Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Antonello, Andrea (2017) Design of a robotic arm for laboratory simulations of spacecraft proximity navigation and docking. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (PhD thesis Andrea Antonello) - Accepted Version
32Mb

Abstract (english)

The increasing number of human objects in space has laid the foundation of a novel class of orbital missions for servicing and maintenance. The main goal of this thesis is the development, building and testing of a robotic manipulator for the simulation of orbital maneuvers, with particular attention to Active Debris Removal (ADR) and On-Orbit Servicing (OOS).
There are currently very few ways to reproduce microgravity in a non-orbital environment: among the main techniques, it is worth mentioning parabolic flights, pool simulations and robotic facilities. Parabolic flights allow to reproduce orbital conditions quite faithfully, but simulation conditions are very constraining. Pool simulations, on the other hand, have fewer constrictions in terms of cost, but the drag induced by the water negatively affects the simulated microgravity. Robotic facilities, finally, permit to reproduce indirectly (that is, with an appropriate control system) the physics of microgravity. State of the art on 3D robotic simulations is nowadays limited to industrial robots facilities, that bear conspicuous costs, both in terms of hardware and maintenance.
This project proposes a viable alternative to these costly structures. Through dedicated algorithms, the system is able to compute in real time the consequences of these contacts in terms of trajectory modifications, which are then fed to the hardware in the loop (HIL) control system. Moreover, the governing software can be commanded to perform active maneuvers and relocations: as a consequence, the manipulator can be used as the testing bench not only for orbital servicing operations but also for attitude control systems, providing a faithful, real-time simulation of the zero-gravity behavior.
Furthermore, with the aid of dynamic scaling laws, the potentialities of the facility can be exponentially increased: the simulation environment is not longer bounded to be as big as the robot workspace, but could be several orders of magnitude bigger, allowing for the reproduction of otherwise preposterous scenarios.
The thesis describes the detailed mechanical design of the facility, corroborated by structural modeling, static and vibrational finite element verification. A strategy for the simulation of impedance-matched contacts is presented and an analytical control analysis defines the set of allowable inertial properties of the simulated entities. Focusing on the simulation scenarios, an innovative information theoretic approach for simultaneous localization and docking has been designed and applied for the first time to a 3D rendezvous scenario.
Finally, in order to instrument the facility’s end effector with a consistent sensor suite, the design and manufacturing of an innovative Sun sensor is proposed.

Abstract (italian)

Il crescente numero di oggetti umani nello spazio ha posto le basi per una nuova classe di missioni orbitali per l'assistenza e la manutenzione. L'obiettivo principale di questa tesi è lo sviluppo, la costruzione e la verifica sperimentale di un manipolatore robotico per la simulazione di manovre orbitali, con particolare attenzione alla rimozione di detriti (ADR) e la manutenzione in orbita (OOS).
Allo stato dell'arte, sono poche le modalità utilizzate per la riproduzione della microgravità in un ambiente non-orbitale: fra le tecniche principali, vale la pena ricordare voli parabolici, simulazioni in piscina e simulatori robotici. I voli parabolici consentono di riprodurre le condizioni orbitali abbastanza fedelmente, ma le condizioni di simulazione sono pesantemente vincolanti. Le simulazioni in piscina, d'altra parte, hanno meno costrizioni in termini di costo, ma la resistenza indotta dall'acqua influisce negativamente sulla qualità della microgravità simulata. Gli impianti robotizzati, infine, permettono di riprodurre indirettamente (cioè attraverso un adeguato sistema di controllo) la fisica della microgravità. Lo stato dell'arte sulle simulazioni robotiche 3D è oggi limitato a robot industriali, caratterizzati da notevoli costi sia in termini di hardware che di manutenzione.
Questo progetto propone un'alternativa a queste strutture: attraverso algoritmi dedicati, il sistema è in grado di calcolare in tempo reale le conseguenze dei contatti tramite le opportune modifiche alla traiettoria, che vengono poi fornite al sistema di controllo "hardware in the loop" (HIL). Inoltre, il software può essere comandato per eseguire manovre attive e di "relocation": di conseguenza, il manipolatore può essere utilizzato come test-bed non solo per operazioni di manutenzione orbitale, ma anche per sistemi di controllo di assetto, fornendo una fedele simulazione in tempo reale del rispettivo comportamento in assenza di gravità.
La tesi descrive la progettazione meccanica dettagliata della struttura, corroborata dalla rispettiva modellazione strutturale, e dalla verifica agli elementi finiti delle prestazioni statiche e vibrazionali. Viene successivamente presentata una strategia per la simulazione di contatti tramite il matching tra le impedenze e un controllore dedicato definisce l'insieme delle proprietà inerziali simulabili tramite la struttura.
Concentrandosi sugli scenari di simulazione, viene poi presentato un innovativo approccio SLAM (simultaneous localization and mapping) che utilizza metodi stocastici per il design di traiettorie di ispezione e riconoscimento markers applicato ad un task di rendez-vous 3D.
Infine, con l'obiettivo di fornire una sensor-suite capace di stimare in real-time l'assetto dell'end-effector, viene descritto un innovativo sensore di Sole miniaturizzato. Ne vengono discusse la progettazione e la fabbricazione, corroborate dalle necessarie verifiche sperimentali.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Francesconi, Alessandro
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE TECNOLOGIE E MISURE SPAZIALI
Data di deposito della tesi:06 February 2017
Anno di Pubblicazione:30 January 2017
Key Words:satellite spacecfract manipulator "cross-entropy" slam "sun sensor" manipulator robotic rendezvous docking vibration FEM
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/05 Impianti e sistemi aerospaziali
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:10374
Depositato il:06 Nov 2017 14:33
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] “The robot, http://en.wikipedia.org/wiki/Robot.” Vai! Cerca con Google

[2] M. Spong, Robot dynamics and control. Wiley, 1989. Cerca con Google

[3] “Space robotics technical committee http://ewh.ieee.org/cmte/ras/ tc/spacerobotics/.” Vai! Cerca con Google

[4] A. Long, M. Richards, and D. Hastings, “On-orbit servicing: A new value proposition for satellite design and operation,” Journal of Spacecraft and Rockets, vol. 44, no. 4, July–August 2007. Cerca con Google

[5] B. Sullivan and D. Akin, “A survey of serviceable spacecraft failures,” AIAA Paper, 2001. Cerca con Google

[6] J. Saleh, R. Hassan, J. Torres-Padilla, D. Hastings, and D. Newman, “To reduce or extend a spacecraft design lifetime,” Journal of Spacecraft Cerca con Google

and Rockets, vol. 43, no. 1, pp. 207–217, 2006. Cerca con Google

[7] “Space infrastructure servicing http://en.wikipedia.org/wiki/Spac Vai! Cerca con Google

e_Infrastructure_Servicing.” Cerca con Google

[8] P. B. Selding, “Intelsat signs up for mda’s satellite refueling service http://www.spacenews.com/article/intelsat-signs-satellite-refueling-service.” Vai! Cerca con Google

[9] P. B. Selding, “Mda, intelsat scrap in-orbit servicing deal.” Cerca con Google

[10] A. Antonello, “Design of a robotic arm for laboratory simulations of spacecraft proximity navigation and docking,” Master’s thesis, University of Padova, 2013. Cerca con Google

[11] A. Antonello, F. Sansone, A. Francesconi, R. Carli, and A. Carron, “A novel approach to the simulation of on-orbit rendezvous and docking maneuvers in a laboratory environment through the aid of an anthropomorphic robotic arm,” in Metrology for Aerospace (MetroAeroSpace), 2014 IEEE, pp. 347–352, IEEE, 2014. Cerca con Google

[12] “European proximity operations simulator (epos) - dlr http://www. weblab.dlr.de/rbrt/OOS/EPOS/EPOS.html.” Vai! Cerca con Google

[13] L. Sciavicco and B. Siciliano, Robotics: Modelling, Planning and Control. Springer Verlag, 2010. Cerca con Google

[14] J. Craig, Intorduction to Robotics: Mechanics and Control. Prentice Hall, 2005. Cerca con Google

[15] K. R. Symon, Mechanics. Addison-Wesley, 1971. Cerca con Google

[16] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators. Cerca con Google

Springer Verlag, 2010. Cerca con Google

[17] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line computational scheme for mechanical manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 102, no. 2, pp. 69–76, 1980. Cerca con Google

[18] W. Yeadon and A. Yeadon, Handbook of small electric motors. McGraw Hill Professional, 2001. Cerca con Google

[19] R. W. Clough and J. Penzien, “Dynamics of structures,” tech. rep., 1975. Cerca con Google

[20] T. H. G. Megson, An introduction to Aircraft Structural Analysis. Elsevier, 2010. Cerca con Google

[21] S. Ramachandran, T. Nagarajan, and N. S. Prasad, “A finite element approach to the design and dynamic analysis of platform type robot Cerca con Google

BIBLIOGRAPHY 270 manipulators,” Finite elements in Analysis and Design, vol. 10, no. 4, Cerca con Google

pp. 335–350, 1992. Cerca con Google

[22] G. Palmieri, M. Martarelli, M. Palpacelli, and L. Carbonari, “Configuration-dependent modal analysis of a cartesian parallel kinematics manipulator: numerical modeling and experimental valida- Cerca con Google

tion,” Meccanica, vol. 49, no. 4, pp. 961–972, 2014. Cerca con Google

[23] M. Barbetta, A. Boesso, F. Branz, A. Carron, L. Olivieri, J. Prendin, G. Rodeghiero, F. Sansone, L. Savioli, F. Spinello, et al., “Arcade-r2 experiment on board bexus 17 stratospheric balloon,” CEAS Space Journal, vol. 7, no. 3, pp. 347–358, 2015. Cerca con Google

[24] L. Olivieri and A. Francesconi, “Design and test of a semiandrogynous docking mechanism for small satellites,” Acta Astronautica, vol. 122, pp. 219–230, 2016. Cerca con Google

[25] F. Sansone, F. Branz, A. Francesconi, M. Barbetta, and M. Pelizzo, “2d close-range navigation sensor for miniature cooperative spacecraft,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 1, pp. 160–169, 2014. Cerca con Google

[26] F. Sansone, L. Olivieri, and A. Francesconi, “New optical communication capabilities using nanosatellites,” in Proc. Fifth International Conference on Advances in Satellite and Space Communications, 2013. Cerca con Google

[27] F. Sansone, A. Francesconi, L. Olivieri, and F. Branz, “Low-cost relative navigation sensors for miniature spacecraft and drones,” in Metrology for Aerospace (MetroAeroSpace), 2015 IEEE, pp. 389–394, IEEE, 2015. Cerca con Google

[28] “Sun sensor for small satellites with analog interface, http://www.so lar-mems.com/smt_pdf/commercial_brochure_SSOC-A.pdf.” Vai! Cerca con Google

[29] M. A. Post, J. Li, and R. Lee, “A low-cost photodiode sun sensor for cubesat and planetary microrover,” International Journal of Aerospace Engineering, vol. 2013, 2013. Cerca con Google

[30] A. Ali and F. Tanveer, “Low-cost design and development of 2-axis digital sun sensor,” Journal of Space Technology, vol. 1, no. 1, 2011. Cerca con Google

[31] J. Hales and M. Pedersen, “Two-axis moems sun sensor for pico satellites,” in Small Satellite Conference, 2002. Cerca con Google

[32] M. Buonocore, M. Grassi, and G. Rufino, “Aps-based miniature sun sensor for earth observation nanosatellites,” Acta Astronautica, vol. 56, no. 1, pp. 139–145, 2005. Cerca con Google

[33] G. Rufino and M. Grassi, “Digital sun sensor multi-spot operation,” Sensors, vol. 12, no. 12, pp. 16451–16465, 2012. Cerca con Google

[34] G. Rufino and M. Grassi, “Multi-aperture cmos sun sensor for microsatellite attitude determination,” Sensors, vol. 9, no. 6, pp. 4503– 4524, 2009. Cerca con Google

[35] A. Antonello, L. Olivieri, and A. Francesconi, “Low cost, high resolution, self powered, miniaturized sun sensor for space applications,” in 4S 2016 Proceedings, 2016. Cerca con Google

[36] P. Chiu, D. Law, R. Woo, S. Singer, D. Bhusari, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. King, et al., “Direct semiconductor bonded 5j cell for space and terrestrial applications,” IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 493–497, 2014. Cerca con Google

[37] R. C. Dorf and B. R. H., Modern Control Systems. Prentice Hall, 12th ed., 2012. Cerca con Google

[38] T. Bajd and M. Mihelj, Robotics. Springer Verlag, 2010. Cerca con Google

[39] H. D. Curtis, Orbital Mechanics for Engineering Students. Elsevier, 2010. Cerca con Google

[40] G. Gilardi and I. Sharf, “Literature survey of contact dynamics modelling,” Mechanism and machine theory, vol. 37, no. 10, pp. 1213–1239, 2002. Cerca con Google

[41] M. Zebenay, R. Lampariello, T. Boge, and D. Choukroun, “A new contact dynamics model tool for hardware-in-the-loop docking dimulation,” i-SAIRAS, Turin, Italy, 2012. Cerca con Google

[42] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins University Press, Baltimore, 1989. Cerca con Google

[43] D. Sternberg, A. Hilton, D. Miller, B. McCarthy, C. Jewison, D. Roascio, J. James, and A. Saenz-Otero, “Reconfigurable ground and flight testing facility for robotic servicing, capture, and assembly,” in Aerospace Conference, 2016 IEEE, pp. 1–13, IEEE, 2016. Cerca con Google

[44] J. L. Schwartz, M. A. Peck, and C. D. Hall, “Historical review of airbearing spacecraft simulators,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 513–522, 2003. Cerca con Google

[45] X. Jian, B. Gang, Y. QinJun, and L. Jun, “Design and development of a 5-dof air-bearing spacecraft simulator,” in 2009 International Asia Conference on Informatics in Control, Automation and Robotics, pp. 126– 130, IEEE, 2009. Cerca con Google

[46] P. Tsiotras, “Astros: A 5dof experimental facility for research in space proximity operations,” in 37th AAS Guidance and Control Conference, Breckenridge, CO. AAS Paper, vol. 114, 2014. Cerca con Google

[47] D.-M. Cho, D. Jung, and P. Tsiotras, “A 5-dof experimental platform for autonomous spacecraft rendezvous and docking,” AIAA Paper, vol. 1869, p. 2009, 2009. Cerca con Google

[48] R. Ambrose, B. Wilcox, B. Reed, L. Matthies, D. Lavery, and D. Korsmeyer, “Draft robotics, tele-robotics and autonomous systems roadmap,” NASAs Space Technology Roadmaps, National Aeronautics and Cerca con Google

Space Administration, 2010. Cerca con Google

[49]J. L. Junkins, D. C. Hughes, D. C. Hughes, K. P. Wazni, K. P. Wazni, V. Pariyapong, and V. Pariyapong, “Vision-based navigation for rendezvous, docking and proximity operations,” in AAS Guidance and Control Conference, (Breckenridge, Colorado), pp. 3–7, 7-10 February 1999. Cerca con Google

[50]P. Singla, K. Subbarao, and J. L. Junkins, “Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 4, pp. 892–902, 2006. Cerca con Google

[51]J. M. Kelsey, J. Byrne, M. Cosgrove, S. Seereeram, and R. K. Mehra, “Vision-based relative pose estimation for autonomous rendezvous and docking,” in IEEE Aerospace Conference, (Big Sky, MT, USA), p. 20, Cerca con Google

4-11 March 2006. Cerca con Google

[52]B. E. Tweddle, Computer Vision-based Localization And Mapping Of An Unknown, Uncooperative And Spinning Target For Spacecraft Proximity Operations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2013. Cerca con Google

[53]S. Augenstein, S. M. Rock, P. Enge, and C. J. Tomlin, Monocular Pose And Shape Estimation Of Moving Targets, For Autonomous Rendezvous And Docking. PhD thesis, Stanford University, 2011. Cerca con Google

[54]H. Curtis, Orbital Mechanics for Engineering Students. ButterworthHeinemann, Burlington, MA, 2013. Cerca con Google

[55]L. Ljung, “Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems,” IEEE Transactions on Automatic Control, vol. 24, no. 1, pp. 36–50, 1979. Cerca con Google

[56] K. Fujii, “Extended kalman filter,” Refernce Manual, 2013. Cerca con Google

[57] D. Rodriguez-Losada, F. Matia, A. Jimenez, and R. Galán, “Consistency improvement for slam-ekf for indoor environments,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006. Cerca con Google

[58] S. Huang and G. Dissanayake, “Convergence analysis for extended kalman filter based slam,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp. 412–417, IEEE, 2006. Cerca con Google

[59] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, P. L’Ecuyer, et al., The CrossEntropy Method For Optimization, vol. 31. 2013. Cerca con Google

[60] D. P. Kroese and R. Y. Rubinstein, “Monte carlo methods,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 4, no. 1, pp. 48–58, 2012. Cerca con Google

[61] K. Alfriend, S. R. Vadali, P. Gurfil, J. How, and L. Breger, Spacecraft Formation Flying: Dynamics, Control And Navigation, vol. 2. Butterworth-Heinemann, Burlington, MA, 2009. Cerca con Google

[62] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. AIAA, 2003. Cerca con Google

[63] D. A. Vallado, Fundamentals of Astrodynamics and Applications, vol. 12. Springer Science & Business Media, 2001. Cerca con Google

[64] M. Kontitsis, P. Tsiotras, and E. Theodorou, “An information-theoretic active localization approach during relative circumnavigation in orbit,” in AIAA Guidance, Navigation, and Control Conference, (San Diego, California, USA), p. 872, 4-8 January 2016. Cerca con Google

[65] C. Li and P. K.-S. Tam, “An iterative algorithm for minimum cross entropy thresholding,” Pattern Recognition Letters, vol. 19, no. 8, pp. 771– 776, 1998. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record