. doi: 10.1088/1475-7516/2015/07/043. Cerca con Google

B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S. Wildenhain, and J. Ullman. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. ApJ, 496:505–526,March 1998. doi: 10.1086/305343. Cerca con Google

S. Coleman and S. L. Glashow. Cosmic ray and neutrino tests of special relativity. Physics Letters B, 405:249–252, February 1997. doi: 10.1016/S0370-2693(97)00638-2. Cerca con Google

C. A. Correa, J. S. B. Wyithe, J. Schaye, and A. R. Duffy. The accretion history of dark matter haloes - III. A physical model for the concentration-mass relation. MNRAS, 452:1217–1232, September 2015. doi: 10.1093/mnras/stv1363. Cerca con Google

V. de Sabbata and M. Gasperini. Macroscopical consequences of a propagating torsion potential. Nuovo Cimento Lettere, 30:503–506, April 1981. Cerca con Google

G. Despali, C. Giocoli, R. E. Angulo, G. Tormen, R. K. Sheth, G. Baso, and L. Moscardini. The universality of the virial halo mass function and models for non-universality of other halo definitions. MNRAS, 456:2486–2504,March 2016. doi: 10.1093/mnras/stv2842. Cerca con Google

G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer. Current Direct Neutrino Mass Experiments. ArXiv e-prints, June 2013. Cerca con Google

V. R. Eke, S. Cole, and C. S. Frenk. Cluster evolution as a diagnostic for Omega. MNRAS, 282, September 1996. doi: 10.1093/mnras/282.1.263. Cerca con Google

D. V. Forero, M. Tórtola, and J. W. F. Valle. Global status of neutrino oscillation parameters after Neutrino-2012. Phys.Rev.D, 86(7):073012, October 2012. doi: 10.1103/PhysRevD.86.073012. Cerca con Google

Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow, T. Kajita, J. Kameda, S. Kasuga, K. Kobayashi, Y. Kobayashi, Y. Koshio, M. Miura, M. Nakahata, S. Nakayama, A. Okada, K. Okumura, N. Sakurai, M. Shiozawa, Y. Suzuki, Y. Takeuchi, Y. Totsuka, S. Yamada, M. Earl, A. Habig, E. Kearns, M. D. Messier, K. Scholberg, J. L. Stone, L. R. Sulak, C. W. Walter, M. Goldhaber, T. Barszczxak, D. Casper, W. Gajewski, P. G. Halverson, J. Hsu, W. R. Kropp, L. R. Price, F. Reines, M. Smy, H. W. Sobel, M. R. Vagins, K. S. Ganezer, W. E. Keig, R. W. Ellsworth, S. Tasaka, J. W. Flanagan, A. Kibayashi, J. G. Learned, S. Matsuno, V. J. Stenger, D. Takemori, T. Ishii, J. Kanzaki, T. Kobayashi, S. Mine, K. Nakamura, K. Nishikawa, Y. Oyama, A. Sakai, M. Sakuda, O. Sasaki, S. Echigo, M. Kohama, A. T. Suzuki, T. J. Haines, E. Blaufuss, B. K. Kim, R. Sanford, R. Svoboda, M. L. Chen, Z. Conner, J. A. Goodman, G. W. Sullivan, J. Hill, C. K. Jung, K. Martens, C. Mauger, C. McGrew, E. Sharkey, B. Viren, C. Yanagisawa, W. Doki, K. Miyano, H. Okazawa, C. Saji, M. Takahata, Y. Nagashima, M. Takita, T. Yamaguchi,M. Yoshida, S. B. Kim,M. Etoh, K. Fujita, A. Hasegawa, T. Hasegawa, S. Hatakeyama, T. Iwamoto, M. Koga, T. Maruyama, H. Ogawa, J. Shirai, A. Suzuki, F. Tsushima, M. Koshiba, M. Nemoto, K. Nishijima, T. Futagami, Y. Hayato, Y. Kanaya, K. Kaneyuki, Y.Watanabe, D. Kielczewska, R. A. Doyle, J. S. George, A. L. Stachyra, L. L.Wai, R. J.Wilkes, and K. K. Young. Evidence for Oscillation of Atmospheric Neutrinos. Physical Review Letters, 81:1562–1567, August 1998. doi: 10.1103/PhysRevLett.81.1562. Cerca con Google

L. Gao, S. D. M. White, A. Jenkins, F. Stoehr, and V. Springel. The subhalo populations of {$\Lambda$}CDM dark haloes. MNRAS, 355:819–834, December 2004. doi: 10.1111/j.1365-2966.2004.08360.x. Cerca con Google

M. Gasperini. Testing the principle of equivalence with neutrino oscillations. Phys.Rev.D, 38:2635–2637, October 1988. doi: 10.1103/PhysRevD.38.2635. Cerca con Google

C. Giocoli, J.Moreno, R. K. Sheth, and G. Tormen. An improved model for the formation times of dark matter haloes. MNRAS, 376:977–983, April 2007. doi: 10.1111/j.1365-2966.2007.11520.x. Cerca con Google

C. Giocoli, G. Tormen, and F. C. van den Bosch. The population of dark matter subhaloes: mass functions and average mass-loss rates. MNRAS, 386:2135–2144, June 2008. doi: 10.1111/j.1365-2966.2008.13182.x. Cerca con Google

C. Giocoli, L. Pieri, G. Tormen, and J. Moreno. A merger tree with microsolar mass resolution: application to {$\gamma$}-ray emission from subhalo population. MNRAS, 395:1620–1630, May 2009. doi:10.1111/j.1365-2966.2009.14649.x. Cerca con Google

C. Giocoli, G. Tormen, R. K. Sheth, and F. C. van den Bosch. The substructure hierarchy in dark matter haloes. MNRAS, 404:502–517,May 2010. doi: 10.1111/j.1365-2966.2010.16311.x. Cerca con Google

C. Giocoli, G. Tormen, and R. K. Sheth. Formation times, mass growth histories and concentrations of dark matter haloes. MNRAS, 422:185–198,May 2012. doi: 10.1111/j.1365-2966.2012.20594.x. Cerca con Google

F. James and M. Roos. Minuit - a system for function minimization and analysis of the parameter errors and correlations. Computer Physics Communications, 10(6):343 – 367, 1975. ISSN 0010-4655. doi: http://dx.doi.org/10.1016/0010-4655(75)90039-9. URL http://www.sciencedirect.com/science/article/pii/0010465575900399. Vai! Cerca con Google

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001–. URLhttp://www.scipy.org/. [Online; accessed 2016-11-09]. Vai! Cerca con Google

A. Kiakotou, Ø. Elgarøy, and O. Lahav. Neutrino mass, dark energy, and the linear growth factor. Phys.Rev.D, 77(6):063005,March 2008. doi: 10.1103/PhysRevD.77.063005. Cerca con Google

C. Lacey and S. Cole. Merger rates in hierarchical models of galaxy formation. MNRAS, 262:627–649, June 1993. Cerca con Google

C. Lacey and S. Cole. Merger Rates in Hierarchical Models of Galaxy Formation - Part Two - Comparison with N-Body Simulations. MNRAS, 271:676, December 1994. Cerca con Google

O. Lahav and Y. Suto. Measuring our Universe from Galaxy Redshift Surveys. Living Reviews in Relativity, 7:8, December 2004. doi: 10.12942/lrr-2004-8. Cerca con Google

J. Lesgourgues and S. Pastor. Massive neutrinos and cosmology. Phys. Rep., 429:307–379, July 2006. doi: 10.1016/j.physrep.2006.04.001. Cerca con Google

A. Lewis, A. Challinor, and A. Lasenby. Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-WalkerModels. ApJ, 538:473–476, August 2000a. doi:10.1086/309179. Cerca con Google

A. Lewis, A. Challinor, and A. Lasenby. Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-WalkerModels. ApJ, 538:473–476, August 2000b. doi:10.1086/309179. Cerca con Google

M. LoVerde. Spherical collapse in {$\nu$}{$\Lambda$}CDM. Phys.Rev.D, 90(8):083518, October 2014. doi: 10.1103/PhysRevD.90.083518. Cerca con Google

Y. Lu, H. J. Mo, N. Katz, and M. D. Weinberg. On the origin of cold dark matter halo density profiles. MNRAS, 368:1931–1940, June 2006. doi: 10.1111/j.1365-2966.2006.10270.x. Cerca con Google

A. D. Ludlow, J. F. Navarro, M. Boylan-Kolchin, P. E. Bett, R. E. Angulo, M. Li, S. D. M. White, C. Frenk, and V. Springel. The mass profile and accretion history of cold dark matter haloes. MNRAS, 432:1103–1113, June 2013. doi: 10.1093/mnras/stt526. Cerca con Google

A. V. Macciò, A. A. Dutton, and F. C. van den Bosch. Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results. MNRAS, 391:1940–1954, December 2008. doi: 10.1111/j.1365-2966.2008.14029.x. Cerca con Google

T. MacFarland, H. M. P. Couchman, F. R. Pearce, and J. Pichlmeier. A new parallel P3M code for very large-scale cosmological simulations. New Ast., 3:687–705, December 1998. doi: 10.1016/S1384-1076(98)00033-5. Cerca con Google

P. Madau and M. Dickinson. Cosmic Star-Formation History. ARA&A, 52:415–486, August 2014. doi:10.1146/annurev-astro-081811-125615. Cerca con Google

G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico. Relic neutrino decoupling including flavour oscillations. Nuclear Physics B, 729:221–234, November 2005. doi: 10.1016/j. nuclphysb.2005.09.041. Cerca con Google

J. McBride, O. Fakhouri, and C.-P. Ma. Mass accretion rates and histories of dark matter haloes. MNRAS, 398:1858–1868, October 2009. doi: 10.1111/j.1365-2966.2009.15329.x. Cerca con Google

P. Meszaros. The behaviour of point masses in an expanding cosmological substratum. A&A, 37:225–228, December 1974. Cerca con Google

J. F. Navarro, C. S. Frenk, and S. D. M. White. The Structure of Cold Dark Matter Halos. ApJ, 462:563, May 1996. doi: 10.1086/177173. Cerca con Google

J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. ApJ, 490:493, December 1997. doi: 10.1086/304888. Cerca con Google

A. F. Neto, L. Gao, P. Bett, S. Cole, J. F. Navarro, C. S. Frenk, S. D. M. White, V. Springel, and A. Jenkins. The statistics of {$\Lambda$}CDM halo concentrations. MNRAS, 381:1450–1462, November 2007. doi: 10.1111/j.1365-2966.2007.12381.x. Cerca con Google

M.E. Peskin and D.V. Schroeder. An Introduction to Quantum Field Theory. Advanced book classics. Addison-Wesley Publishing Company, 1995. ISBN 9780201503975. URL https://books.google.it/books?id=_H-oPv1raioC. Vai! Cerca con Google

Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. A&A, 571:A16, November 2014. doi: 10.1051/0004-6361/201321591. Cerca con Google

Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13, September 2016. doi: 10.1051/0004-6361/201525830. Cerca con Google

B. M. Poggianti, A. Aragón-Salamanca, D. Zaritsky, G. De Lucia, B. Milvang-Jensen, V. Desai, P. Jablonka, C.Halliday, G. Rudnick, J. Varela, S. Bamford, P. Best,D. Clowe, S.Noll, R. Saglia, R. Pelló, L. Simard, A. von der Linden, and S. White. The Environments of Starburst and Post-Starburst Galaxies at z = 0.4-0.8. ApJ, 693:112–131,March 2009. doi: 10.1088/0004-637X/693/1/112. Cerca con Google

B. Pontecorvo. Mesonium and anti-mesonium. Sov.Phys.- JETP, 6:429–431, 1957. URL www.scopus.com. Vai! Cerca con Google

W. H. Press and P. Schechter. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. ApJ, 187:425–438, February 1974. doi: 10.1086/152650. Cerca con Google

R. K. Sheth, M. Bernardi, P. L. Schechter, S. Burles, D. J. Eisenstein, D. P. Finkbeiner, J. Frieman, R. H. Lupton, D. J. Schlegel, M. Subbarao, K. Shimasaku, N. A. Bahcall, J. Brinkmann, and Ž. Ivezi´c. The Velocity Dispersion Function of Early-Type Galaxies. ApJ, 594:225–231, September 2003. doi: 10.1086/376794. Cerca con Google

N. Smith and S. van der Walt. A better default colormap for matplotlib. SciPy2015 - Scientific Computing with Python, jul 2015. URL http://bids.github.io/colormap/. Vai! Cerca con Google

M. Smy. Super-Kamiokande#700s Solar {$\nu$} Results. Nuclear Physics B Proceedings Supplements, 235:49–54, February 2013. doi: 10.1016/j.nuclphysbps.2013.03.010. Cerca con Google

V. Springel. The cosmological simulation code GADGET-2. MNRAS, 364:1105–1134, December 2005. doi: 10.1111/j.1365-2966.2005.09655.x. Cerca con Google

V. Springel, N. Yoshida, and S. D. M. White. GADGET: a code for collisionless and gasdynamical cosmological simulations. New Ast., 6:79–117, April 2001. doi: 10.1016/S1384-1076(01)00042-2. Cerca con Google

Volker Springel. n-genic. http://www.mpa-garching.mpg.de/gadget, 2003. Vai! Cerca con Google

E. W. Stacy and G. A. Mihram. Parameter Estimation for a Generalized Gamma Distribution. Technometrics, 7(3):349–358, 1965. doi: 10.1080/00401706.1965.10490268. URL http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1965.10490268. Vai! Cerca con Google

G. Tormen. The assembly of matter in galaxy clusters. MNRAS, 297:648–656, June 1998. doi: 10.1046/j.1365-8711.1998.01545.x. Cerca con Google

G. Tormen, L. Moscardini, and N. Yoshida. Properties of cluster satellites in hydrodynamical simulations. MNRAS, 350:1397–1408, June 2004. doi: 10.1111/j.1365-2966.2004.07736.x. Cerca con Google

F. C. van den Bosch. The universal mass accretion history of cold dark matter haloes. MNRAS, 331:98–110,March 2002. doi: 10.1046/j.1365-8711.2002.05171.x. Cerca con Google

F. C. van den Bosch, F. Jiang, A. Hearin, D. Campbell, D.Watson, and N. Padmanabhan. Coming of age in the dark sector: how dark matter haloes grow their gravitational potential wells. MNRAS, 445:1713–1730, December 2014. doi: 10.1093/mnras/stu1872. Cerca con Google

M. Viel,M. G. Haehnelt, and V. Springel. The effect of neutrinos on the matter distribution as probed by the intergalactic medium. JCAP, 6:015, June 2010. doi: 10.1088/1475-7516/2010/06/015. Cerca con Google

R. H.Wechsler, J. S. Bullock, J. R. Primack, A. V. Kravtsov, and A. Dekel. Concentrations of Dark Halos from Their Assembly Histories. ApJ, 568:52–70,March 2002. doi: 10.1086/338765. Cerca con Google

S. D. M. White. Formation and Evolution of Galaxies: Les Houches Lectures. ArXiv Astrophysics eprints, October 1994. Cerca con Google

D. H. Zhao, Y. P. Jing, H. J. Mo, and G. Börner. Accurate Universal Models for the Mass Accretion Histories and Concentrations of Dark Matter Halos. ApJ, 707:354–369, December 2009. doi: 10.1088/0004-637X/707/1/354. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record