Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Garcia-Rama Ocana, Adriana (2017) Suspended sediment fluxes in an Alpine torrent basin. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

Suspended sediment transport regards the finer material present in the channel and can be defined as the mobilization of particles suspended in water columns. This process is highly influenced by several factors, especially in mountainous areas, where it depends upon the size, morphology and lithology of the catchment, the stability of the coarse surface layer, the vegetation cover, the soil moisture and the characteristics of the precipitation, among others. Due to the many factors controlling it, suspended sediment transport in mountainous streams features greater variability than in low-land rivers. The assessment of suspended sediment transport, which can contribute up to the 100% of the total sediment load in mountainous areas, becomes necessary for the study of the solid transport in this kind of watersheds. In this context, intensive monitoring and long data series are a basic key in understanding the dynamics of the fine sediment fluxes interpreting the interactions of the factors influencing them and predicting the suspended sediment loads. Even so, studies of the suspended sediment transport in mountain catchments with an extended monitoring period are rare in literature.
This thesis aims to analyze the suspended transport dynamics occurring in the Rio Cordon catchment, located in the eastern Italian Alps (Dolomites). The general objectives are to investigate the quantity and effectiveness of the fine sediment delivered by the sources present in the basin area, to assess the main factors affecting the suspended sediment fluxes in both long- and short-term, and to identify hydrological thresholds that control the response of suspended sediments to the water inputs. The Rio Cordon is a small catchment of 5 km2, characterized by step-pool and riffle-pool morphology and by a mean slope equal to 13%. It features the typical Alpine climatic conditions, due to which the runoff shows a nivo-pluvial regime dominated by snowmelt between May and June and characterized by significant floods due to persistent rainfall in summer and early autumn. A continuous monitoring station located at the outlet of the basin provides us with data since 1986. Three decades of monitoring of fine sediment fluxes have been analyzed at different time scales, ranging from long- (30 years) to short- term analysis (single event). The assessment of the annual sediment budget through the whole study period has shown that during the three decades, 79% of the total load registered in Rio Cordon was suspended load (11962 t). Nonetheless, this contribution was heterogeneously distributed both seasonally and through the years. The study of the seasonal behavior throughout the whole study period permits to appreciate substantial differences among years. Before 2001 the years showing higher loads from snowmelt events than from rainfall events were rare (only 5 cases out of 15), while from 2001 to 2015, snowmelt was the main suspended sediment contributor of the year in 10 cases.
The analysis of the single events included the study of several parameters, such as the water discharge, the suspended sediment concentration, the runoff volumes, the total suspended sediment load, the characteristics of the precipitation, and the previous rainfall conditions. Hysteresis relationship between water discharge (Q) and suspended sediment concentration (SSC) at the event scale was described by analyzing the SSC/Q ratios of the rising and descending limbs of hydrograph and sedigraph. The barycenters of the sedigraph and hydrograph were calculated using Varignon’s theorem of moments in aims to add information about the way SSC and Q change within the event. Once assessed the sediment transport characteristics of the single events occurring during the study period, the sediment entrainment conditions were investigated. In this context, an exhaustive comparison with the flood events occurring in the Carapelle torrent was performed. The Carapelle is a medium-sized catchment of 50 km2 located in the Apulia Region, characterized by a Mediterranean climate and geomorphologic conditions. The analysis of the flood events occurred in both catchments permitted to assess the differences between them and the common factors that control the transport dynamics. Whilst 67.6% of the events analyzed in the Rio Cordon showed a clockwise behavior, 88% of the events showed a counter-clockwise behavior in the Carapelle torrent. Antecedent precipitations had greater influence in the transport dynamics in the Carapelle, whilst the rainfall characteristics during the event were more relevant in the Cordon. Differences in the catchment size and in the coupling explained the main differencesbetween catchments. Statistical analyses suggested that the main factors affecting suspended sediment transport are related to the flood properties and to the precipitation characteristics in both catchments.
Field campaigns developed in 2014 and 2015 in the Rio Cordon catchment highlighted different responses to the water input at different reaches of the main channel that have a role in the transport dynamics.
The results of this long-term analysis in the Rio Cordon have highlighted the temporal heterogeneity of the transport dynamics in this catchment, as well as the unpredictability that characterizes them. The catchment shows a stability trend, which can be interrupted if a high intensity flood event takes place. In this case, some source areas remain active for some time after the event, and the following events (both rainfall and snowmelt) show higher supply conditions. The sediment sources that contribute to the suspended sediment budget are usually located in the surroundings of the lower part of the main channel, thus indicating low coupling between the hillslopes from the upper areas of the catchment and the stream main channel.

Abstract (italiano)

Il trasporto di sedimenti in sospensione riguarda il materiale fine presente nel corso d’acqua, e può essere descritto come la mobilizzazione delle particelle sospese nella colonna d’acqua. Nelle aree montane questo processo è definito da molteplici fattori, tali come la dimensione, morfologia e litologia del bacino, la stabilità dello stratto superficiale grossolano del letto fluviale, la copertura vegetale, il contenuto idrico del suolo e le caratteristiche delle precipitazioni. Dati i numerosi fattori che ne condizionano le dinamiche, il trasporto di sedimenti in sospensione in torrenti montani presenta una maggiore variabilità rispetto ai fiumi di pianura. Negli ambienti montani, il contributo del materiale fine alla quantità totale di sedimento trasportato può arrivare fino al 100%, perciò l’analisi e la quantificazione di questo tipo di trasporto è di fondamentale importanza. A tal fine, il monitoraggio continuo e ripetuto nel lungo periodo risulta indispensabile per lo studio delle dinamiche dei flussi di sedimenti fini, nonché per l’interpretazione delle interazioni fra i fattori che influiscono in esse e per la predizione delle produzioni solide. Nonostante ciò, i lavori che analizzano il trasporto in sospensione sulla base di a una lunga serie di dati sono particolarmente rari.
L’obiettivo di questa tesi consiste nello studio delle dinamiche di trasporto del materiale sospeso nel bacino del Rio Cordon situato nelle Alpi Italiane. Il lavoro punta ad analizzare la quantità del materiale rilasciato dalle sorgenti di sedimento presenti nel bacino e l’effettività del trasporto, studiare i fattori principali che hanno un ruolo nel deflusso dei sedimenti sia nel breve che nel lungo termine, ed identificare le soglie idrologiche che controllano la risposta dei solidi ai contributi liquidi. Il bacino del Rio Cordon è un bacino dolomitico di piccole dimensioni (5 km2) il cui collettore principale è caratterizzato da morfologie a step-pool e a riffle-pool e da una pendenza media pari al 13%. Il bacino presenta le condizioni climatiche tipiche delle zone alpine, per le quali il regime nivo-pluviologico controlla il comportamento idrologico. Lo scioglimento nivale controlla i deflussi liquidi durante Maggio e Giugno, mentre durante l’estate e l’atunno il bacino è dominato da eventi di pioggia di alta intensità. Il monitoraggio continuo del bacino è stato permesso grazie ad una stazione sperimentale installata nel 1986 in corrispondenza della sezione di chiusura. Questo lavoro analizza tre decadi di dati di trasporto in sospensione in diverse scale temporali, partendo dal lungo periodo (studio interannuale) fino al breve periodo (studio di eventi singoli).
Grazie alle serie di dati disponibili, sono state studiate le produzioni annuali.In tre decadi di monitoraggio sono state trasportate 11962 t di solidi sospesi, il 79% del materiale solido totale trasportato. Tuttavia, sia il contributo annuale che quello stagionale mostrano delle variazioni notevoli. Lo studio delle tendenze stagionali permette di aprezzare delle differenze fra i diversi anni. Prima del 2001, il contributo dello scioglimento nivale al trasporto in sospensione era molto limitato. Successivamente, tra il 2001 ed il 2015 si è visto come in undici eventi il contributo maggiore di solidi sospesi sia stato rappresentato dallo scioglimento nivale.
Lo studio dei singoli eventi prevede l’analisi di diversi parametri, come le portate liquide, la concentrazione di sedimenti in sospensione, i volumi di deflusso, il trasporto totale di sedimenti fini, le caratteristiche delle precipitazioni e le condizioni di pioggia precedenti l’evento. Il rapporto d’isteresi fra la portata (Q) e la concentrazione di sedimenti in sospensione (SSC) a scala di evento è stato analizzato attraverso i valori di SSC/Q nel ramo ascendente e discendente dell’idrogramma e del sedimentogramma. I baricentri di queste due curve sono stati calcolati con il teorema dei momenti di Varignon con l’obiettivo di ottenere nuove informazioni sui cambiamenti di Q e SSC all’interno dell’evento. Questa procedura ha permesso di valutare la variabilità del trasporto in sospensione e di analizzare le condizioni di soglia per la mobilizzazione del materiale fine. È stato poi sviluppato un confronto tra questi risultati e quelli ottenuti dall’analisi degli eventi singoli registrati nel torrente Carapelle, un bacino di medie dimensioni (50 km2) situato nel nord della Puglia e caratterizzato da condizioni climatiche e geomorfologiche tipiche dei bacini mediterranei. Dal confronto tra le due aree di studio, è stato possibile individuare le differenze nel comportamento ed analizzare i fattori che ne controllano il trasporto di sedimenti. Il 67.6% degli eventi osservati nel Rio Cordon ha mostrato un’isteresi oraria, mentre nel Carapelle l’88% degli eventi ha presentato un ciclo antiorario. Inoltre, il Carapelle è più influenziato dalle pioggie antecedenti del Rio Cordon, mentre che quest’ultimo mostra una risposta leggermente alle charatteristiche della precipitazione durante l’evento. I motivi principali di tali differenze possono essere riconducibili alle diverse dimensioni dei bacini e alla diversità di connettività riscontrata in ogni bacino. Diverse analisi statistiche hanno rivelato che i fattori che più influenzano il trasporto di sedimenti in sospensione in entrambi i bacini sono le caratteristiche dei deflussi e le precipitazioni.
I dati ottenuti dai lavori in campo sviluppati nel 2014 e 2015 nel Rio Cordon hanno sottolineato una risposta eterogenea ai deflussi da parte delle diverse aree del bacino. Questo ha delle conseguenze nelle dinamiche di trasporto.
I risultati di questa analisi di lungo termine hanno sottolineato la grande eterogeneità temporale che caratterizza le dinamiche di trasporto all’interno di questo bacino, così come l’imprevedibilità delle produzioni solide. Nonostante il bacino tenda alla stabilità, questa tendenza può venire interrotta da eventi di alta intensità. In questo caso, l’attivazione di alcune aree sorgenti può causare il rilascio continuo di materiale anche durante gli eventi sucessivi (sia eventi di scioglimento che di pioggia), i quali mostrano dunque alte condizioni di disponibilità. Le aree sorgenti di sedimento che contribuiscono alla produzione totale misurata nella sezione di chiusura si trovano prevalentemente nelle vicinanze (oppure in prossimità) del collettore principale, a causa della disconnettività che caratterizza la parte intermedia del bacino.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Lenzi, Mario Aristide
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:06 Febbraio 2017
Anno di Pubblicazione:06 Febbraio 2017
Parole chiave (italiano / inglese):suspended sediment transport, experimental catchment, hysteresis
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/04 Geografia fisica e geomorfologia
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:10386
Depositato il:03 Nov 2017 10:36
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

• Abdelwahab O. M. M., Bisantino T., Milillo F., Gentile F., 2013. Runoff and sediment yield modeling in a medium-size Mediterranean watershed. Journal of Agricultural Engineering 44(s2): 31-40. DOI: 10.4081/jae.2013.s2.e7. Cerca con Google

• Abdelwahab O. M. M. , Bingner R. L. , Milillo F., Gentile F., 2014. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering XLV(430): 125-136. DOI:10.4081/jae.2014.430 Cerca con Google

• Aich V., Zimmermann A., Elsenbeer, H., 2014. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need? Catena 122, 120-129. Cerca con Google

• Alexandrov Y., Laronne J. B., Reid I., 2007. Intra-event and interseasonal behaviour of suspended sediment in flash floods of the semiarid northern Negev, Israel. Geomorphology 85: 85-97. DOI: 10.1016/j.geomorph.2006.03.013 Cerca con Google

• Anderson C. W., 2005. Turbidity (version 2). U. S. G. S. Techniques of Water Resources Investigations Book 9, chapter A6, section 6.7, 64 pp. Cerca con Google

• Arnborg L., Walker H. J., Peippo J., 1967. Suspended load in the Colville River, Alaska, 1962. Geogr. Ann., 49A, 131-144. Cerca con Google

• Asselman N. E. M., 1999. Suspended sediment dynamics in a large drainage basin: the River Rhine. Hydrological Processes 13, 1437-1450. Cerca con Google

• Asselman N. E. M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology 234, 228-248. Cerca con Google

• Axelsson V., 1967. The Laitaure Delta- a study of deltaic morphology and processes. Geogr. Ann. 49A, 1-127. Cerca con Google

• Banasik K., Bley D. (1994) An attempt at modeling suspended sediment concentration after storm events in an Alpine torrent. Lecture Notes in Earth Sci. 52, 161–170. Cerca con Google

• Barsch D., Gude M., Mäusbacher R, Schujraft G, Sculte A., 1994. Sediment transport and discharge in a high arctic catchment (Liefdefjorden, NW Spitsbergen), in Dynamics and Geomorphology of Mountain Rivers, edited by P. Ergenzinger and K.-H. Schmidt, 225 – 237, Springer, Berlin. Cerca con Google

• Bathrust J., Graf W. H., Cao H. H., 1987. Bed load discharge equations for steep mountain rivers. Sediment Transport in Gravel-Bed Rivers, edited by C.R. Thorne, J.C. Bathurst and R.D.Hey, John Wiley & Sons Ltd., 453–477 Cerca con Google

• Bathurst J. C., 2007. Effect of coarse surface layer on bed-load transport. Journal of Hydraulic Engineering ASCE 133 (11), 1192-1205. Cerca con Google

• Benkhaled A., Higgins H., Chebana F., Necir A., 2013. Frequency analysis of annual maximum suspended sediment concentrations in Abiod wadi, Biskra (Algeria). Hydrological Processes(2013) 1-14. Cerca con Google

• Berman E. S. F., Gupta M., Gabrielli C., Garland T., McDonnell J. J., 2009. High-frequency field-deployable isotope analyzer for hydrological applications. Water Resources Research 45 (10), W10201. Cerca con Google

• Billi P., 1994. Morfologia dei corsi d’acqua. Verde Ambiente, 5, 61-70. Cerca con Google

• Billi P., D’Agostino V., Lenzi M.A., Marchi L., 1998. Bedload, slope and channel processes in a high altitude Alpine torrent. In: Gravel-Bed Rivers in the Environment (ed. by P. C. Klingeman, R. L. Beschta, P. D. Komar & J. B. Bradley), 15–38. Water Resources Publication, LLC, Littleton, Colorado, USA. Cerca con Google

• Bisantino T, Bingner R, Chouaib W., Gentile F., Trisorio Liuzzi, G. 2015. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development 26: 340-355. doi: 10.1002/ldr.2213. Cerca con Google

• Bogen J., 1995. Sediment transport and deposition in mountain rivers. In Sediment and water quality in river catchments, I.D.L. Foster, A.M. Gurnell, B.W. Webb (eds.), J. Wiley, Chichester, 437-451. Cerca con Google

• Borselli L., Cassi P., Torri D., 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and fiend numetrical assessment. Catena, 75, 268-277. Cerca con Google

• Brasington J, Richards K., 2000. Turbidity and suspended sediment dynamics in small catchments in the Nepal Middle Hills. Hydrological Processes 14, 2559–2574. Cerca con Google

• Brummer C. J., Montgomery D. R., 2006. Influence of coarse lag formation on the mechanics of sediment pulse dispersion in a mountain stream, Squire Creek, North Cascades, Washington, United States. Water Resources Research 42, 1-16. Cerca con Google

• Buchanan P.A., Schoellhamer D.H., 1998, Summary of suspended-solids concentration data, San Francisco Bay, California, Water Year 1996: U.S. Geological Survey Open-File Report 98-175, pp. 59. Cerca con Google

• Buendia C., Vericat D., Batalla R. J., Gibbins, C. N., 2015. Temporal dynamics of sediment transport and transient in-channel storage in a highly erodible catchment. Land Degradation and Development, doi : 10.1002/ldr.2348. Cerca con Google

• Buffington J.M., Montgomery D.R., 1997. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res., 33(8), 1993-2029. Cerca con Google

• Burger H. 1945. Der Wasserhaushalt im Valle di Melera von 1934/35 bis 1943/44, Mitteilungen der Eidgen¨ossischen Anstalt f¨ur dasforstliche Versuchswesen, 24, Heft 1, 133–218 (in German). Cerca con Google

• Burt T. P., Gardiner A. T., 1982. Runoff and sediment production in a small peat covered catchment: Some preliminary results. In Catchment experiments in fluvial geomorphology, edited by T. P. Burt and D. E. Walling. Norwich: Geo Books, 133–51. Cerca con Google

• Buttle J. M., 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geog. 18, 16-41. Cerca con Google

• Caissie D., Pollock T. L., Cunjak R. A., 1996. Variation in stream water chemistry and hydrograph separation in a small drainage basin. Jouranl of Hydrology 178, 137-157. Cerca con Google

• Cavalli M., 2009. Caratterizzazione idrologica e morfologica dei bacini montani mediante scansione laser da aeromovile. Ph.D thesis. University of Padua, TeSAF dipartment, pp. 186 (in Italian). Cerca con Google

• Cavalli M., Trevisani S., Comiti F., Marchi L., 2013. Geomorphometric essassment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41. Cerca con Google

• Cavalli M., Tarolli P., Dalla Fontana G., Marchi L., 2016. Multi-temporal analysis of sediment source areas and sediment connectivity in the Rio Cordon catchment (Dolomites). Rendiconti online della Società Gelologica Italiana, 39, 27-30. Doi: 10-3301/ROL.2016.39. Cerca con Google

• Collins D. N., 1990. Seasonal and annual variations of suspended sediment transport in meltwaters draining from an Alpine glacier. In: Hydrology in Mountainous Regions. I-Hydrological Measurements: The Water Cycle( eds. H. Lang & A. Musy) (Proc. Lausanne Symp, August 1900), 439-446. IAHS Publ. 193. Cerca con Google

• Comiti F., Mao L., 2012. Recent Advances in the Dynamics of Steep Channels, in Gravel-Bed Rivers: Processes, Tools, Environments (eds. M. Church, P. M. Biron and A. G. Roy), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781119952497.ch26 Cerca con Google

• D'Agostino V., Lenzi M.A., Marchi, L., 1994. Sediment transport and water discharge during high flows in an instrumented watershed. In: Dynamics and Geomorphology of Mountain Rivers. Ed: Ergenzinger P. & Schmidt K.H., Lecture Notes in Earth Sciences, 52, Springer Verlag, Berlin-Heidelberg, 67-81. Cerca con Google

• Dalla Fontana G., 1992. Caratteri salient dell’idrologia del bacino. In Il bacino attrezzato del Rio Cordon vol. 13 (ed. by L. Marchi), 144-158 Regione Veneto, Quaderni di Ricerca Italy (in Italian). Cerca con Google

• Dalla Fontana G., Marchi L., 1994. Sediment source areas in a small alpine basin. In Forest Hydrology (Proc. International Symposium, Oct. 24-28, Tokyo, Japan), 455-462. Cerca con Google

• Dalla Fontana G., Marchi L., 2003. Slope-area relationships and sediment dynamics in two alpine streams. Hydrological Processes 17, 73-87. Cerca con Google

• DeBoer D. H., Campbell I. A., 1989. Spatial scale dependence of sediment dynamics in a semi-arid badland drainage basin. Catena 16, 277-290. Cerca con Google

• De Girolamo A. M., Pappagallo G., Lo Porto A., (2015) Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena 128, 135-143. Cerca con Google

• Diplas P., Parker G. 1992. Deposition and removal of fines in gravel-bed streams. In: Dynamics of Gravel-bed Rivers (eds. P. Billi, R. D. Hey, C. R. Thorne & P. Tacconi), 313–329. Cerca con Google

• Diplas P., Kuhnle R. A., Gray J. R., Glysson G. D., Edwards T. E., 2008. Sediment transport measuremens. In Sedimentation Engineering, American Society of Civil Engineering annuals and Reports on Engineering Practice, Manual 110, Chapter 5, 307-353. Cerca con Google

• Duijsings J. J. H. M., 1986. Seasonal variation in the sediment delivery ratio of a forested drainage basin in Luxembourg. In Drainage Basin Sediment Delivery, ed. Hadley R.F.. IAHS Publication 159. IAHS Press, Wallingford, UK, 153-164. Cerca con Google

• Dunne T., Black R., 1970. Partial area contributions to storm runoff in a small New England watershed. Water Resources Research 6, 1296-1331. Cerca con Google

• Eads R. E., 2002. Continuous turbidity monitoring in streams of north-western California. In Turbidity and Other Sediment Surrogates Workshop, April 30- May 2, Reno, Nevada. Cerca con Google

• Eder A., Strauss P., Krueger T., Quinton J. N., 2010. Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria). Journal of Hydrology 389, 168-176. Cerca con Google

• Eder A., Exner-Kittridge M., Strauss P., Blöchl G., 2014. Re-suspension of bed sediment in a small stream-results from two flushing experiments. Hydrological Earth Sciences 18, 1043-1052. Cerca con Google

• Engler A., 1919. Einfluss des Waldes auf den Stand der Gewässer. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 12. Band: 1-626 (in German). Cerca con Google

• Fang N. F., Shi Z. H., Chen F. X., Zhang H. Y., Wang Y. X., 2015. Discharge and suspended sediment patterns in a small mountainous watershed with widely distributed rock fragments. Journal of Hydrology 528: 238-248. doi: 10.1016/j.jhydrol.2015.06.046 Cerca con Google

• Fattorelli S., Keller H.M., Lenzi M.A. & Marchi L., 1988. An experimental station for the automatic recording of water and sediment discharge in a small alpine watershed. Hydrol. Sciences Journal 33(6), 607–617. Cerca con Google

• Faulkner H., 2008. Connectivity as a crucial determinant of badland morphology and evolution. Geomorphology 100 (1–2), 91–103. Cerca con Google

• Fritz P., Cherry J., Weyer K., Sklash M., 1976. Storm runoff analyses using environmental isotopes and major ions. In: Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater, Panel Proceedings Series-International Atomic Energy Agency. International Atomic Energy Agency, Vienna, Austria, pp. 111–130. Cerca con Google

• Fritz C., Gatto G., Silvano S., 1992. Caratteristiche geolitologiche, geomorfologiche e dissesti. In Il bacino attrezzato del Rio Cordon vol. 13 (ed. by L. Marchi), 144-158 Regione Veneto, Quaderni di Ricerca (in Italian). Cerca con Google

• Fryirs K., 2013. (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms 38, 30-46. Cerca con Google

• García-Rama A., Pagano S.G., Gentile F., Lenzi M.A., 2016. Suspended sediment transport analysis in two Italian instrumented catchments. Journal of Mountain Sciences 13 (6), doi:10.1007/s11629-016-3858-x. Cerca con Google

• Genereux D., 1998. Quantifying uncertainty in tracer-based hydrograph separation. Water resources research, 34, 915-919. Cerca con Google

• Gentile F, Bisantino T, Corbino R, Milillo F., Romano G., Trisorio Liuzzi G., 2008. Sediment transport monitoring in a Northern Puglia watershed. WIT Transactions on Engineering Sciences 60, 153-161. Cerca con Google

• Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G., 2010a. Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (Southern Italy). Catena 80, 1-8. Cerca con Google

• Gentile F, Bisantino T, Trisorio Liuzzi G 2010b. Erosion and sediment transport modeling in Northern Puglia watersheds. WIT Transactions on Engineering Sc. 67, 199-212. Cerca con Google

• Gippel C. J., 1995. Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrological Processes 9, 83-97. Cerca con Google

• Gomi T., 2003. Bed load transport in managed steep-gradient headwater streams of southeastern Alaska. Water Resources Research 39 (12), 1336, doi: 10.1029/2003WR002440, 2003. Cerca con Google

• Gray J. R., Gartner J. W., 2010. Technological advances in suspended sediment surrogate monitoring. Water Resources Research 45, W00D29, doi:10.1029/2008WR007063. Cerca con Google

• Gray J. R., Glysson G. D., Turcios L. M., Schwarz G. E., 2000. Comparability of suspended sediment concentration and total suspended solids data. In U. S. G. S. Water Res. Investigations Report 00-4191, p. 14. Cerca con Google

• Gray J. R., Glysson G. D., Edwards T. E., 2008. Suspended-sediment samplers and sampling method. In Sediment Transport Measurements, Sedimentation Engineering. American Society of Civil Engineers, Manual 110, 320-39. Cerca con Google

• Gray J. R., Gartner J. W., Anderson C. W., Fisk G. G., Glysson G. D., Gooding D. J., Hornewer N. J., Larsen M. C., Macy J. P., Rasmussen P. P., Wright S. A., Ziegler A. C., 2010. Surrogate technologies for monitoring suspended sediment transport in rivers. Sedimentology of Aqueous Systems 1, (Ed by Gray J. R. &. & Garner J. W.) Blackwell Publishing, pp. 44. Cerca con Google

• Hangen E., Lindenlaub M., Leibundgut Ch., von Wilpert K., 2001. Investigating mechanisms of stormflow generation by natural tracers and hydrometric data: a small catchment study in the Black Forest, Germany. Hydrological Processes 15, 183–199. Cerca con Google

• He Q., Owens P., 1995. Determination of suspended sediment provenance using caesium-137, unsupported lead-210 and radium-226: a numerical mixing model approach. In: Sediment and Water Quality in River Catchments. (ed. By I. Foster, A. Gurnell & B. Webb), 207–227.. Cerca con Google

• Heckmann T., Schwanghart W., 2013. Geomorphic coupling and sediment connectivity in an alpine catchment- Exploring sediment cascades using graph theory. Geomorphology 182, 89-103. Cerca con Google

• Heppell C. M , Chapman A. S., 2005. Analysis of a two-component hydrograph separation model to predict herbicide runoff in drained soils. Agricultural Water Management 79, 177–207. Cerca con Google

• Herrmann, A., Stichler, W., 1980. Groundwater–runoff relationships. Catena 7 (1), 251–263. Cerca con Google

• Hinderer M., Kastowski M., Kamelger A., Bartolini C., Schlunegger C., 2013. River loads and modern denudation of the Alps –A review. Earth-Science Reviews 118, 11–44. Cerca con Google

• Hooke J., 2003. Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 56 (1–2), 79–94. Cerca con Google

• Huth A. K., Leydecker A., Sickman J. O., Bales R. C., 2004. A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California. Hydrological processes 18, 1721-1733. Cerca con Google

• Iovino F., Puglisi S., 1989. Il bacino strumentato Bonis tributario del torrente Cino nel versante Ionico Silano (Calabria). Quaderni di Idronomia Montana, 9, 159-169 (in Italian). Cerca con Google

• Jansson M., 1992. Turbidimeter measurements in a tropical river, Costa Rica. Erosion and sediment transport monitoring programs in river basins (Oslo Symposium Proceedings, August 1992),IAHS Publ. 210, 71-78. Cerca con Google

• Jansson M., 2002. Determining sediment source areas in a tropical river basin, Costa Rica. Catena 47, 63-84. Cerca con Google

• Jeje L. K., Ogunkoya O. O., Oluwatimilehin J. M., 1991. Variation in suspended sediment concentration during storm discharges in three small streams in upper Osun basin, Central Western Nigeria. Hydrol. Processes 5, 361-369. Cerca con Google

• Keller H. M. 1965. Hydrologische Beobachtungen im Flyschgebiet beim Schwarzsee (Kt. Freiburg), Mitteilungen der Eidgen¨ossischenAnstalt f¨ur das forstliche Versuchswesen, 41, Heft 2, 21–60 (in German). Cerca con Google

• Kendall C., McDonnell J.J., 1998. Isotope Tracers in Catchment Hydrology. Elsevier Science Limited, Amsterdam. Cerca con Google

• Klaus J., McDonnell J. J., 2013. Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology 505, 47-64. Cerca con Google

• Klein M., 1984. Anti-clockwise hysteresis in suspended sediment concentration during individual storms. Catena 11, 251-257. Cerca con Google

• Korup O., 2005. Geomorphic imprint of landslides on alpine river systems, southwest New Zealand. Earth Surface Processes and Landforms 30 (7), 783–800. Cerca con Google

• Krueger T., Quinton J. N., Freer J., Macleod C. J. A., Bilotta G. S., Brazier R. E., Butler P., Haygarth P. M., 2009. Uncertainties in data and models to describe event dynamics of agricultural sediment and phosphorus transfer. Journal of Environmental Quality 38, 1137-1148. Cerca con Google

• Laudon, H. Slaymaker O., 1997. Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example. Journal of Hydrology 201, 82-101. Cerca con Google

• Lenzi M.A., 2000. Variation in suspended sediment concentration during floods in the instrumented catchment of the Rio Cordon. In: Dynamics of Water and Sediments in Mountain Basins. Ed: Lenzi M.A., Quaderni di Idronomia Montana, 20, 53-67. Cerca con Google

• Lenzi M. A., 2001. Step-pool evolution in the Rio Cordon, Northeastern Italy. Earth Surface Processes and Landforms, 26, 991-1008. Cerca con Google

• Lenzi M.A., 2004. Displacement and transport of marked pebbles, cobbles and boulders during floods in a steep mountain stream. Hydrological Processes 18(10), 1899-1914. Cerca con Google

• Lenzi M. A., Marchi L., 2000. Suspended sediment load during floods in a small stream of the Dolomites (Northeastern Italy). Catena, 39, 267-282. Cerca con Google

• Lenzi M. A., Mao L., 2003. Analisi del contributo del trasporto solido in sospensione alla produzione di sedimento del bacino del Rio Cordon nel periodo 1986 – 2001. Quaderni di Idronomia Montana 21(1): 361-379 (in Italian). Cerca con Google

• Lenzi M. A., Billi P., D’Agostino V., 1997. Effects of an extremely large flood on the bed of a steep mountain stream. Management of landscapes disturbed by channel incision, Stabilization, rehabilitation, restoration. (Ed by Wang S.S.Y., Langendoen E.J. & Shields F.D.Jr.), 19-23 Maggio 1997, Oxford, The University of Mississippi, 1061-1066. Cerca con Google

• Lenzi M. A., D’Agostino V., Billi P., 1999. Bedload transport in the instrumented catchment of the Rio Cordon. Part I: Analysis of bedload recods, conditions and threshold of bedload entrainment. Catena, 36(3), 171-190. Cerca con Google

• Lenzi M. A., Mao L., Comiti F. 2003. Interannual variation of suspended sediment load and sediment yield in an alpine catchment. Hydrological Sciences Journal, 48(6), 899-915. Cerca con Google

• Lenzi M.A., Mao L., Comiti F., 2004. Magnitude-frequency analysis of bed load data in an Alpine boulder bed stream. Water Resour.Res. 40 (7), W072011-W0720112. Cerca con Google

• Lenzi M. A., Mao L., Comiti F., 2006a. Effective discharge for sediment transport in a Cerca con Google

mountain river: Computational approaches and geomorphic effectiveness. J. Hydrol. 326 (1-4), 257-276. Cerca con Google

• Lenzi M. A., Mao L., Comiti F., 2006b. When does bedload transport begin in steep boulder-bed streams? Hydrological Processes 20, 3517-3533. Cerca con Google

• Lewis J., 2002. Estimation of suspended sediment flux in streams using continuous turbidity and flow data coupled with laboratory concentrations. In Turbidity and Other Sediment Surrogates Workshop, April 30- May 2, Reno, Nevada. Cerca con Google

• Liu W., Lu H., Duan W., Li H., 2011. Runoff generation in small catchments under a native rain forest and a rubber plantation in Xishuangbanna, southwestern China. Water Environ. J. 25 (1), 138–147. Cerca con Google

• López-Tarazón J. A., Batalla R. J., Vericat D., Francke T., 2012. The sediment budget of a highly dynamic mesoscale catchment: The River Isábena. Geomorphology 138, 15-28. Cerca con Google

• Mao L. 2004. Analisi comparativa del trasporto solido di corsi torrentizi in diversi ambiti geografici. Ph.D thesis, University of Padua, TeSAF Department, p. 307 (in Italian). Cerca con Google

• Mao L., Uyttendaele G. P., Iroumé A., Lenzi M. A., 2008. Field based analysis of sediment entrainment in two high gradient streams located in Alpine and Andine environments. Geomorphology 93, 368-383. Cerca con Google

• Mao L., Cavalli M., Comiti F., Marchi L., Lenzi M. A., Arattano M., 2009. Sediment transfer processes in two Alpine catchments of contrasting morphological settings. Journal of Hydrology 364, 88-98. Cerca con Google

• Mao L., Comiti F., Lenzi M. A., 2010. Bedload Dynamics in Steep Mountain Rivers: Insights from the Rio Cordon Experimental Station (Italian Alps). In: Bedload-surrogate monitoring technologies, edited by: Gray, J. R., Laronne, J. B., and Marr, J. D. G., 253–265. Cerca con Google

• Marchi L., Arattano M., Deganutti A. M., 2002. Ten years of debris flow monitoring in the Moscardo torrent (Italian Alps). Geomorphology 46 (1/2), 1-17. Cerca con Google

• Marks K., Bates P., 2000. Integration of high-resolution topographic data with floodplain flow models. Hydrological Processes, 14, 2109-2122. Cerca con Google

• McHale M. R., McDonnell J. J., Mitchell M. J., Cirmo C.P., 2002. A field-based study of soil water and groundwater nitrate release in an Adirondack forested watershed. Water Resour. Res. 38 (4), 1031. Cerca con Google

• McKean J., Roering J., 2004. Objective landslide detect on and surface morphology mapping using high-resolution airbone laser altimetry. Geomorphology, 57, 331-351. Cerca con Google

• McNamara, J.P., Kane, D.L., Hinzman, L.D., 1997. Hydrograph separations in an Arctic watershed using mixing model and graphical techniques. Water Resour. Res. 33 (7), 1707–1719. Cerca con Google

• Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L. R., 1996. Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems 10, 629-641. Cerca con Google

• Montgomery D. R., Buffington R. 1997. Channel-reach morphology in mountain drainage basins. Geol. Soc. of Am. Bulletin 109, 596-611. Cerca con Google

• Moore R. D., 1989. Tracing runoff sources with deuterium and oxygen-18 during spring melt in a headwater catchment, southern Laurentians, Quebec. Journal of Hydrology 112, 135-148. Cerca con Google

• Mouri G., Ros F. C., Chalov S., 2014. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments. Geomorphology 213, 266-276. Cerca con Google

• Muñoz-Villers L. E., McDonnell J. J., 2012. Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resources Res. 48 (9), W09528. Cerca con Google

• Navratil O., Lagout C., Gateuille D., Esteves M., Liebault F., 2010. Assessment of intermediate fine sediment storage in a braided river reach (southern French Prealps). Hydrological Processes 24, 1318-1332. Cerca con Google

• Nitsche M., Rickenmann D., Turowski J.M., Badoux A., Kirchner J.W., 2011. Evaluation of bedload transport predictions using flow resistance equations to account for macro- roughness in steep mountain streams. Water Resour.Res. 47. W08513. Cerca con Google

• Nolan K. M., Lisle T. E., Kelsey H. M., 1987. Bankfull discharge and sediment transport in northwestern California. In Erosion and Sedimentation in the Pacific Rim (Proceedings of the Corvallis Symposium, August, 1987). IAHS Publ. 165, 439-449. Cerca con Google

• Pagano S. G., García-Rama A., Gentile F. 2016. Analisi del trasporto solido in sospensione a scala di evento: un confronto tra due bacini strumentati italiani. Quaderni di idronomia Montana, 34. Cerca con Google

• Pagano S.G., García-Rama A., Gentile F., Lenzi M.A., (under review). Water discharge-suspended sediment concentration hysteresis patterns during single hydrologic events in two Italian experimental catchments Submitted to Catena. Cerca con Google

• Paustian S. J., Beschta R. L., 1979. The suspended sediment regime of an Oregon Coast Range stream. Water Research Bulletin 15, 144-154. Cerca con Google

• Pellerin A. B., Wollheim W. M., Feng X., Vörösmarty C. J., 2007. The application of electrical conductivity as a tracer for hydrograph separation in urban catchments. Hydrological Processes DOI: 10.1002/hyp. Cerca con Google

• Penna D., Stenni B., Šanda M., Wrede S., Bogaard T. A., Gobbi A., Borga M., Fisher B. M. C., Bonazza M., Chárová Z, 2010. On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrology and Earth System Sciences 14, 1551-1566. Cerca con Google

• Penna D., Stenni B., Šanda M., Wrede S., Bogaard T.A., Michelini M., Fisher B.M.C., Gobbi A., Mantese N., Zuecco G., Borga M., Bonazza M., Sobotková M., Čejková B., Wassenaar L.I., 2012. Technical Note: Evaluation of between-sample memory effects in the analysis of 2H and 18O water samples measured by laser spectroscopes. Hydrology and Earth System Sciences, 16, 3925–3933. Cerca con Google

• Penna D., Oliviero O., Assendelft R., Zuecco G., van Meerveld I. (H. J.), Anfodillo T., Carraro V., Borga M., Dalla Fontana G., 2013. Tracing the water sources of trees and streams: isotopic analysis in a small pre-alpine catchment. Procedia Environmental Sciences 19, 106-112. Cerca con Google

• Penna D., van Meerveld, H. J., Oliviero O., Zuecco, G., Assendelft, R. S., Dalla Fontana, G., Borga, M., 2015. Seasonal changes in runoff generation in a small forested mountain catchment. Hydrological Processes 29, 2017-2042. Cerca con Google

• Picco L., Mao L., Rigon E., Moretto J., Ravazzolo D., Delai F., Lenzi M. A., 2012. An update of the magnitude-frequency analysis of Rio Cordon (Italy) bedload data after 25 years of monitoring. IAHS-AISH Publication, pp. 65-71. Cerca con Google

• Pinder G., Jones J., 1969. Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resources Research 5, 438-445. Cerca con Google

• Rainato R., Picco L., Lenzi M.A., Mao L., Delai F., Rigon E., Moretto J., Cesca M., Vianello A., García-Rama A., 2013. Monitoring and analysis of the sediment transport event of November 2012 in the Rio Cordon station. Quaderni di Idronomia Montana 31, 323-338. Cerca con Google

• Rainato R., Mao L., García-Rama A., Picco L., Cesca M., Vianello A., Preciso E., Scussel G. R., Lenzi M.A., 2016. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield; doi: 10.1016/j.geomorph.2016.03.012 Cerca con Google

• Recking A., 2012. Influence of sediment supply on mountain streams bedload transport. Geomorphology, 175-176, 139-150. Cerca con Google

• Recking A., Leduc P., Liébault F., Church, M., 2012. A field investigation of the influence of sediment supply on step-pool morphology and stability. Geomorphology, 139-140, 53-66. Cerca con Google

• Rickenmann D., 1997. Sediment transport in Swiss Torrents. Earth Surface Processes and Landforms, 22, 937-951. Cerca con Google

• Rickenmann D., 1999. Empirical relationships for debris flows. Natural Hazards. 19 (1), 47-77. Cerca con Google

• Rigon E., Comiti F., Lenzi M. A., 2012. Large wood storage in streams of the Eastern Italian Alps and the relevance of hillslope processes. Water resources Research, 18, W01518, doi:10.1029/2010WR009854. Cerca con Google

• Schlunegger F., Hinderer M. 2003. Pleistocene/Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova, 15, 88–95. Cerca con Google

• Seeger M, Errea M. P., Beguería S., Arnáez J., Martí, C., García-Ruiz, J. M., 2004. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology 288, 299-311. Cerca con Google

• Simons D.B., Senturk F., 1977. Sediment Transport Technology. Water Resources Publications, Fort Collins, CO, pp. 807. Cerca con Google

• Smith H.G., Dragovich D., 2009. Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia. Hydrological Processes 23, 2415-2426, doi: 10.1002/hyp.7357. Cerca con Google

• Soler M., Latron J., Gallart F., 2008. Relationships between suspended sediment concentrations and discharge in two small research basins in a mountainous Mediterranean area (Vallcebre, Eastern Pyrenees). Geomorphology 98, 143-152. Cerca con Google

• Straub L. S., 1936. Report of the committee on dynamics of streams. Transactions, American Geophysical Union 17, Issue 2, 334-334. Cerca con Google

• Sueker J. K., Ryan J. N., Kendall C., Jarrett R. D., 2000. Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado. Water Resour. Res. 36 (1), 63–75. Cerca con Google

• Taylor S., Feng X., Williams M., McNamara J., 2002. How isotopic fractionation of snowmelt affects hydrograph separation. Hydrological processes 16, 3683-3690. Cerca con Google

• Turowski J. M., Rickenmann D., 2009. Tools and cover effects in bedload transport observations in the Pizbach, Austria. Earth Surface Processes and Landforms 34, 26-37. Cerca con Google

• Turowski J. M., Rickenmann D., Dadson S. J., 2010. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology 57(4):1126–1146. Cerca con Google

• Turowski J.M., Badoux A., Rickenmann D., 2011. Start and end of bedload transport in gravel bed streams. Geophysical Research Letters, 38. Cerca con Google

• Uhlenbrook S., Hoeg S., 2003. Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three- and five-component hydrograph separations in a mountainous catchment. Hydrol. Process. 17 (2), 431–453. Cerca con Google

• Uhrich M.A., Bragg H.M., 2003. Monitoring instream turbidity to estimate continuous suspended-sediment loads and yields and clay-water volumes in the Upper North Santiam River Basin, Oregon, 1998–2000. U.S.G. S. Water-Resources Investigations Report 03–4098, 43 p. Cerca con Google

• Wainwright J., Turnbull L., Ibrahim TG, Lexartza-Artza I., Thornton SF, Brazier RE. 2010. Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126, 387-404. Cerca con Google

• Walling D.E. 1983. The sediment delivery problem. Journal of hydrology, 65. 209-237. Cerca con Google

• Walling D. E., Webb, B. W., 1981. The reliability of suspended sediment load data. Erosion and Sediment Transport Measurement, 177–194, IAHS Publ. 133. Cerca con Google

• Walling D. E., Owens P. N. , Leeks G. J. L., 1998. The role of channel and floodplain storage in the suspended sediment budget of the River Ouse, Yorkshire, UK. Geomorphology 22, 225-242. Cerca con Google

• Whittaker J. G, Jaeggi M. N. R., 1982. Origin of step–pool systems in mountain streams. American Society of Civil Engineers, Journal of Hydraulic Division 108, 758–773. Cerca con Google

• Whittaker J. G. 1987. Sediment transport in step–pool streams. Sediment transport in Gravel-Bed Rivers. Thorne CR, Bathurst JC,Hey RD (eds). Wiley: Chichester, 545–579. Cerca con Google

• Wilcox A. C., Wohl E. E., 2006. Flow resistance dynamics in step-pool stream channels: 1. Large woody debris and controls on total resistance. Water Resour.Res. 42. W05418. Cerca con Google

• Williams G. P., 1989. Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology 111, 89-106. Cerca con Google

• Wolman M. G., Miller, J. P., 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68, 54-74. Cerca con Google

• Wood P. A., 1997. Controls of variation in suspended sediment concentration in the River Rother, West Sussex, England. Sedimentology 24, 437-445. Cerca con Google

• Wood M.S., 2014. Estimating suspended sediment in rivers using acoustic Doppler meters. U.S. Geological Survey Fact Sheet 2014-3038, 4 p., http://dx.doi.org/10.3133/fs20143038. Vai! Cerca con Google

• Yager E.M., Turowski J.M., Rickenmann D., McArdell B.W., 2012. Sediment supply, grain protrusion, and bedload transport in mountain streams. Geophys. Res. Lett., 39, L10402. Cerca con Google

• Yu G. A., Wang Z. Y., Zhang K., Chang T. C., Liu H., 2009. Effect of incoming sediment on the ransport rate of bedload in mountain streams. International Journal of Sediment Research 24, 260-273. Cerca con Google

• Zabaleta A., Martínez M, Uriarte J. A., Antigüedad I., 2007. Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque Country. Catena 71, 179-190. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record