Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Meneghin, Elena (2017) Coherent multidimensional electronic spectroscopy: from bioinspired to biological systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato) - Versione sottomessa
13Mb

Abstract (inglese)

Could quantum phenomena affect biological processes? This question has always thrilled scientists but, only from the last decade, we have been witnessing determined and rapid strides in refinement of the experimental tools capable to unravel quantum dynamics. The unique property of assessing simultaneously distinct phenomena in the ultrafast time regime makes coherent two-dimensional electronic spectroscopy the leading technique in the novel field of quantum biology.
Artificial antennas, thanks to their lower degree of complexity, represent ideal test systems to clarify the design principles that allow quantum phenomena to survive in their natural counterparts. We studied different multi-chromophoric model systems of light-harvesting complexes by self-assembling pigment-peptide conjugates. Distinct chromophore and protein components were tested to clarify which of these two parts has a crucial role in preserving quantum phenomena.
When dealing with natural light-harvesting systems, one complicating factor in the interpretation of coherent signals is that vibronic coupling gives rise to additional oscillating patterns that might overlap with electronic features. We therefore provided a detailed investigation of the peculiar signatures of isolated pigments, such as chlorophyll a and bacteriochlorophyll a.
The expertise and the knowledge matured dealing with artificial antennas and isolated chromophores have been put to use in the interpretation of the ultrafast dynamics of a naturally occurring light-harvesting system, peridinin-chlorophyll-protein.
Quantum effects may contribute, not only to the photophysical, but also to photochemical behavior of multichromophores, such as proton transfer capability. H-tunnelling is an exquisitely quantum phenomenon which is very sensitive to distance fluctuations between donor and acceptor. In this work, we exploited again two-dimensional electronic spectroscopy to explore how H-tunnelling is affected by the motions of the surrounding and, therefore, if the coupling with nuclear motion can really fasten the overall kinetics of the reaction.

Abstract (italiano)

Fenomeni di tipo quantistico possono contribuire in modo fondamentale in processi di tipo biologico? Questa domanda ha da sempre entusiasmato gli scienziati ma, solo a partire dall’ultima decade, stiamo assistendo ai passi da giganti fatti nella messa a punto di strumenti sperimentali sempre più efficienti nel rilevare dinamiche di tipo quantistico. La spettroscopia elettronica coerente bidimensionale, grazie alla sua peculiarità di dare accesso all’osservazione simultanea di fenomeni di diversa tipologia nel regime ultraveloce, si presenta come la tecnica principe nel nuovo campo della biologia quantistica.
Le antenne artificiali, grazie al loro minor grado di complessità, sono sistemi modello ideali per delucidare quali siano i principi strutturali che permettono a fenomeni di tipo quantistico di sopravvivere nei loro analoghi naturali. Abbiamo studiato diversi sistemi multi-cromoforici, modello dei complessi antenna naturali, grazie all’auto-assemblaggio di sistemi coniugati pigmento-peptide. Sono state confrontate diverse tipologie di cromoforo e di componente proteica per determinare quale delle due parti costituenti avesse un ruolo cruciale nel preservare i fenomeni quantistici.
Nello studio dei sistemi antenna naturali, un fattore che può complicare ulteriormente l’interpretazione dei segnali coerenti, è l’accoppiamento vibronico, il quale dà origine a componenti oscillanti che potrebbero sovrapporsi a quelle elettroniche. Per tale ragione abbiamo provveduto a condurre un’indagine dettagliata dei contributi peculiari di pigmenti isolati come la clorofilla a e la batterioclorofilla a.
L’esperienza e la conoscenza maturate nello studio di sistemi antenna artificiali e di cromofori isolati hanno permesso l’interpretazione della dinamica ultraveloce di un complesso antenna naturale, la peridinin-chlorophyll-protein.
Effetti di tipo quantistico possono influenzare non solo processi di tipo fotofisico, ma anche reazioni fotochimiche come, ad esempio, il trasferimento di protoni. Il tunnelling protonico, infatti, è un fenomeno di natura squisitamente quantistica e che risulta molto sensibile alle fluttuazioni della distanza tra donatore e accettore. In questo lavoro abbiamo utilizzato spettroscopia elettronica coerente bidimensionale per esplorare come il tunnelling protonico possa essere influenzato dai moti dell’intorno e, di conseguenza, come la cinetica globale della reazione possa essere velocizzata dall’accoppiamento con moti nucleari.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Collini, Elisabetta
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > SCIENZE MOLECOLARI
Data di deposito della tesi:31 Gennaio 2017
Anno di Pubblicazione:31 Gennaio 2017
Parole chiave (italiano / inglese):ultrafast coherent multidimensional electronic spectroscopy quantum biology biomimicking
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10336
Depositato il:14 Nov 2017 15:29
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G.D. Scholes, Quantum-coherent electronic energy transfer: did nature think of it first?, J. Phys. Chem. Lett., 1 (2010) 2–8. Cerca con Google

[2] E. Schrödinger, What is life?, Cambridge University Press, Cambridge, 1944. Cerca con Google

[3] S.F. Huelga, M.B. Plenio, Vibrations, Quanta and Biology, Contemp. Phys., 54 (2013) 181–207. Cerca con Google

[4] D.M. Jonas, Two-dimensional femtosecond spectroscopy, Annu. Rev. Phys. Chem., 54 (2003) 425–463. Cerca con Google

[5] G. Engel, T. Calhoun, E. Read, T. Ahn, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature, 446 (2007) 782–786. Cerca con Google

[6] E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature, Nature, 463 (2010) 644–647. Cerca con Google

[7] F.D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S.S. Senlik, D.E. Wilcox, C.F. Yocum, L. Valkunas, D. Abramavicius, J.P. Ogilvie, Vibronic coherence in oxygenic photosynthesis, Nat. Chem., 6 (2014) 706–711. Cerca con Google

[8] A.W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio, The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes, Nat. Phys., 9 (2013) 113–118. Cerca con Google

[9] J. Lim, D. Paleček, F. Caycedo-Soler, C.N. Lincoln, J. Prior, H. Von Berlepsch, S.F. Huelga, M.B. Plenio, D. Zigmantas, J. Hauer, Vibronic origin of long-lived coherence in an artificial molecular light harvester, Nat. Commun., 6 (2015) 1–22. Cerca con Google

[10] H. Lee, Y.-C. Cheng, G.R. Fleming, Coherence dynamics in photosynthesis: protein protection of excitonic coherence, Science, 316 (2007) 1462–1465. Cerca con Google

[11] A. Ishizaki, T.R. Calhoun, G.S. Schlau-Cohen, G.R. Fleming, Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer, Phys. Chem. Chem. Phys., 12 (2010) 7319–7337. Cerca con Google

[12] P. Ball, Physics of life: the dawn of quantum biology, Nature, 474 (2011) 272–274. Cerca con Google

[13] J.C. Brookes, F. Hartoutsiou, A.P. Horsfield, A.M. Stoneham, Could humans recognize odor by phonon assisted tunneling?, Phys. Rev. Lett., 98 (2007) 1–4. Cerca con Google

[14] C.T. Rodgers, P.J. Hore, Chemical magnetoreception in birds: the radical pair mechanism, Proc. Natl. Acad. Sci. U. S. A., 106 (2009) 353–360. Cerca con Google

[15] S. Mukamel, Principles of nonlinear optical spectroscopy, Oxford University, Oxford, 1995. Cerca con Google

[16] L. Valkunas, D. Abramavicius, T. Mančal, Molecular excitation dynamics and relaxation Quantum theory and spectroscopy, Wiley-VCH, Weinheim, 2013. Cerca con Google

[17] R.W. Boyd, Nonlinear optics, Academic Press, Inc., San Diego, 1992. Cerca con Google

[18] W.W. Parson, Modern optical spectroscopy: with examples from biophysics, Springer, New York, 2009. Cerca con Google

[19] M. Blume, Stochastic theory of line shape: generalization of the Kubo-Anderson model, Phys. Rev., 174 (1968) 351–358. Cerca con Google

[20] R. Kubo, Advances in Chemical Physics, John Wiley & Sons, Inc., Hoboken, 1969. Cerca con Google

[21] F. Caruso, A.W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport, J. Chem. Phys., 131 (2009) 105106. Cerca con Google

[22] P. Rebentrost, M. Mohseni, A. Aspuru-Guzik, Role of quantum coherence in chromophoric energy transport, J. Phys. Chem. B, 113 (2009) 9942–9947. Cerca con Google

[23] M. Kasha, H.R. Rawls, M. Ashraf El-Bayoumi, The exciton model in molecular spectroscopy, Pure Appl. Chem., 11 (1965) 371–392. Cerca con Google

[24] D.B. Turner, R. Dinshaw, K.-K. Lee, M.S. Belsley, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis, Phys. Chem. Chem. Phys., 14 (2012) 4857–4874. Cerca con Google

[25] O. V Prezhdo, P.J. Rossky, Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems, Phys. Rev. Lett., 81 (1998) 5294–5297. Cerca con Google

[26] E. Collini, G.D. Scholes, Electronic and vibrational coherences in resonance energy transfer along MEH-PPV chains at room temperature, J. Phys. Chem. A, 113 (2009) 4223–4241. Cerca con Google

[27] A.W. Chin, S.F. Huelga, M.B. Plenio, Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 370 (2012) 3638–3657. Cerca con Google

[28] M. Del Rey, A.W. Chin, S.F. Huelga, M.B. Plenio, Exploiting structured environments for efficient energy transfer: the phonon antenna mechanism, J. Phys. Chem. Lett., 4 (2013) 903–907. Cerca con Google

[29] M.B. Plenio, J. Almeida, S.F. Huelga, Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence, J. Chem. Phys., 139 (2013) 235102. Cerca con Google

[30] D. Hayes, G.B. Griffin, G.S. Engel, Engineering coherence among excited states in synthetic heterodimer systems, Science, 340 (2013) 1431–1434. Cerca con Google

[31] J.C. Dean, T. Mirkovic, Z.S.D. Toa, D.G. Oblinsky, G.D. Scholes, Vibronic enhancement of algae light harvesting, Chem, 1 (2016) 858–872. Cerca con Google

[32] L. Rosenfeld, Quantum-mechanical theory of the natural optical activity of liquids and gases, Zeitschrift Fuer Phys., 52 (1928) 161–174. Cerca con Google

[33] K. Nakanishi, N. Berova, R.W. Woody, Circular dichroism: principles and applications, VCH Publishers, Inc., New York, 1994. Cerca con Google

[34] W. Becker, The bh TCSPC Handbook, 6th Edition, Becker & Hickl, Berlin, 2015. Cerca con Google

[35] W. Becker, A. Bergmann, Timing stability of TCSPC experiments, in: Proc. SPIE Int. Soc. Opt. Eng., 2006: p. 637209. Cerca con Google

[36] D. Phillips, R.C. Drake, D. V O’Connor, R.L. Christensen, Time Correlated Single-Photon Counting (Tcspc) Using Laser Excitation, Instrum. Sci. Technol., 14 (1985) 267–292. Cerca con Google

[37] W. Becker, A. Bergmann, C. Biskup, Multispectral fluorescence lifetime imaging by TCSPC, Microsc. Res. Tech., 70 (2007) 403–409. Cerca con Google

[38] A.D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K.R. Hagen, R. Jimenez, S.T. Cundiff, A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy, Rev. Sci. Instrum., 80 (2009) 73108. Cerca con Google

[39] M.L. Cowan, J.P. Ogilvie, R.J.D. Miller, Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes, Chem. Phys. Lett., 386 (2004) 184–189. Cerca con Google

[40] A. Nemeth, J. Sperling, J. Hauer, H.F. Kauffmann, F. Milota, Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy, Opt. Lett., 34 (2009) 3301–3303. Cerca con Google

[41] U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, T. Brixner, Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics, Opt. Lett., 33 (2008) 2851–2853. Cerca con Google

[42] S.-H. Shim, M.T. Zanni, How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping, Phys. Chem. Chem. Phys., 11 (2008) 748–761. Cerca con Google

[43] J.A. Myers, K.L.M. Lewis, P.F. Tekavec, J.P. Ogilvie, Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper, Opt. Express, 16 (2008) 17420–17428. Cerca con Google

[44] E. Harel, A.F. Fidler, G.S. Engel, B. Alexander Pines, Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy, Proc. Natl. Acad. Sci. USA, 107 (2010) 16444–16447. Cerca con Google

[45] R. Augulis, D. Zigmantas, Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance, Opt. Express, 19 (2011) 13126–13133. Cerca con Google

[46] I.A. Heisler, R. Moca, F.V.A. Camargo, S.R. Meech, Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition, Rev. Sci. Instrum., 85 (2014) 63103. Cerca con Google

[47] C. Manzoni, D. Brida, G. Cerullo, Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line, Opt. Lett., 37 (2012) 3027–3029. Cerca con Google

[48] F.D. Fuller, D.E. Wilcox, J.P. Ogilvie, Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry, Opt. Express, 22 (2014) 1018–1027. Cerca con Google

[49] D. Milam, M.J. Weber, A.J. Glass, Nonlinear refractive index of fluoride crystals, Appl. Phys. Lett., 31 (1977) 822–825. Cerca con Google

[50] F.D. Fuller, J.P. Ogilvie, Experimental implementations of two-dimensional fourier transform electronic spectroscopy, Annu. Rev. Phys. Chem., 66 (2015) 667–90. Cerca con Google

[51] V. Perlík, J. Hauer, F. Šanda, Finite pulse effects in single and double quantum spectroscopies, J. Opt. Soc. Am. B, 34 (2017) 430–439. Cerca con Google

[52] P.F. Tekavec, J.A. Myers, K.L.M. Lewis, F.D. Fuller, J.P. Ogilvie, Effects of chirp on two-dimensional Fourier transform electronic spectra, Opt. Express, 18 (2010) 11015–11024. Cerca con Google

[53] K.W. DeLong, R. Trebino, D.J. Kane, Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries, J. Opt. Soc. Am. B, 11 (1994) 1595–1608. Cerca con Google

[54] W. Dietel, J.J. Fontaine, J.-C. Diels, Intracavity pulse compression with glass: a new method of generating pulses shorter than 60 fsec, Opt. Lett., 8 (1983) 4–6. Cerca con Google

[55] R.L. Fork, O.E. Martinez, J.P. Gordon, Negative dispersion using pairs of prisms, Opt. Lett., 9 (1984) 150–152. Cerca con Google

[56] D.J. Kane, R. Trebino, Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating, IEEE J. Quant. Electron., 29 (1993) 571–579. Cerca con Google

[57] B.M. Cho, M.K. Yetzbacher, K. Kitney, E.R. Smith, D.M. Jonas, Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems, J. Phys. Chem. A, 113 (2009) 13287–13299. Cerca con Google

[58] D.B. Turner, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy, J. Phys. Chem. Lett., 2 (2011) 1904–1911. Cerca con Google

[59] A. Volpato, L. Bolzonello, E. Meneghin, E. Collini, Global analysis of coherence and population dynamics in 2D electronic spectroscopy, Opt. Express, 23 (2016) 24773–24785. Cerca con Google

[60] F.V.A. Camargo, H.L. Anderson, S.R. Meech, I.A. Heisler, Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy, J. Phys. Chem. B, 119 (2015) 14660–1667. Cerca con Google

[61] E.E. Ostroumov, R.M. Mulvaney, J.M. Anna, R.J. Cogdell, G.D. Scholes, Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra, J. Phys. Chem. B, 117 (2013) 11349–11362. Cerca con Google

[62] K.M. Mullen, I.H.M. van Stokkum, The variable projection algorithm in time-resolved spectroscopy, microscopy and mass spectrometry applications, Numer. Algorithms, 51 (2008) 319–340. Cerca con Google

[63] I.H.M. Van Stokkum, D.S. Larsen, R. Van Grondelle, Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta - Bioenerg., 1657 (2004) 82–104. Cerca con Google

[64] S.T. Cundiff, Optical three dimensional coherent spectroscopy, Phys. Chem. Chem. Phys., 16 (2014) 8193–200. Cerca con Google

[65] F. Milota, V.I. Prokhorenko, T. Mancal, H. Von Berlepsch, O. Bixner, H.F. Kauffmann, J. Hauer, Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates, J. Phys. Chem. A, 117 (2013) 6007–6014. Cerca con Google

[66] M. Ferretti, V.I. Novoderezhkin, E. Romero, R. Augulis, A. Pandit, D. Zigmantas, R. Van Grondelle, The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy, Phys. Chem. Chem. Phys., 16 (2014) 9930–9939. Cerca con Google

[67] E. Romero, R. Augulis, V.I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle, Quantum coherence in photosynthesis for efficient solar-energy conversion, Nat. Phys., 10 (2014) 676–682. Cerca con Google

[68] J. Prior, E. Castro, A.W. Chin, J. Almeida, S.F. Huelga, M.B. Plenio, Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes, J. Chem. Phys., 139 (2013) 224103. Cerca con Google

[69] A. Volpato, E. Collini, Time-frequency methods for coherent spectroscopy, Opt. Express, 23 (2015) 20040–20050. Cerca con Google

[70] E.E. Ostroumov, R.M. Mulvaney, R.J. Cogdell, G.D. Scholes, Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria, Science, 340 (2013) 52–56. Cerca con Google

[71] A. Kolli, E.J. O’Reilly, G.D. Scholes, A. Olaya-Castro, The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae, J. Chem. Phys., 137 (2012) 174109. Cerca con Google

[72] V. Tiwari, W.K. Peters, D.M. Jonas, Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework, Proc. Natl. Acad. Sci. U. S. A., 110 (2013) 1203–1208. Cerca con Google

[73] R. Dosselli, R. Ruiz-González, F. Moret, V. Agnolon, C. Compagnin, M. Mognato, V. Sella, M. Agut, S. Nonell, M. Gobbo, E. Reddi, Synthesis, spectroscopic, and photophysical characterization and photosensitizing activity toward prokaryotic and eukaryotic cells of porphyrin-magainin and -buforin conjugates, J. Med. Chem., 57 (2014) 1403–1415. Cerca con Google

[74] M. Gouterman, Spectra of porphyrins, J. Mol. Spectrosc., 6 (1961) 138–163. Cerca con Google

[75] X. Huang, K. Nakanishi, N. Berova, Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies, Chirality, 12 (2000) 237–255. Cerca con Google

[76] S. Matile, N. Berova, K. Nakanishi, J. Fleischhauer, R.W. Woody, Structural studies by exciton coupled circular dichroism over a large distance: porphyrin derivatives of steroids, dimeric steroids, and brevetoxin B, J. Am. Chem. Soc., 118 (1996) 5198–5206. Cerca con Google

[77] V. Butkus, L. Valkunas, D. Abramavicius, Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates, J. Chem. Phys., 140 (2014) 34306. Cerca con Google

[78] T. Kobayashi, J-aggregates, World Scientific, Singapore, 1996. Cerca con Google

[79] L. Bolzonello, F. Fassioli, E. Collini, Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes, J. Phys. Chem. Lett., (2016) 4996–5001. Cerca con Google

[80] M. Kullmann, A. Hipke, P. Nuernberger, T. Bruhn, D.C.G.G. Götz, M. Sekita, D.M. Guldi, G. Bringmann, T. Brixner, Ultrafast exciton dynamics after Soret- or Q-band excitation of a directly β,β’-linked bisporphyrin, Phys. Chem. Chem. Phys., 14 (2012) 8038–8050. Cerca con Google

[81] P. Bouř, K. Záruba, M. Urbanová, V. Setnička, P. Matějka, Z. Fiedler, V. Král, K. Volka, Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study, Chirality, 12 (2000) 191–198. Cerca con Google

[82] M. Di Valentin, M. Albertini, E. Zurlo, M. Gobbo, D. Carbonera, Porphyrin triplet state as potential spin label for nanometer distance measurements by PELDOR spectroscopy the porphyrin triplet state as potential spin label for nanometer distance measurements by PELDOR spectroscopy, J. Am. Chem. Soc., 136 (2014) 6582–6585. Cerca con Google

[83] H. Wolf, H. Scheer, Stereochemistry and chiroptic properties of pheophorbides and related compounds, Ann. N. Y. Acad. Sci., 206 (1973) 549–567. Cerca con Google

[84] C. Houssier, K. Sauer, Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments, J. Am. Chem. Soc., 92 (1970) 779–791. Cerca con Google

[85] T. Mančal, A. Nemeth, F. Milota, V. Lukeš, H.F. Kauffmann, J. Sperling, Vibrational wave packet induced oscillations in two-dimensional electronic spectra II Theory, J. Chem. Phys., 132 (2010) 184515. Cerca con Google

[86] E. Collini, C. Ferrante, R. Bozio, Strong enhancement of the two-photon absorption of tetrakis(4-sulfonatophenyl)porphyrin diacid in water upon aggregation, J. Phys. Chem. B, 109 (2005) 2–5. Cerca con Google

[87] V. Butkus, D. Zigmantas, L. Valkunas, D. Abramavicius, Vibrational vs electronic coherences in 2D spectrum of molecular systems, Chem. Phys. Lett., 545 (2012) 40–43. Cerca con Google

[88] B. Grimm, R.J. Porra, W. Rüdiger, H. Scheer, Chlorophylls and Bacteriochlorophylls (Advances in Photosynthesis and Respiration), Springer, Dordrecht, 2006. Cerca con Google

[89] L.O. Björn, G.C. Papageorgiou, R.E. Blankenship, Govindjee, A viewpoint: why chlorophyll a?, Photosynth. Res., 99 (2009) 85–98. Cerca con Google

[90] M. Kobayashi, S. Akutsu, D. Fujinuma, Physicochemical properties of chlorophylls in oxygenic photosynthesis - Succession of co-factors from anoxygenic to oxygenic photosynthesis, InTech, Rijeka, 2013. Cerca con Google

[91] S.S. Senlik, V.R. Policht, J.P. Ogilvie, Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics, J. Phys. Chem. Lett., 6 (2015) 2413–2420. Cerca con Google

[92] D. Kosumi, T. Nishiguchi, M. Sugisaki, H. Hashimoto, Ultrafast coherent spectroscopic investigation on photosynthetic pigment chlorophyll a utilizing 20 fs pulses, J. Photochem. Photobiol. A Chem., 313 (2015) 72–78. Cerca con Google

[93] R. Moca, S.R. Meech, I.A. Heisler, Two-dimensional electronic spectroscopy of chlorophyll a: solvent dependent spectral evolution, J. Phys. Chem. B, 119 (2015) 8623–8630. Cerca con Google

[94] L.L. Shipman, T.M. Cotton, J.R. Norris, J.J. Katz, An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer, and oligomers in solution, J. Am. Chem. Soc., 98 (1976) 8222–8230. Cerca con Google

[95] R. Vladkova, Chlorophyll a self-assembly in polar solvent – water mixtures, Photochem. Photobiol., 71 (2000) 71–83. Cerca con Google

[96] M. Gouterman, L. Stryer, Fluorescence polarization of some porphyrins, J. Chem. Phys., 37 (1962) 2260. Cerca con Google

[97] J.R. Reimers, Z.-L. Cai, R. Kobayashi, M. Rätsep, A. Freiberg, E. Krausz, Assignment of the Q-bands of the chlorophylls: coherence loss via Qx - Qy mixing, Sci. Rep., 3 (2013) 2761. Cerca con Google

[98] M. Umetsu, Z.-Y. Wang, M. Kobayashi, T. Nozawa, Interaction of photosynthetic pigments with various organic solvents, Biochim. Biophys. Acta - Bioenerg., 1410 (1999) 19–31. Cerca con Google

[99] M. Rätsep, J. Linnanto, A. Freiberg, Mirror symmetry and vibrational structure in optical spectra of chlorophyll a, J. Chem. Phys., 130 (2009) 1–11. Cerca con Google

[100] J. Du, T. Teramoto, K. Nakata, E. Tokunaga, T. Kobayashi, Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser, Biophys. J., 101 (2011) 995–1003. Cerca con Google

[101] C. Zhou, J.R. Diers, D.F. Bocian, Qy-excitation Resonance Raman spectra of chlorophyll a and related complexes Normal mode characteristics of the low-frequency vibrations, J. Phys. Chem. B, 101 (1997) 9635–9644. Cerca con Google

[102] K.L. Wells, Z. Zhang, J.R. Rouxel, H.-S. Tan, Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy, J. Phys. Chem. B, 117 (2013) 2294–2299. Cerca con Google

[103] F.V.D.A. Camargo, L. Grimmelsmann, L. Anderson, S.R. Meech, I.A. Heisler, Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum, Phys. Rev. Lett., 118 (2017) 33001. Cerca con Google

[104] M. Lutz, Resonance Raman spectra of chlorophyll in solution, J. Raman Spectrosc., 2 (1974) 497–516. Cerca con Google

[105] A. Telfer, A.A. Pascal, L. Bordes, J. Barber, B. Robert, Fluorescence line narrowing studies on isolated chlorophyll molecules, J. Phys. Chem. B, 114 (2010) 2255–2260. Cerca con Google

[106] E.J.G. Peterman, S.-O. Wenk, T. Pullerits, L.-O. Pålsson, R. van Grondelle, J.P. Dekker, M. Rögner, H. van Amerongen, Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of synechocystis PCC6803, Biophys. J., 75 (1998) 389–398. Cerca con Google

[107] K.A. Fransted, J.R. Caram, D. Hayes, G.S. Engel, Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control, J. Chem. Phys., 137 (2012) 125101. Cerca con Google

[108] M. Rätsep, Z.L. Cai, J.R. Reimers, A. Freiberg, Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a, J. Chem. Phys., 134 (2011) 24506. Cerca con Google

[109] E. Bellacchio, K. Sauer, Temperature dependence of optical spectra of bacteriochlorophyll a in solution and in low-temperature glasses, J. Phys. Chem. B, 103 (1999) 2279–2290. Cerca con Google

[110] J.R. Caram, G.S. Engel, Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes, Faraday Discuss., 153 (2011) 93–104. Cerca con Google

[111] P.-S. Song, P. Koka, B.B. Prezelin, F.T. Haxo, Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates, Biochemistry, 15 (1976) 4422–4427. Cerca con Google

[112] P. Koka, P.-S. Song, The chromophore topography and binding environment of peridinin•chlorophyll a•protein complexes from marine dinoflagellate algae, Biochim. Biophys. Acta - Protein Struct., 495 (1977) 220–231. Cerca con Google

[113] D. Carbonera, G. Giacometti, U. Segre, E. Hofmann, R.G. Hiller, Structure-based calculations of the optical spectra of the light-harvesting peridinin-chlorophyll-protein complexes from Amphidinium carterae and Heterocapsa pygmaea, J. Phys. Chem. B, 103 (1999) 6349–6356. Cerca con Google

[114] J.A. Bautista, R.G. Hiller, F.P. Sharples, D. Gosztola, M. Wasielewski, H.A. Frank, Singlet and triplet transfer in the Peridinin-Chlorophyll a- protein from Amphidinium carterae, J. Phys. Chem. A, 103 (1999) 2267–2273. Cerca con Google

[115] D. Zigmantas, T. Polfvka, R.G. Killer, A. Yartsev, V. Sundstrom, Spectroscopic and dynamic properties of the peridinin lowest singlet excited states, J. Phys. Chem. A, 105 (2001) 10296–10306. Cerca con Google

[116] B.P. Krueger, S.S. Lampoura, I.H. van Stokkum, E. Papagiannakis, J.M. Salverda, C.C. Gradinaru, D. Rutkauskas, R.G. Hiller, R. van Grondelle, Energy transfer in the peridinin chlorophyll-a protein of Amphidinium carterae studied by polarized transient absorption and target analysis, Biophys. J., 80 (2001) 2843–2855. Cerca con Google

[117] D. Zigmantas, R.G. Hiller, V. Sundstrom, T. Polivka, Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state, Proc. Natl. Acad. Sci. U. S. A., 99 (2002) 16760–16765. Cerca con Google

[118] P. a. Linden, J. Zimmermann, T. Brixner, N.E. Holt, H.M. Vaswani, R.G. Hiller, G.R. Fleming, Transient absorption study of peridinin and peridinin−chlorophyll a−protein after two-photon excitation, J. Phys. Chem. B, 108 (2004) 10340–10345. Cerca con Google

[119] L. Premvardhan, E. Papagiannakis, R.G. Hiller, R. Van Grondelle, The charge-transfer character of the S0 - S2 transition in the carotenoid peridinin is revealed by stark spectroscopy, J. Phys. Chem. B, 109 (2005) 15589–15597. Cerca con Google

[120] N. Christensson, P. Chábera, R.G. Hiller, T. Pullerits, T. Polívka, Four-wave-mixing spectroscopy of peridinin in solution and in the peridinin-chlorophyll-a protein, Chem. Phys., 373 (2010) 15–22. Cerca con Google

[121] S. Ghosh, M.M. Bishop, J.D. Roscioli, A.M. LaFountain, H.A. Frank, W.F. Beck, Femtosecond heterodyne transient grating studies of nonradiative deactivation of the S2 (1Bu+) state of peridinin: detection and spectroscopic assignment of an intermediate in the decay pathway, J. Phys. Chem. B, 120 (2016) 3601–3614. Cerca con Google

[122] I.H.M. van Stokkum, E. Papagiannakis, M. Vengris, J.M. Salverda, T. Polívka, D. Zigmantas, D.S. Larsen, S.S. Lampoura, R.G. Hiller, R. van Grondelle, Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra, Chem. Phys., 357 (2009) 70–78. Cerca con Google

[123] A. Damjanović, T. Ritz, K. Schulten, Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae, Biophys. J., 79 (2000) 1695–1705. Cerca con Google

[124] W.P. Bricker, C.S. Lo, Excitation energy transfer in the peridinin-chlorophyll a-protein complex modeled using configuration interaction, J. Phys. Chem. B, 118 (2014) 9141–9154. Cerca con Google

[125] J.P. Götze, B. Karasulu, M. Patil, W. Thiel, Vibrational relaxation as the driving force for wavelength conversion in the peridinin-chlorophyll a-protein, Biochim. Biophys. Acta - Bioenerg., 1847 (2015) 1509–1517. Cerca con Google

[126] W.P. Bricker, C.S. Lo, Efficient pathways of excitation energy transfer from delocalized S2 excitons in the peridinin-chlorophyl a-protein complex, J. Phys. Chem. B, 119 (2015) 5755–5764. Cerca con Google

[127] E. Hofmann, P.M. Wrench, F.P. Sharples, R.G. Hiller, W. Welte, K. Diederichs, Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae, Science, 272 (1996) 1788–1791. Cerca con Google

[128] M. Mimuro, U. Nagashima, S. Takaichi, Y. Nishimura, I. Yamazaki, T. Katoh, Molecular structure and optical properties of carotenoids for the in vivo energy transfer function in the algal photosynthetic pigment system, Biochim. Biophys. Acta - Bioenerg., 1098 (1992) 271–274. Cerca con Google

[129] H.A. Frank, J.A. Bautista, J. Josue, Z. Pendon, R.G. Hiller, F.P. Sharples, D. Gosztola, M.R. Wasielewski, Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids, J. Phys. Chem. B, 104 (2000) 4569–4577. Cerca con Google

[130] H.M. Vaswani, C.P. Hsu, M. Head-Gordon, G.R. Fleming, Quantum chemical evidence for an intramolecular charge-transfer state in the carotenoid peridinin of peridinin-chlorophyll-protein, J. Phys. Chem. B, 107 (2003) 7940–7946. Cerca con Google

[131] E. Papagiannakis, D.S. Larsen, I.H.M. Van Stokkum, M. Vengris, R.G. Hiller, R. Van Grondelle, Resolving the excited state equilibrium of peridinin in solution, Biochemistry, 43 (2004) 15303–15309. Cerca con Google

[132] C. Bonetti, M.T.A. Alexandre, I.H.M. van Stokkum, R.G. Hiller, M.L. Groot, R. van Grondelle, J.T.M. Kennis, Identification of excited-state energy transfer and relaxation pathways in the peridinin–chlorophyll complex: an ultrafast mid-infrared study, Phys. Chem. Chem. Phys., 12 (2010) 9256–9266. Cerca con Google

[133] D. Zigmantas, R.G. Hiller, A. Yartsev, V. Sundstro, Dynamics of excited states of the carotenoid peridinin in polar solvents: dependence on excitation wavelength, viscosity, and temperature, J. Phys. Chem. B, 107 (2003) 5339–5348. Cerca con Google

[134] D. Zigmantas, R.G. Hiller, F.P. Sharples, H. a. Frank, V. Sundström, T. Polívka, Effect of a conjugated carbonyl group on the photophysical properties of carotenoids, Phys. Chem. Chem. Phys., 6 (2004) 3009–3016. Cerca con Google

[135] R.P. Ilagan, J.F. Koscielecki, R.G. Hiller, F.P. Sharples, G.N. Gibson, R.R. Birge, H.A. Frank, Femtosecond time-resolved absorption spectroscopy of main-form and high-salt peridinin-chlorophyll a-proteins at low temperatures, Biochemistry, 45 (2006) 14052–14063. Cerca con Google

[136] S. Ghosh, M.M. Bishop, J.D. Roscioli, J.J. Mueller, N.C. Shepherd, A.M. LaFountain, H.A. Frank, W.F. Beck, Femtosecond heterodyne transient grating studies of nonradiative decay of the S2 (1Bu+) state of β-carotene: contributions from dark intermediates and double quantum coherences, J. Phys. Chem. B, 119 (2015) 14905–14924. Cerca con Google

[137] S. Shima, R.P. Ilagan, N. Gillespie, B.J. Sommer, R.G. Hiller, F.P. Sharples, H.A. Frank, R.R. Birge, Two-photon and fluorescence spectroscopy and the effect of environment on the photochemical properties of peridinin in solution and in the peridinin-chlorophyll-protein from amphidinium carterae, J. Phys. Chem. A, 107 (2003) 8052–8066. Cerca con Google

[138] N.L. Wagner, J.A. Greco, M.M. Enriquez, H.A. Frank, R.R. Birge, The nature of the intramolecular charge transfer state in peridinin, Biophys. J., 104 (2013) 1314–1325. Cerca con Google

[139] J.A. Bautista, R.E. Connors, B.B. Raju, R.G. Hiller, F.P. Sharples, D. Gosztola, M.R. Wasielewski, H.A. Frank, Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids, J. Phys. Chem. B, 103 (1999) 8751–8758. Cerca con Google

[140] T. Polívka, R.G. Hiller, H.A. Frank, Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae, Arch. Biochem. Biophys., 458 (2007) 111–120. Cerca con Google

[141] A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H.F. Kauffmann, N. Christensson, Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations, J. Chem. Phys., 133 (2010) 94505. Cerca con Google

[142] T. Schulte, D.M. Niedzwiedzki, R.R. Birge, R.G. Hiller, T. Polívka, E. Hofmann, H.A. Frank, Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy, Proc. Natl. Acad. Sci. U. S. A., 106 (2009) 20764–20769. Cerca con Google

[143] S. Ghosh, M.M. Bishop, J.D. Roscioli, A.M. LaFountain, H.A. Frank, W.F. Beck, Excitation energy transfer by coherent and incoherent mechanisms in the peridinin–chlorophyll a-protein, J. Phys. Chem. Lett., 8 (2017) 463–469. Cerca con Google

[144] T. Polívka, H.A. Frank, Light harvesting by carotenoids, Acc. Chem. Res., 43 (2010) 1125–1134. Cerca con Google

[145] F.P. Sharples, P.M. Wrench, K. Ou, R.G. Hiller, Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae, Biochim. Biophys. Acta - Bioenerg., 1276 (1996) 117–123. Cerca con Google

[146] A. Mezzetti, E. Kish, B. Robert, R. Spezia, Assignment of IR bands of isolated and protein-bound Peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations, J. Mol. Struct., 1090 (2015) 58–64. Cerca con Google

[147] E. Kish, M.M. Mendes Pinto, D. Bovi, M. Basire, L. Guidoni, R. Vuilleumier, B. Robert, R. Spezia, A. Mezzetti, Fermi resonance as a tool for probing peridinin environment, J. Phys. Chem. B, 118 (2014) 5873–5881. Cerca con Google

[148] H. Kuzmany, Resonance Raman scattering from neutral and doped polyacetylene, Phys. Status Solidi, 97 (1980) 521–531. Cerca con Google

[149] S. Saito, M. Tasumi, C.H. Eugster, Resonance Raman spectra (5800-40 cm-1) of all-trans and 15-cis isomers of beta-carotene in the solid state and in solution Measurements with various laser lines from ultraviolet to red, J. Raman Spectrosc., 14 (1983) 299–309. Cerca con Google

[150] C. Kolano, J. Helbing, M. Kozinski, W. Sander, P. Hamm, Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy, Nature, 444 (2006) 469–472. Cerca con Google

[151] C. Kolano, J. Helbing, G. Bucher, W. Sander, P. Hamm, Intramolecular disulfide bridges as a phototrigger to monitor the dynamics of small cyclic peptides, J. Phys. Chem. B, 111 (2007) 11297–11302. Cerca con Google

[152] J. Bredenbeck, J. Helbing, P. Hamm, Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer, J. Am. Chem. Soc., 126 (2004) 990–991. Cerca con Google

[153] C.R. Baiz, M.J. Nee, R. McCanne, K.J. Kubarych, Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy, Opt. Lett., 33 (2008) 2533–2535. Cerca con Google

[154] H.S. Chung, Z. Ganim, K.C. Jones, A. Tokmakoff, Transient 2D IR spectroscopy of ubiquitin unfolding dynamics, Proc. Natl. Acad. Sci. U. S. A., 104 (2007) 14237–14242. Cerca con Google

[155] M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, T. Brixner, Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy, J. Am. Chem. Soc., 133 (2011) 13074–13080. Cerca con Google

[156] M. Gil, J. Waluk, Vibrational gating of double hydrogen tunneling in porphycene, J. Am. Chem. Soc., 129 (2007) 1335–1341. Cerca con Google

[157] J.M. Lopez Del Amo, U. Langer, V. Torres, G. Buntkowsky, H.M. Vieth, M. Pérez-Torralba, D. Sanz, R.M. Claramunt, J. Elguero, H.H. Limbach, NMR studies of ultrafast intramolecular proton tautomerism in crystalline and amorphous N,N′-diphenyl-6-aminofulvene-1-aldimine: solid-state, kinetic isotope, and tunneling effects, J. Am. Chem. Soc., 130 (2008) 8620–8632. Cerca con Google

[158] E. Vogel, M. Köcher, H. Schmickler, J. Lex, Porphycene - a novel porphin isomer, Angew. Chemie Int. Ed. English, 25 (1986) 257–259. Cerca con Google

[159] D. Sánchez-García, J.L. Sessler, Porphycenes: synthesis and derivatives, Chem. Soc. Rev., 37 (2008) 215–232. Cerca con Google

[160] J.C. Stockert, M. Cañete, A. Juarranz, A. Villanueva, R.W. Horobin, J.I. Borrell, J. Teixidó, S. Nonell, Porphycenes: facts and prospects in photodynamic therapy of cancer, Curr. Med. Chem., 14 (2007) 997–1026. Cerca con Google

[161] S.E. Braslavsky, M. Müller, D.O. Mártire, S. Pörting, S.G. Bertolotti, S. Chakravorti, G. Koç-Weier, B. Knipp, K. Schaffner, Photophysical properties of porphycene derivatives (18π porphyrinoids), J. Photochem. Photobiol. B Biol., 40 (1997) 191–198. Cerca con Google

[162] K. Malsch, G. Hohlneicher, P. Chemie, V. Uni, The force field of porphycene: a theoretical and experimental approach, J. Phys. Chem., 5639 (1997) 8409–8416. Cerca con Google

[163] P.M. Kozlowski, M.Z. Zgierski, J. Baker, The inner-hydrogen migration and ground-state structure of porphycene, J. Chem. Phys., 109 (1998) 5905–5913. Cerca con Google

[164] M.F. Shibl, M. Tachikawa, O. Kühn, The geometric (H/D) isotope effect in porphycene: grid-based Born-Oppenheimer vibrational wavefunctions vs multi-component molecular orbital theory, Phys. Chem. Chem. Phys., 7 (2005) 1368–1373. Cerca con Google

[165] H. Cybulski, M. Pecul, T. Helgaker, M. Jaszunski, Theoretical studies of nuclear magnetic resonance parameters for the proton-exchange pathways in porphyrin and porphycene, J. Phys. Chem. A, 109 (2005) 4162–4171. Cerca con Google

[166] T. Udagawa, M. Tachikawa, HD isotope effect on porphine and porphycene molecules with multicomponent hybrid density functional theory, J. Chem. Phys., 125 (2006) 244105. Cerca con Google

[167] T. Yoshikawa, S. Sugawara, T. Takayanagi, M. Shiga, M. Tachikawa, Theoretical study on the mechanism of double proton transfer in porphycene by path-integral molecular dynamics simulations, Chem. Phys. Lett., 496 (2010) 14–19. Cerca con Google

[168] E.D. Becker, R.B. Bradley, C.J. Watson, Proton magnetic resonance studies of porphyrins, J. Am. Chem. Soc., 83 (1961) 3743–3748. Cerca con Google

[169] J. Braun, M. Schlabach, B. Wehrle, M. Kcher, E. Vogel, H. Limbach, NMR study of the tautomerism of porphyrin including the kinetic HH/HD/DD isotope effects in the liquid and the solid state, J. Am. Chem. Soc., 116 (1994) 6593–6604. Cerca con Google

[170] J. Braun, H. Limbach, P.G. Williams, H. Morimoto, D.E. Wemmer, Observation of kinetic tritium isotope effects by dynamic NMR The tautomerism of porphyrin, J. Am. Chem. Soc., 118 (1996) 7231–7232. Cerca con Google

[171] M. Pietrzak, M.F. Shibl, M. Bröring, O. Kühn, H.H. Limbach, 1H/2H NMR studies of geometric H/D isotope effects on the coupled hydrogen bonds in porphycene derivatives, J. Am. Chem. Soc., 129 (2007) 296–304. Cerca con Google

[172] U. Langer, C. Hoelger, B. Wehrle, L. Latanowicz, E. Vogel, H.-H. Limbach, 15N NMR study of proton localization and proton transfer thermodynamics and kinetics in polycrystalline porphycene, J. Phys. Org. Chem., 13 (2000) 23–34. Cerca con Google

[173] J. Sepioł, Y. Stepanenko, a Vdovin, a Mordziński, E. Vogel, J. Waluk, Proton tunnelling in porphycene seeded in a supersonic jet, Chem. Phys. Lett., 296 (1998) 549–556. Cerca con Google

[174] A. Vdovin, J. Sepioł, N. Urbańska, M. Pietraszkiewicz, A. Mordziński, J. Waluk, Evidence for two forms, double hydrogen tunneling, and proximity of excited states in bridge-substituted porphycenes: supersonic jet studies, J. Am. Chem. Soc., 128 (2006) 2577–2586. Cerca con Google

[175] A. Vdovin, J. Waluk, B. Dick, A. Slenczka, Mode-selective promotion and isotope effects of concerted double-hydrogen tunneling in porphycene embedded in superfluid helium nanodroplets, ChemPhysChem, 10 (2009) 761–765. Cerca con Google

[176] E.T. Mengesha, J. Sepio, P. Borowicz, J. Waluk, Vibrations of porphycene in the S0 and S1 electronic states: single vibronic level dispersed fluorescence study in a supersonic jet, J. Chem. Phys., 138 (2013) 174201. Cerca con Google

[177] P. Ciąćka, P. Fita, A. Listkowski, M. Kijak, S. Nonell, D. Kuzuhara, H. Yamada, C. Radzewicz, J. Waluk, Tautomerism in porphycenes: analysis of rate-affecting factors, J. Phys. Chem. B, 119 (2015) 2292–2301. Cerca con Google

[178] J. Waluk, Ground- and excited-state tautomerism in porphycenes, Acc. Chem. Res., 39 (2006) 945–952. Cerca con Google

[179] P. Fita, N. Urbanska, C. Radzewicz, J. Waluk, Ground-and excited-state tautomerization rates in porphycenes, Chem. - A Eur. J., 15 (2009) 4851–4856. Cerca con Google

[180] C. Schriever, S. Lochbrunner, A.R. Ofial, E. Riedle, The origin of ultrafast proton transfer: multidimensional wave packet motion vs tunneling, Chem. Phys. Lett., 503 (2011) 61–65. Cerca con Google

[181] O. Planas, R. Tejedor-Estrada, S. Nonell, Tautomerism and dual fluorescence in 9-substituted n-propyl- and methoxyethyl-porphycenes, J. Porphyr. Phthalocyanines, 16 (2012) 633–640. Cerca con Google

[182] M. Gil, J. Dobkowski, G. Wiosna-Sałyga, N. Urbańska, P. Fita, C. Radzewicz, M. Pietraszkiewicz, P. Borowicz, D. Marks, M. Glasbeek, J. Waluk, Unusual, solvent viscosity-controlled tautomerism and photophysics: meso-alkylated porphycenes, J. Am. Chem. Soc., 132 (2010) 13472–13485. Cerca con Google

[183] J. Arnbjerg, A. Jiménez-Banzo, M.J. Paterson, S. Nonell, J.I. Borrell, O. Christiansen, P.R. Ogilby, Two-photon absorption in tetraphenylporphycenes: are porphycenes better candidates than porphyrins for providing optimal optical properties for two-photon photodynamic therapy?, J. Am. Chem. Soc., 129 (2007) 5188–5199. Cerca con Google

[184] E.R. Henry, J. Hofrichter, Singular value decomposition: application to analysis of experimental data, Methods Enzymol., 210 (1992) 129–192. Cerca con Google

[185] M. Gil, J.A. Organero, J. Waluk, A. Douhal, Ultrafast dynamics of alkyl-substituted porphycenes in solution, Chem. Phys. Lett., 422 (2006) 142–146. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record