Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Franchin, Giorgia (2017) Additive Manufacturing of Ceramics. Printing Beyond the Binder. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
7Mb

Abstract (inglese)

This research project focuses on the production of ceramics via Additive Manufacturing (AM) techniques, with particular focus on extrusion-based technologies. The main advantage of AM is the ability to produce cellular structures with high complexity and controlled porosity, allowing to manufacture light but efficient stretch-dominated structures. The inspiration comes from nature: bone architectures are a great example, consisting of thin, solid skins attached to highly porous, cellular cores.
Very few commercially available AM systems are suited for ceramic materials, and most of them use ceramic powders as feedstock. Residual pores and cracks are very hard to avoid and result in low strength, poor reliability and loss of unique material properties such as glass optical transparency. AM technologies employing polymers are at a much more advanced stage of development. The goal has been to exploit such advances and to provide alternatives to the ceramic powder-binder approaches. Three different material families were explored: preceramic polymers, geopolymers, and glass.
The same preceramic polymer, a commercial polysilsesquioxane, was employed as a non sacrificial, reactive binder to develop inks for stereolithography (SL) and direct ink writing (DIW).
The first technology allowed for production of dense, crack-free SiOC micro-components with strut size down to ~200 μm and optimal surface quality. No shape limitations were experienced, but porous structures or small dense parts are the best options in order to avoid residual pores and cracks. The second approach was employed for the fabrication of complex biosilicate scaffolds for tissue engineering with a rod diameter of 350 µm and unsupported struts. The preceramic polymer had the double role of source of silica and rheology modifier. Ceramic matrix composites (CMCs) were also fabricated; the preceramic polymer developed the ceramic matrix (SiOC) upon pyrolysis in inert atmosphere, whereas reinforcement was given by chopped carbon fibers.
Geopolymer components with controlled porosity were designed and produced first by negative replica of PLA sacrificial templates and then by DIW. Highly porous ceramic components with features of ~800 μm and unsupported parts with very limited sagging were produced with the latter approach.
A novel extrusion-based AM approach was finally developed for the production of objects starting from molten glass. The system processed glass from the molten state to annealed components of complex, digitally designed forms. Objects possessing draft angles and tight radii were fabricated. Within the design space it was possible to print with high precision and accuracy; parts showed a strong adhesion between layers, and high transparency through the layers.

Abstract (italiano)

Questo progetto di ricerca riguarda la produzione di ceramici tramite tecniche di manifattura additiva (AM), con particolare focus su tecnologie estrusive. Il principale vantaggio dell’AM è la possibilità di produrre strutture cellulari ad elevata complessità e porosità controllata, consentendo di produrre reticoli stretch-dominated leggeri ma efficienti. L’ispirazione è offerta dalla natura: le strutture ossee sono un ottimo esempio, in quanto si compongono di un involucro esterno, denso e sottile, e di un cuore a struttura cellulare altamente porosa.
I sistemi di AM disponibili in commercio per la produzione di componenti ceramici sono molto pochi, e la maggior parte di essi utilizza polveri ceramiche. È molto difficile evitare porosità residua e cricche, e di conseguenza si ottengono oggetti dalla resistenza limitata e privi delle peculiarità di alcuni materiali, come ad esempio la trasparenza del vetro. Le tecnologie di AM che utilizzano polimeri sono ad uno stadio di sviluppo molto più avanzato. L’obiettivo è di sfruttare tale vantaggio e di fornire alternative agli approcci polvere-legante.
Sono stati esplorati tre diversi materiali: polimeri preceramici, geopolimeri, e vetro.
Un unico polimero preceramico, un polisilsesquiossano commerciale, è stato utilizzato come legante reattivo, non sacrificale per lo sviluppo di inchiostri per stereolitografia (SL) e direct ink writing (DIW).
La prima tecnologia ha consentito di produrre micro-componenti in SiOC densi e privi di cricche, con una dimensione dei pilastri fino a ~200 μm e ottima qualità superficiale. Non ci sono state limitazioni di forma, anche se strutture porose o oggetti densi di piccole dimensioni sono da preferire per evitare porosità residua e cricche. Il secondo approccio ha portato alla fabbricazione di scaffold bioceramici per ingegneria tissutale con filamenti di diametro 350 µm e parti non supportate. Il polimero preceramico ha il doppio ruolo di fonte di silice e di modificatore reologico. Sono stati prodotti anche compositi a matrice ceramica (CMCs); il polimero preceramico sviluppa la matrice (SiOC) tramite pirolisi in atmosfera inerte, mentre il rinforzo è dato da fibre di carbonio macinate.
Componenti in geopolimero a porosità controllata sono stati progettati e prodotti prima tramite replica negativa di template sacrificali in PLA, e poi via DIW. Il secondo approccio ha portato alla produzione di reticoli ceramici con filamenti di ~800 μm e parti non supportate con deflessione molto limitata.
È stato sviluppato infine un innovativo processo estrusivo a partire da vetro fuso. Un unico sistema è in grado di lavorare il vetro dallo stato fuso fino alla ricottura di componenti complessi progettati digitalmente. Sono stati realizzati oggetti comprendenti sporgenze di diversa entità e piccoli raggi di curvatura. All’interno dello spazio di progettazione è stato possibile stampare con elevata precisione e accuratezza; le parti stampate mostrano una forte adesione tra gli strati e un’elevata trasparenza attraverso di essi.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Colombo, Paolo
Correlatore:Oxman, Neri
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:06 Febbraio 2017
Anno di Pubblicazione:06 Febbraio 2017
Parole chiave (italiano / inglese):additive manufacturing; ceramics; stereolithography; direct ink writing; preceramic polymers; polymer derived ceramics; bioceramics; ceramic matrix composites; negative replica; geopolymers; glass; cellular structures.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10367
Depositato il:03 Nov 2017 09:53
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Background: Cerca con Google

[1] C.W. Hull, Apparatus for production of threedimensional objects by stereolithography, (1986). Cerca con Google

[2] ASTM, Standard Terminology for Additive Manufacturing Technologies -, (2012). Cerca con Google

[3] A. Zocca, P. Colombo, C.M. Gomes, J. Guenster, Additive Manufacturing of Ceramics: issues, potentialities and opportunities, J. Am. Ceram. Soc. 98 (2015) 1983–2001. Cerca con Google

[4] D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J.-O. Suh, Z.-K. Liu, J.-P. Borgonia, Compositionally graded metals: A new frontier of additive manufacturing, J. Mater. Res. 29 (2014) 1899–1910. doi:10.1557/jmr.2014.208. Cerca con Google

[5] M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Multiple material additive manufacturing – Part 1: a review, Virtual Phys. Prototyp. 8 (2013) 19–50. doi:10.1080/17452759.2013.778175. Cerca con Google

[6] W. Kollenberg, Ceramic and Multi-Material 3D-Printing, Keramische Zeitschrift. 66 (2014) 233–236. Cerca con Google

[7] Loughborough University, The 7 categories of Additive Manufacturing, (n.d.). http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ (accessed October 29, 2016). Vai! Cerca con Google

[8] R. Vaidyanathan, J. Walish, J.L. Lombardi, S. Kasichainula, P. Calvert, K.C. Cooper, The extrusion freeforming of functional ceramic prototypes, Jom. 52 (2000) 34–37. doi:10.1007/s11837-000-0066-4. Cerca con Google

[9] A. Bandyopadhyay, R.K. Panda, V.F. Janas, M.K. Agarwala, S.C. Danforth, A. Safari, Processing of Piezocomposites by Fused Deposition Technique, J. Am. Ceram. Soc. 80 (2005) 1366–1372. doi:10.1111/j.1151-2916.1997.tb02993.x. Cerca con Google

[10] M.A. Jafari, W. Han, F. Mohammadi, A. Safari, S.C. Danforth, N. Langrana, A novel system for fused deposition of advanced multiple ceramics, Rapid Prototyp. J. 6 (2000) 161–175. doi:10.1108/13552540010337047. Cerca con Google

[11] M. Allahverdi, S.C. Danforth, M. Jafari, A. Safari, Processing of advanced electroceramic components by fused deposition technique, J. Eur. Ceram. Soc. 21 (2001) 1485–1490. doi:10.1016/S0955-2219(01)00047-4. Cerca con Google

[12] I. Grida, J.R.G. Evans, Extrusion freeforming of ceramics through fine nozzles, J. Eur. Ceram. Soc. 23 (2003) 629–635. doi:10.1016/S0955-2219(02)00163-2. Cerca con Google

[13] S.A. Park, S.H. Lee, W.D. Kim, Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering, Bioprocess Biosyst. Eng. 34 (2011) 505–513. doi:10.1007/s00449-010-0499-2. Cerca con Google

[14] S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling, Mater. Sci. Eng. C. 23 (2003) 611–620. doi:10.1016/S0928-4931(03)00052-3. Cerca con Google

[15] J. Cesarano, P.D. Calvert, Freeforming objects with low-binder slurry, US 6027326, 2000. Cerca con Google

[16] J. a. Lewis, J.E. Smay, J. Stuecker, J. Cesarano, Direct ink writing of three-dimensional ceramic structures, J. Am. Ceram. Soc. 89 (2006) 3599–3609. doi:10.1111/j.1551-2916.2006.01382.x. Cerca con Google

[17] S. Eqtesadi, A. Motealleh, P. Miranda, A. Pajares, A. Lemos, J.M.F. Ferreira, Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering, J. Eur. Ceram. Soc. 34 (2014) 107–118. doi:10.1016/j.jeurceramsoc.2013.08.003. Cerca con Google

[18] F.C.G. de Sousa, J.R.G. Evans, Sintered Hydroxyapatite Latticework for Bone Substitute, J. Am. Ceram. Soc. 86 (2003) 517–519. doi:10.1111/j.1151-2916.2003.tb03332.x. Cerca con Google

[19] Q. Fu, E. Saiz, A.P. Tomsia, Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration, 7 (2011) 3547–3554. doi:10.1016/j.actbio.2011.06.030. Cerca con Google

[20] X. Lu, Y. Lee, S. Yang, Y. Hao, R. Ubic, J.R.G. Evans, C.G. Parini, Fabrication of Millimeter-Wave Electromagnetic Bandgap Crystals Using Microwave Dielectric Powders, J. Am. Ceram. Soc. 92 (2009) 371–378. doi:10.1111/j.1551-2916.2008.02907.x. Cerca con Google

[21] S. Yang, K.-F. Leong, Z. Du, C.-K. Chua, The Design of Scaffolds for Use in Tissue Engineering. Part II. Rapid Prototyping Techniques, Tissue Eng. 8 (2002) 1–11. doi:10.1089/107632702753503009. Cerca con Google

[22] J.A. Lewis, Direct ink writing of 3D functional materials, Adv. Funct. Mater. 16 (2006) 2193–2204. Cerca con Google

[23] T. Schlordt, F. Keppner, N. Travitzky, P. Greil, Robocasting of Alumina Lattice Truss Structures, J. Ceram. Sci. Technol. 3 (2012) 1–7. doi:10.4416/JCST2012-00003. Cerca con Google

[24] J.E. Smay, J. Cesarano, J.A. Lewis, Colloidal Inks for Directed Assembly of 3-D Periodic Structures, Langumuir. 18 (2002) 5429–5437. doi:10.102/la0257135. Cerca con Google

[25] P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting, J. Biomed. Mater. Res. Part A. 83A (2007) 646–655. doi:10.1002/jbm.a.31272. Cerca con Google

[26] P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, Mechanical properties of calcium phosphate scaffolds fabricated by robocasting, J. Biomed. Mater. Res. Part A. 85A (2008) 218–227. doi:10.1002/jbm.a.31587. Cerca con Google

[27] J. Franco, P. Hunger, M.E. Launey, A.P. Tomsia, E. Saiz, Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel, Acta Biomater. 6 (2010) 218–228. doi:10.1016/j.actbio.2009.06.031. Cerca con Google

[28] Q. Fu, E. Saiz, A.P. Tomsia, Bioinspired Strong and Highly Porous Glass Scaffolds, Adv. Funct. Mater. 21 (2011) 1058–1063. doi:10.1002/adfm.201002030. Cerca con Google

[29] L.J. Gibson, M.F. Ashby, Cellular solids. Structure and properties, (1997) 502. doi:10.1017/CBO9781139878326. Cerca con Google

[30] M. Genet, M. Houmard, S. Eslava, E. Saiz, A.P. Tomsia, A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits, J. Eur. Ceram. Soc. 33 (2013) 679–688. doi:10.1016/j.jeurceramsoc.2012.11.001. Cerca con Google

[31] J. Stuecker, J. Cesarano, D.A. Hirschfield, Control of the viscous behavior of highly concentrated mullite suspensions for robocasting, J. Mater. Process. Technol. 142 (2003) 318–325. doi:10.1016/S0924- 0136(03)00586-7. Cerca con Google

[32] J.E. Smay, J. Cesarano, B.A. Tuttle, J.A. Lewis, Directed Colloidal Assembly of Linear and Annular Lead Zirconate Titanate Arrays, J. Am. Ceram. Soc. 87 (2004) 293–295. doi:10.1111/j.1551- 2916.2004.00293.x. Cerca con Google

[33] J.E. Smay, S.S. Nadkarni, J. Xu, Direct Writing of Dielectric Ceramics and Base Metal Electrodes, Int. J. Appl. Ceram. Technol. 4 (2007) 47–52. doi:10.1111/j.1744-7402.2007.02118.x. Cerca con Google

[34] J. Cesarano, J.G. Dellinger, M.P. Saavedra, D.D. Gill, R.D. Jamison, B.A. Grosser, J.M. Sinn-Hanlon, M.S. Goldwasser, Customization of Load-Bearing Hydroxyapatite Lattice Scaffolds, Int. J. Appl. Ceram. Technol. 2 (2005) 212–220. doi:10.1111/j.1744-7402.2005.02026.x. Cerca con Google

[35] J.G. Dellinger, J. Cesarano, R.D. Jamison, Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering, J. Biomed. Mater. Res. Part A. 82A (2007) 383–394. doi:10.1002/jbm.a.31072. Cerca con Google

[36] T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, C. Chaput, Fabrication of Millimeter Wave Components Via Ceramic Stereo- and Microstereolithography Processes, J. Am. Ceram. Soc. 91 (2008) 2469–2474. doi:10.1111/j.1551-2916.2008.02482.x. Cerca con Google

[37] M.L. Griffith, J.W. Halloran, Freeform Fabrication of Ceramics via Stereolithography, J. Am. Ceram. Soc. 79 (2005) 2601–2608. doi:10.1111/j.1151-2916.1996.tb09022.x. Cerca con Google

[38] J. Homa, M. Schwentenwein, A Novel Additive Manufacturing Technology for High-Performance Ceramics, in: Adv. Process. Manuf. Technol. Nanostructured Multifunct. Mater., 2015: pp. 33–40. doi:10.1002/9781119040354.ch4. Cerca con Google

[39] W. Zhou, D. Li, H. Wang, A novel aqueous ceramic suspension for ceramic stereolithography, Rapid Prototyp. J. 16 (2010) 29–35. doi:10.1108/13552541011011686. Cerca con Google

[40] S. Kirihara, Creation of Functional Ceramics Structures by Using Stereolithographic 3D printing, Trans. JWRI. 43 (2014) 5–10. Cerca con Google

[41] T. Chartier, C. Chaput, F. Doreau, M. Loiseau, Stereolithography of structural complex ceramic parts, J. Mater. Sci. 37 (2002) 3141–3147. doi:10.1023/A:1016102210277. Cerca con Google

[42] T.-M.G. Chu, S.J. Hollister, J.W. Halloran, S.E. Feinberg, D.G. Orton, Manufacturing and characterization of 3-d hydroxyapatite bone tissue engineering scaffolds., Ann. N. Y. Acad. Sci. 961 (2002) 114–7. http://www.ncbi.nlm.nih.gov/pubmed/12081877. Vai! Cerca con Google

[43] W. Bian, D. Li, Q. Lian, X. Li, W. Zhang, K. Wang, Z. Jin, Fabrication of a bio‐inspired beta‐Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering, Rapid Prototyp. J. 18 (2012) 68–80. doi:10.1108/13552541211193511. Cerca con Google

[44] T.A. Pham, D.-P. Kim, T.-W. Lim, S.-H. Park, D.-Y. Yang, K.-S. Lee, Three-Dimensional SiCN Ceramic Microstructures via Nano-Stereolithography of Inorganic Polymer Photoresists, Adv. Funct. Mater. 16 (2006) 1235–1241. doi:10.1002/adfm.200600009. Cerca con Google

[45] T. Chartier, E. Delhomme, J.F. Baumard, G. Veltl, F. Ducloux, Injection moulding of hollow silicon nitride parts using fusible alloy cores, Ceram. Int. 27 (2001) 821–827. doi:http://dx.doi.org/10.1016/S0272-8842(01)00036-0. Vai! Cerca con Google

[46] G.H. Wroblewska, Structural Ceramics with Complex Shape - Forming Methods, in: 25th Annu. Conf. Compos. Adv. Ceram. Mater. Struct. A Ceram. Eng. Sci. Proceedings, Vol. 22, Issue 3, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2001: pp. 43–50. doi:10.1002/9780470294680.ch5. Cerca con Google

[47] S. Bose, Processing of Bioceramic implants via fused deposition modelling, Present. ’98 SFF (Austin, TX). (1998) 629–636. Cerca con Google

[48] R. Zhang, P.X. Ma, Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures., J. Biomed. Mater. Res. 52 (2000) 430–8. doi:10.1002/1097-4636(200011)52:2<430::AID-JBM25>3.0.CO;2-L. Cerca con Google

[49] P.X. Ma, Scaffolds for tissue fabrication, Mater. Today. 7 (2004) 30–40. doi:10.1016/S1369-7021(04)00233-0. Cerca con Google

[50] R. Detsch, F. Uhl, U. Deisinger, G. Ziegler, 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique, J. Mater. Sci. Mater. Med. 19 (2008) 1491–1496. doi:10.1007/s10856-007-3297-x. Cerca con Google

[51] A. Ortona, C. D’Angelo, S. Gianella, D. Gaia, Cellular ceramics produced by rapid prototyping and replication, Mater. Lett. 80 (2012) 95–98. doi:10.1016/j.matlet.2012.04.050. Cerca con Google

[52] A. Woesz, M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, P. Fratzl, Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting, Mater. Sci. Eng. C. 25 (2005) 181–186. doi:10.1016/j.msec.2005.01.014. Cerca con Google

[53] H. Yin, S. Kirihara, Y. Miyamoto, Fabrication of Ceramic Photonic Crystals with Diamond Structure for Microwave Applications, J. Am. Ceram. Soc. 87 (2004) 598–601. doi:10.1111/j.1551-2916.2004.00598.x. Cerca con Google

[54] D. Guo, L. Li, K. Cai, Z. Gui, C. Nan, Rapid Prototyping of Piezoelectric Ceramics via Selective Laser Sintering and Gelcasting, J. Am. Ceram. Soc. 87 (2004) 17–22. doi:10.1111/j.1151-2916.2004.tb19938.x. Cerca con Google

[55] V.J. Chen, L.A. Smith, P.X. Ma, Bone regeneration on computer-designed nano-fibrous scaffolds, Biomaterials. 27 (2006) 3973–3979. doi:10.1016/j.biomaterials.2006.02.043. Cerca con Google

Chapter 1: Cerca con Google

[1] P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics, J. Am. Ceram. Soc. 1837 (2010) no-no. doi:10.1111/j.1551-2916.2010.03876.x. Cerca con Google

[2] M. Narisawa, S. Watase, K. Matsukawa, T. Dohmaru, K. Okamura, White Si-O-C(-H) particles with photoluminescence synthesized by decarbonization reaction on polymer precursor in a hydrogen atmosphere, Bull. Chem. Soc. Jpn. 85 (2012) 724–726. doi:10.1246/bcsj.20110357. Cerca con Google

[3] K.J. Kim, J.-H. Eom, Y.-W. Kim, W.-S. Seo, Electrical conductivity of dense, bulk silicon-oxycarbide ceramics, J. Eur. Ceram. Soc. 35 (2015) 1355–1360. doi:http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.007. Vai! Cerca con Google

[4] L. Toma, H.J. Kleebe, M.M. Müller, E. Janssen, R. Riedel, T. Melz, H. Hanselka, Correlation between intrinsic microstructure and piezoresistivity in a SiOC polymer-derived ceramic, J. Am. Ceram. Soc. 95 (2012) 1056–1061. doi:10.1111/j.1551-2916.2011.04944.x. Cerca con Google

[5] G.D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan, C. Pantano, Chemical Durability of Silicon Oxycarbide Glasses, J. Am. Ceram. Soc. 85 (2002) 1529–1536. doi:10.1111/j.1151-2916.2002.tb00308.x. Cerca con Google

[6] R. Zhuo, P. Colombo, C. Pantano, E.A. Vogler, Silicon oxycarbide glasses for blood-contact applications, Acta Biomater. 1 (2005) 583–589. doi:http://dx.doi.org/10.1016/j.actbio.2005.05.005. Vai! Cerca con Google

[7] G. Perale, C. Giordano, F. Daniele, M. Masi, P. Colombo, L. Gottardo, S. Maccagnan, A novel process for the manufacture of ceramic microelectrodes for biomedical applications, Int. J. Appl. Ceram. Technol. 5 (2008) 37–43. doi:10.1111/j.1744-7402.2008.02186.x. Cerca con Google

[8] P. Greil, Near Net Shape Manufacturing of Polymer Derived Ceramics, Key Eng. Mater. 132–136 (1997) 1981–1984. doi:10.4028/www.scientific.net/KEM.132-136.1981. Vai! Cerca con Google

[9] P. Greil, M. Seibold, Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication, J. Mater. Sci. 27 (1992) 1053–1060. doi:10.1007/BF01197660. Cerca con Google

[10] E. Bernardo, P. Colombo, E. Pippel, J. Woltersdorf, Novel mullite synthesis based on alumina nanoparticles and a preceramic polymer, J. Am. Ceram. Soc. 89 (2006) 1577–1583. doi:10.1111/j.1551-2916.2006.00963.x. Cerca con Google

[11] P. Colombo, E. Bernardo, G. Parcianello, Multifunctional advanced ceramics from preceramic polymers and nano-sized active fillers, J. Eur. Ceram. Soc. 33 (2013) 453–469. doi:10.1016/j.jeurceramsoc.2012.10.006. Cerca con Google

[12] E. Bernardo, P. Colombo, I. Cacciotti, A. Bianco, R. Bedini, R. Pecci, K. Pardun, L. Treccani, K. Rezwan, Porous wollastonite-hydroxyapatite bioceramics from a preceramic polymer and micro- or nano-sized fillers, J. Eur. Ceram. Soc. 32 (2012) 399–408. doi:10.1016/j.jeurceramsoc.2011.08.010. Cerca con Google

[13] E. Bernardo, J.F. Carlotti, P.M. Dias, L. Fiocco, P. Colombo, L. Treccani, U. Hess, K. Rezwan, Novel akermanite-based bioceramics from preceramic polymers and oxide fillers, Ceram. Int. 40 (2014) 1029–1035. doi:10.1016/j.ceramint.2013.06.100. Cerca con Google

[14] H. Elsayed, A. Zocca, E. Bernardo, C.M. Gomes, J. Günster, P. Colombo, Development of bioactive silicate-based glass-ceramics from preceramic polymer and fillers, J. Eur. Ceram. Soc. 35 (2015) 731–739. doi:10.1016/j.jeurceramsoc.2014.09.020. Cerca con Google

[15] M. Mott, J.R.G. Evans, Solid freeforming of silicon carbide by ink-jet printing using a polymeric precursor, J. Am. Chem. Soc. 84 (2001) 307–313. doi:10.1111/j.1151-2916.2001.tb00655.x. Cerca con Google

[16] T. Friedel, N. Travitzky, F. Niebling, M. Scheffler, P. Greil, Fabrication of polymer derived ceramic parts by selective laser curing, J. Eur. Ceram. Soc. 25 (2005) 193–197. doi:10.1016/j.jeurceramsoc.2004.07.017. Cerca con Google

[17] A. Zocca, C.M. Gomes, A. Staude, E. Bernardo, J. Günster, P. Colombo, SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer, J. Mater. Res. 28 (2013) 2243–2252. doi:http://dx.doi.org/10.1557/jmr.2013.129. Vai! Cerca con Google

[18] A. Zocca, H. Elsayed, E. Bernardo, C.M. Gomes, M.A. Lopez-Heredia, C. Knabe, P. Colombo, J. Gunster, 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder., Biofabrication. 7 (2015) 25008. doi:10.1088/1758-5090/7/2/025008. Cerca con Google

[19] G. Pierin, C. Grotta, P. Colombo, C. Mattevi, Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer, J. Eur. Ceram. Soc. 36 (2015) 1589–1594. doi:10.1016/j.jeurceramsoc.2016.01.047. Cerca con Google

[20] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Additive manufacturing of polymer-derived ceramics, Science (80-. ). 351 (2016) 58–62. doi:10.1126/science.aad2688. Cerca con Google

[21] R.R. Harsche, Synthesis and Processing of Amorphous Si(Al)OC Bulk Ceramics : High Temperature Properties and Applications, (2004). Cerca con Google

[22] E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa, G. Brusatin, P. Colombo, Stereolithography of SiOC Ceramic Microcomponents, Adv. Mater. 28 (2016) 370–376. doi:10.1002/adma.201503470. Cerca con Google

[23] M. Schulz, Polymer derived ceramics in MEMS/NEMS – a review on production processes and application, Adv. Appl. Ceram. 108 (2009) 454–460. doi:10.1179/174367609X422171. Cerca con Google

[24] L.A. Liew, W. Zhang, L. An, S. Shah, R. Luo, Y. Liu, T. Cross, M.L. Dunn, V. Bright, J.W. Daily, R. Raj, K. Anseth, Ceramic MEMS new materials, innovative processing and future applications, Am. Ceram. Soc. Bull. 80 (2001) 25–30. Cerca con Google

[25] L.A. Liew, W. Zhang, V.M. Bright, L. An, M.L. Dunn, R. Raj, Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sensors Actuators, A Phys. 89 (2001) 64–70. doi:10.1016/S0924-4247(00)00545-8. Cerca con Google

[26] J. Grossenbacher, M.R. Gullo, V. Bakumov, G. Blugan, J. Kuebler, J. Brugger, On the micrometre precise mould filling of liquid polymer derived ceramic precursor for 300-mm-thick high aspect ratio ceramic MEMS, Ceram. Int. 41 (2014) 623–629. doi:10.1016/j.ceramint.2014.08.112. Cerca con Google

[27] S.K. Reddy, N.B. Cramer, T. Cross, R. Raj, C.N. Bowman, Polymer-Derived Ceramic Materials from Thiol-ene Photopolymerizations, Chem. Mater. 15 (2003) 4257–4261. doi:10.1021/cm034291x. Cerca con Google

[28] L.A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer, Sensors Actuators, A Phys. 95 (2002) 120–134. doi:10.1016/S0924-4247(01)00723-3. Cerca con Google

[29] T.A. Pham, D.-P. Kim, T.-W. Lim, S.-H. Park, D.-Y. Yang, K.-S. Lee, Three-Dimensional SiCN Ceramic Microstructures via Nano-Stereolithography of Inorganic Polymer Photoresists, Adv. Funct. Mater. 16 (2006) 1235–1241. doi:10.1002/adfm.200600009. Cerca con Google

[30] X. Liu, Y.L. Li, F. Hou, Fabrication of SiOC ceramic microparts and patterned structures from polysiloxanes via liquid cast and pyrolysis, J. Am. Ceram. Soc. 92 (2009) 49–53. doi:10.1111/j.1551-2916.2008.02849.x. Cerca con Google

[31] Y. Xu, M. Guron, X. Zhu, L.G. Sneddon, S. Yang, Template synthesis of 3D high-temperature silicon-oxycarbide and silicon-carbide ceramic photonic crystals from interference lithographically patterned organosilicates, Chem. Mater. 22 (2010) 5957–5963. doi:10.1021/cm102204e. Cerca con Google

[32] S. Martínez-Crespiera, E. Ionescu, M. Schlosser, K. Flittner, G. Mistura, R. Riedel, H.F. Schlaak, Fabrication of silicon oxycarbide-based microcomponents via photolithographic and soft lithography approaches, Sensors Actuators, A Phys. 169 (2011) 242–249. doi:10.1016/j.sna.2011.04.041. Cerca con Google

[33] S. Martínez-Crespiera, E. Ionescu, H.J. Kleebe, R. Riedel, Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane, J. Eur. Ceram. Soc. 31 (2011) 913–919. doi:10.1016/j.jeurceramsoc.2010.11.019. Cerca con Google

[34] K.A. Davis, J.A. Burdick, K.S. Anseth, Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications, Biomaterials. 24 (2003) 2485–2495. doi:10.1016/S0142-9612(02)00582-3. Cerca con Google

[35] P. Innocenzi, G. Brusatin, A comparative FTIR study of thermal and photo-polymerization processes in hybrid sol-gel films, J. Non. Cryst. Solids. 333 (2004) 137–142. doi:10.1016/j.jnoncrysol.2003.09.043. Cerca con Google

[36] S. Gardin, R. Signorini, A. Pistore, G. Della Giustina, G. Brusatin, M. Guglielmi, R. Bozio, Photocatalytic Performance of Hybrid SiO 2 −TiO 2 Films, J. Phys. Chem. C. 114 (2010) 7646–7652. doi:10.1021/jp911495h. Cerca con Google

[37] E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa, G. Brusatin, P. Colombo, Supporting Information for Stereolithography of SiOC Ceramic Microcomponents, Adv. Mater. 28 (2016) 370–376. doi:10.1002/adma.201503470. Cerca con Google

[38] A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing Routes to Macroporous Ceramics: A Review, J. Am. Ceram. Soc. 89 (2006) 1771–1789. doi:10.1111/j.1551-2916.2006.01044.x. Cerca con Google

[39] A. Zocca, G. Franchin, H. Elsayed, E. Gioffredi, E. Bernardo, P. Colombo, Direct Ink Writing of a Preceramic Polymer and Fillers to Produce Hardystonite (Ca 2 ZnSi 2 O 7 ) Bioceramic Scaffolds, J. Am. Ceram. Soc. 99 (2016) 1960–1967. doi:10.1111/jace.14213. Cerca con Google

[40] Y. Ramaswamy, C. Wu, H. Zhou, H. Zreiqat, Biological response of human bone cells to zinc-modified Ca–Si-based ceramics, Acta Biomater. 4 (2008) 1487–1497. doi:10.1016/j.actbio.2008.04.014. Cerca con Google

[41] C. Wu, J. Chang, W. Zhai, A novel hardystonite bioceramic: Preparation and characteristics, Ceram. Int. 31 (2005) 27–31. doi:10.1016/j.ceramint.2004.02.008. Cerca con Google

[42] E.R. Segnit, The System CaO-ZnO-SiO2, J. Am. Ceram. Soc. 37 (1954) 273–277. doi:10.1111/j.1151-2916.1954.tb14036.x. Cerca con Google

[43] S.R. Raghavan, S.A. Khan, Shear‐induced microstructural changes in flocculated suspensions of fumed silica, J. Rheol. 39 (1995) 1311–1325. doi:10.1122/1.550638. Cerca con Google

[44] J.-N. Paquien, J. Galy, J.-F. Gérard, A. Pouchelon, Rheological studies of fumed silica–polydimethylsiloxane suspensions, Colloids Surfaces A Physicochem. Eng. Asp. 260 (2005) 165–172. doi:10.1016/j.colsurfa.2005.03.003. Cerca con Google

[45] M. Zhang, K. Lin, J. Chang, Preparation and characterization of Sr–hardystonite (Sr2ZnSi2O7) for bone repair applications, Mater. Sci. Eng. C. 32 (2012) 184–188. doi:10.1016/j.msec.2011.10.017. Cerca con Google

[46] J.E. Smay, J. Cesarano, J.A. Lewis, Colloidal Inks for Directed Assembly of 3-D Periodic Structures, Langumuir. 18 (2002) 5429–5437. doi:10.102/la0257135. Cerca con Google

[47] T. Schlordt, F. Keppner, N. Travitzky, P. Greil, Robocasting of Alumina Lattice Truss Structures, J. Ceram. Sci. Technol. 3 (2012) 1–7. doi:10.4416/JCST2012-00003. Cerca con Google

[48] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nat. Methods. 9 (2012) 676–682. doi:10.1038/nmeth.2019. Cerca con Google

[49] J.G. Dellinger, J. Cesarano, R.D. Jamison, Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering, J. Biomed. Mater. Res. Part A. 82A (2007) 383–394. doi:10.1002/jbm.a.31072. Cerca con Google

[50] W.H. Herschel, R. Bulkley, Measurement of consistency as applied to rubber-benzene solutions, in: Am. Soc. Test Proc, 1926: pp. 621–633. Cerca con Google

[51] V. Tirtaatmadja, K.C. Tam, R.D. Jenkins, Superposition of Oscillations on Steady Shear Flow as a Technique for Investigating the Structure of Associative Polymers, Macromolecules. 30 (1997) 1426–1433. doi:10.1021/ma960098v. Cerca con Google

[52] J.A. Lewis, Direct ink writing of 3D functional materials, Adv. Funct. Mater. 16 (2006) 2193–2204. Cerca con Google

[53] R.H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Silsesquioxanes, Chem. Rev. 95 (1995) 1409–1430. doi:10.1021/cr00037a012. Cerca con Google

[54] F. Vivier, D. Santamaria, D. Pellerej, P. Buonfico, M. Sangermano, A Kinetic Analysis of a Thermal Curing Reaction of a Silicon Resin in Solid State, in: J.S. Carpenter, C. Bai, J.-Y. Hwang, S. Ikhmayies, B. Li, S.N. Monteiro, Z. Peng, M. Zhang (Eds.), Charact. Miner. Met. Mater. 2014, John Wiley & Sons, Inc., 2014: pp. 63–72. Cerca con Google

[55] D. Yang, W. Zhang, B. Jiang, Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame, Ceram. Int. 39 (2013) 1575–1581. doi:10.1016/j.ceramint.2012.07.109. Cerca con Google

[56] A. Bignon, J. Chouteau, J. Chevalier, G. Fantozzi, J.-P. Carret, P. Chavassieux, G. Boivin, M. Melin, D. Hartmann, Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response, J. Mater. Sci. Mater. Med. 14 (2003) 1089–1097. doi:10.1023/B:JMSM.0000004006.90399.b4. Cerca con Google

[57] O. Chan, M.J. Coathup, A. Nesbitt, C.-Y. Ho, K.A. Hing, T. Buckland, C. Campion, G.W. Blunn, The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials, Acta Biomater. 8 (2012) 2788–2794. doi:10.1016/j.actbio.2012.03.038. Cerca con Google

[58] H.J.T. Ellingham, Reducibility of Oxides and Sulfides in Metallurgical Processes, J. Soc. Chem. Ind. 63 (1944) 125–133. Cerca con Google

[59] A. Berman, M. Epstein, The kinetic model for carboreduction of zinc oxide, Le J. Phys. IV. 9 (1999) Pr3–319. Cerca con Google

[60] G. Wang, Z. Lu, D. Dwarte, H. Zreiqat, Porous scaffolds with tailored reactivity modulate in-vitro osteoblast responses, Mater. Sci. Eng. C. 32 (2012) 1818–1826. doi:10.1016/j.msec.2012.04.068. Cerca con Google

[61] S.I. Roohani-Esfahani, C.R. Dunstan, J.J. Li, Z. Lu, B. Davies, S. Pearce, J. Field, R. Williams, H. Zreiqat, Unique microstructural design of ceramic scaffolds for bone regeneration under load, Acta Biomater. 9 (2013) 7014–7024. doi:10.1016/j.actbio.2013.02.039. Cerca con Google

[62] F. Raether, Ceramic Matrix Composites – an Alternative for Challenging Construction Tasks, Ceram. Appications. 1 (2013) 45–49. Cerca con Google

[63] A.G. Evans, D.B. Marshall, Overview no. 85 The mechanical behavior of ceramic matrix composites, Acta Metall. 37 (1989) 2567–2583. doi:10.1016/0001-6160(89)90291-5. Cerca con Google

[64] K. Tushtev, J. Horvath, D. Koch, G. Grathwohl, Deformation and failure modeling of fiber reinforced ceramics with porous matrix, Adv. Eng. Mater. 6 (2004) 664–669. doi:10.1002/adem.200400094. Cerca con Google

[65] B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites, Adv. Mater. 26 (2014) 5930–5935. doi:10.1002/adma.201401804. Cerca con Google

[66] P. Calvert, T.L. Lin, H. Martin, Extrusion freeform fabrication of chopped-fibre reinforced composites, High Perform. Polym. 9 (1997) 449–456. doi:10.1088/0954-0083/9/4/008. Cerca con Google

[67] S. Christ, M. Schnabel, E. Vorndran, J. Groll, U. Gbureck, Fiber reinforcement during 3D printing, Mater. Lett. 139 (2015) 165–168. doi:10.1016/j.matlet.2014.10.065. Cerca con Google

[68] S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, low-cost conductive composite material for 3D printing of electronic sensors., PLoS One. 7 (2012) e49365. doi:10.1371/journal.pone.0049365. Cerca con Google

[69] D. Kokkinis, M. Schaffner, A.R. Studart, Multimaterial magnetically assisted 3D printing of composite materials, Nat. Commun. 6 (2015) 8643. doi:10.1038/ncomms9643. Cerca con Google

[70] R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Composites Reinforced in Three Dimensions by Using Low Magnetic Fields, Science (80-. ). 335 (2012) 199–204. Cerca con Google

[71] H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, S. Ozcan, Highly oriented carbon fiber-polymer composites via additive manufacturing, Compos. Sci. Technol. 105 (2014) 144–150. doi:10.1016/j.compscitech.2014.10.009. Cerca con Google

[72] P. Colombo, M. Modesti, Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer, J. Am. Ceram. Soc. 82 (1999) 573–578. Cerca con Google

[73] J. Peng, T.L. Lin, P. Calvert, Orientation effects in freeformed short-fiber composites, Compos. Part A Appl. Sci. Manuf. 30 (1999) 133–138. doi:10.1016/S1359-835X(98)00110-9. Cerca con Google

[74] L.J. Gibson, M.F. Ashby, Cellular solids. Structure and properties, (1997) 502. doi:10.1017/CBO9781139878326. Cerca con Google

Chapter 2: Cerca con Google

[1] J. Davidovits, Geopolymer - Chemistry and applications, 3rd ed., Institut Geopolymere, 2011. Cerca con Google

[2] J.L. Provis, J.S.J. van Deventer, Geopolymers. Structures, Processing, Properties and Industrial Applications, 2009. doi:10.1533/9781845696382. Cerca con Google

[3] J. Davidovits, Geopolymers based on natural and synthetic metakaolin - A critical review, 2 (2016). Cerca con Google

[4] M.S. Cilla, M.R. Morelli, P. Colombo, Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route, J. Eur. Ceram. Soc. 34 (2014) 3133–3137. doi:10.1016/j.jeurceramsoc.2014.04.001. Cerca con Google

[5] C. Bai, G. Franchin, H. Elsayed, A. Conte, P. Colombo, High strength metakaolin-based geopolymer foams with variable macroporous structure, J. Eur. Ceram. Soc. 36 (2016) 4243–4249. doi:10.1016/j.jeurceramsoc.2016.06.045. Cerca con Google

[6] R.M. Novais, L.H. Buruberri, M.P. Seabra, J.A. Labrincha, Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters, J. Hazard. Mater. 318 (2016) 631–640. doi:10.1016/j.jhazmat.2016.07.059. Cerca con Google

[7] M. Xia, J. Sanjayan, Method of formulating geopolymer for 3D printing for construction applications, Mater. Des. 110 (2016) 382–390. doi:10.1016/j.matdes.2016.07.136. Cerca con Google

[8] Geobeton 3D, (n.d.). http://geobeton.ru/en/product/geopolimer/?v=cd32106bcb6d (accessed October 14, 2016). Vai! Cerca con Google

[9] R. Ciapponi, V. Fausti, M. Tonizzo, Losing the Edge, (n.d.). www.piulab.it/single-post/2016/06/14/Losing-The-Edge (accessed October 14, 2016). Vai! Cerca con Google

[10] G. Franchin, P. Colombo, Porous Geopolymer Components through Inverse Replica of 3D Printed Sacrificial Templates, J. Ceram. Sci. Technol. 6 (2015) 105–112. doi:10.4416/JCST2014-00057. Cerca con Google

[11] V.J. Chen, L.A. Smith, P.X. Ma, Bone regeneration on computer-designed nano-fibrous scaffolds, Biomaterials. 27 (2006) 3973–3979. doi:10.1016/j.biomaterials.2006.02.043. Cerca con Google

[12] P. Coszach, J.-C. Bogaert, J. Willocq, Chemical recycling og PLA by hydrolysis, US 8431683 B2, 2013. Cerca con Google

[13] K. Okada, A. Imase, T. Isobe, A. Nakajima, Capillary rise properties of porous geopolymers prepared by an extrusion method using polylactic acid (PLA) fibers as the pore formers, J. Eur. Ceram. Soc. 31 (2011) 461–467. doi:10.1016/j.jeurceramsoc.2010.10.035. Cerca con Google

[14] M.C. Bignozzi, S. Manzi, I. Lancellotti, E. Kamseu, L. Barbieri, C. Leonelli, Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag, Appl. Clay Sci. 73 (2013) 78–85. doi:10.1016/j.clay.2012.09.015. Cerca con Google

[15] J.L. Bell, P.E. Driemeyer, W.M. Kriven, Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer, J. Am. Ceram. Soc. 92 (2009) 607–615. doi:10.1111/j.1551-2916.2008.02922.x. Cerca con Google

[16] P. Duxson, G.C. Lukey, J.S.J. Van Deventer, Physical evolution of Na-geopolymer derived from metakaolin up to 1000 ??c, J. Mater. Sci. 42 (2007) 3044–3054. doi:10.1007/s10853-006-0535-4. Cerca con Google

[17] L. Li, S. Wang, Z. Zhu, Geopolymeric adsorbents from fly ash for dye removal from aqueous solution, J. Colloid Interface Sci. 300 (2006) 52–59. doi:10.1016/j.jcis.2006.03.062. Cerca con Google

[18] T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, S.F. Yang, The heavy metal adsorption characteristics on metakaolin-based geopolymer, Appl. Clay Sci. 56 (2012) 90–96. doi:10.1016/j.clay.2011.11.027. Cerca con Google

[19] D. Medpelli, J.M. Seo, D.K. Seo, Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating, J. Am. Ceram. Soc. 97 (2014) 70–73. doi:10.1111/jace.12724. Cerca con Google

[20] M. Strozi Cilla, M. Raymundo Morelli, P. Colombo, Effect of process parameters on the physical properties of porous geopolymers obtained by gelcasting, Ceram. Int. 40 (2014) 13585–13590. doi:10.1016/j.ceramint.2014.05.074. Cerca con Google

[21] J. Choi, O.-C. Kwon, W. Jo, H.J. Lee, M.-W. Moon, 4D Printing Technology: A Review, 3D Print. Addit. Manuf. 2 (2015) 159–167. doi:10.1089/3dp.2015.0039. Cerca con Google

[22] S. Tibbits, 4D Printing, Archit. Des. 84 (2014) 116–121. doi:10.1002/ad.1710. Cerca con Google

[23] A. Sydney Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing, Nat. Mater. 15 (2016) 413–8. doi:10.1038/nmat4544. Cerca con Google

[24] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nat. Methods. 9 (2012) 676–682. doi:10.1038/nmeth.2019. Cerca con Google

[25] M. Romagnoli, C. Leonelli, E. Kamse, M. Lassinantti Gualtieri, Rheology of geopolymer by DOE approach, Constr. Build. Mater. 36 (2012) 251–258. doi:10.1016/j.conbuildmat.2012.04.122. Cerca con Google

[26] A. Palomo, P.F.G. Ban ll, A. Fernandéz-Jiménez, D.S. Swift, Properties of alkali-activated y ashes determined from rheological measurements, Adv. Cem. Res. 17 (2005) 143–151. doi:10.1680/adcr.2005.17.4.143. Cerca con Google

[27] J.E. Smay, J. Cesarano, J.A. Lewis, Colloidal Inks for Directed Assembly of 3-D Periodic Structures, Langumuir. 18 (2002) 5429–5437. doi:10.102/la0257135. Cerca con Google

[28] S. Goodyer, Measuring Polymers using a Rotational Rheometer in Oscillatory Mode Product Manager for Rheology, in: Telford Polym. Assoc., 2013: pp. 1–35. Cerca con Google

[29] T. Schlordt, F. Keppner, N. Travitzky, P. Greil, Robocasting of Alumina Lattice Truss Structures, J. Ceram. Sci. Technol. 3 (2012) 1–7. doi:10.4416/JCST2012-00003. Cerca con Google

[30] E. Ryshkewitch, Compression Strength of Porous Sintered Alumina and Zirconia, J. Am. Ceram. Soc. 36 (1953) 65–68. doi:10.1111/j.1151-2916.1953.tb12837.x. Cerca con Google

Chapter 3: Cerca con Google

[1] J. Klein, M. Stern, G. Franchin, M. Kayser, C. Inamura, S. Dave, J.C.J.C. Weaver, P. Houk, P. Colombo, M. Yang, N. Oxman, G. Franchin, M. Kayser, C. Inamura, S. Dave, J.C.J.C. Weaver, P. Houk, P. Colombo, M. Yang, N. Oxman, Additive Manufacturing of Optically Transparent Glass, 3D Print. Addit. Manuf. 2 (2015) 92–105. doi:10.1089/3dp.2015.0021. Cerca con Google

[2] Bullseye Glass Co., The Vitrigraph Kiln - creating a new vocabulary in fused glass, (2014) 1–4. Cerca con Google

[3] E. Roeder, Extrusion of glass, J. Non. Cryst. Solids. 5 (1971) 377–388. doi:10.1016/0022-3093(71)90039-1. Cerca con Google

[4] G. Marchelli, R. Prabhakar, D. Storti, M. Ganter, The guide to glass 3D printing: developments, methods, diagnostics and results, Rapid Prototyp. J. 17 (2011) 187–194. doi:10.1108/13552541111124761. Cerca con Google

[5] S. Klein, S. Simske, C. Parraman, P. Walters, D. Huson, S. Hoskins, 3D Printing of Transparent Glass, HP Tech Rep. (2012). Cerca con Google

[6] L. The Ex One Company, The New Standard for Manufacturing from ExOne e Manufacturing in Sand, (n.d.). Cerca con Google

[7] R. Clasen, Method for the manufacture of glass bodies by extrusion, US 4682995 A, 1987. Cerca con Google

[8] R. Clasen, B. Schmidl, Method of manufacturing glass bodies by means of extrusion, US 4816051 A, 1989. Cerca con Google

[9] S. Eqtesadi, A. Motealleh, P. Miranda, A. Pajares, A. Lemos, J.M.F. Ferreira, Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering, J. Eur. Ceram. Soc. 34 (2014) 107–118. doi:10.1016/j.jeurceramsoc.2013.08.003. Cerca con Google

[10] J. Luo, L. Gilbert, C. Qu, J. Wilson, D. Bristow, R. Landers, Wire-Fed Additive Manufacturing of Transparent Glass Parts, in: Proc. ASME 2015 Int. Manuf. Sci. Eng. Conf. MSEC2015, Charlotte, North Carolina, USA, 2015: pp. 1–5. Cerca con Google

[11] J. Luo, H. Pan, E.C. Kinzel, Additive Manufacturing of Glass, J. Manuf. Sci. Eng. 136 (2014) 61024. doi:10.1115/1.4028531. Cerca con Google

[12] J.-P.H.R. Lereboullet, M. Prassas, Additive Manufacturing processes for making transparent 3D parts from inorganic materials, WO 2016/137956 A1, 2016. Cerca con Google

[13] H. Vogel, Das Temperaturabhängigkeitsgesestz der Viskosität von Flüssigkeiten, Phys. Z. 22 (1921) 645–646. Cerca con Google

[14] G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8 (1925) 339–355. Cerca con Google

[15] G. Tammann, W. Hesse, Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem. 156 (1926) 245–257. Cerca con Google

[16] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nat. Methods. 9 (2012) 676–682. doi:10.1038/nmeth.2019. Cerca con Google

[17] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Wiley, 1958. Cerca con Google

[18] P.-T. Brun, C. Inamura, D. Lizardo, G. Franchin, M. Stern, P. Houk, N. Oxman, The molten glass sewing machine, Proc. R. Soc. A. (submitted). Cerca con Google

[19] P.-T. Brun, B. Audoly, N.M. Ribe, T.S. Eaves, J.R. Lister, Liquid Ropes : A Geometrical Model for Thin Viscous Jet Instabilities, Phys. Rev. Lett. 174501 (2015) 1–5. doi:10.1103/PhysRevLett.114.174501. Cerca con Google

[20] C. Inamura, Towards a New Transparency: High Fidelity Additive Manufacturing of Transparent Glass Structures across Scales, Massachusetts Institute of Technology, 2017. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record