Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Corrà, Samantha (2017) Modeling human mitochondrial diseases related to MPV17 and APOPT1 in Drosophila melanogaster. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 01 August 2020 for intellectual property related reasons.
Visibile to: nobody

20Mb

Abstract (english)

Mitochondrial diseases are a clinically heterogeneous group of inherited disorders associated with defects in the oxidative phosphorylation system, with an estimated incidence in between 1:5,000 and 1:10,000 live births. Mitochondrial respiratory chain function depends on the coordinated expression of both mitochondrial and nuclear genomes. Thus, also mutations affecting nuclear-encoded mitochondrial proteins are responsible for mitochondrial disease onset. During the last decades, an increasing number of novel nuclear disease genes have been identified. Among those genes, human MPV17 and APOPT1 have already been linked to mitochondrial diseases but their role in mitochondrial physiology and disease remains still puzzling. Mutations in the human MPV17 nuclear gene, encoding a small hydrophobic mitochondrial inner membrane protein, are a prominent cause of a pediatric hepatocerebral form of mitochondrial DNA depletion syndrome. APOPT1 mutations are responsible for an infantile or childhood mitochondrial encephalopathy hallmarked by profound deficiencies in both COX activity and amount.
In order to dissect out the role of these two genes, in this PhD project we focused our attention on the functional and molecular characterization of Drosophila melanogaster orthologs of MPV17 and APOPT1.
We found that dMpv17 down-regulation in flies causes a profound mitochondrial DNA depletion in the fat bodies (a Drosophila organ analogous to human liver). Depletion is also detected, albeit moderate, in dMpv17 KD cells. Our results reveal that dMpv17 can form a channel when inserted in an artificial planar lipid bilayer. Moreover, we also show that the Drosophila protein could interact with dMic19, a component of the MICOS complex, as well as dMrp4, that could play a role in dMpv17 gating regulation. The analysis of mitochondrial morphology in dMpv17 down-regulated cells together with the interaction with Mic19 suggest a possible role for dMpv17 in the maintenance of the structural and functional stability of the inner mitochondrial membrane.
Further, we confirmed that Drosophila is a reliable model for studying human mitochondrial disease also in the case of APOPT1. Indeed, our preliminary data show that dApopt1 down-regulation in flies causes motor impairment and COX deficiency, characteristic features of the human disease. Not only COX activity but also coxI transcript is decreased in dApopt1 down-regulated flies. Finally, we show that H2O2 treatment and, in turn, oxidative stress induce an increase in dApopt1 transcript.
Finally, our data shed new light on the possible role of dMpv17 and dApopt1 in physiological and pathological conditions.

Abstract (italian)

Le malattie mitocondriali sono un gruppo ampio e eterogeneo di disordini ereditari causati da difetti del metabolismo energetico mitocondriale attribuibili a un malfunzionamento della catena respiratoria mitocondriale. La loro incidenza è stata stimata tra 1:1500 e 1:10000 nati vivi. Queste sindromi sono il risultato di un gran numero di mutazioni rilevabili sia nel genoma nucleare sia in quello mitocondriale. Negli ultimi decenni, il numero di geni scoperti essere responsabili dell’insorgenza di malattie mitocondriali è enormemente aumentato. Mutazioni nella proteina MPV17, localizzata nella membrana mitocondriale interna, sono state associate ad una particolare forma di sindrome da deplezione di DNA mitocondriale che colpisce primariamente il fegato e il sistema nervoso in età pediatrica. Invece, mutazioni in APOPT1 sono state identificate in pazienti caratterizzati da sintomi neurologici di vari entità associati a perdita della parola e della capacità motoria e accompagnati da un significativo deficit di citocromo C ossidasi a livello muscolare.
Dal momento che la funzione di queste due proteine risulta essere ancora sconosciuta, abbiamo cercato di determinare il loro ruolo a livello mitocondriale e nello sviluppo di queste malattie studiando i geni ortologhi in Drosophila, dMpv17 e dApopt1. Abbiamo dimostrato che la down-regolazione dell’espressione di dMpv17 in vivo comporta una diminuzione significativa nel numero di copie di DNA mitocondriale nei fat bodies, un analogo funzionale del fegato dei mammiferi. Inoltre, alcuni risultati ottenuti molto recentemente suggeriscono che dMPV17 sarebbe in grado di formare un canale in un planar lipid bilayer. Infine, abbiamo identificato come suoi possibili interattori un componente del complesso MICOS e dMrp4, una proteina facente parte della famiglia dei trasportatori ABC che potrebbe regolare la sua attività di canale. L’interazione con il complesso MICOS e i risultati della microscopia elettronica sulla morfologia dei mitocondri nelle cellule silenziate per dMpv17, che hanno evidenziato una diminuzione nel numero e nella lunghezza delle creste, fanno ipotizzare un possibile ruolo nel mantenimento della struttura e, quindi, della funzionalità della membrana mitocondriale interna.
Studiando l’ortologo di APOPT1, dApopt1, abbiamo osservato che la sua down-regolazione in vivo comporta un marcato difetto locomotorio accompagnato da una significativa riduzione dell’attività della citocromo C ossidasi, sintomi descritti anche nella patologia umana. Infine, poiché la proteina umana sembra avere un ruolo nella risposta allo stress ossidativo, abbiamo dimostrato che l’espressione di dApopt1 è indotta dal trattamento con H2O2. I risultati relativi alla caratterizzazione di dMpv17 e quelli preliminari riguardanti dApopt1 contribuiscono a fare luce sul ruolo di queste proteine sia a livello fisiologico che patologico, e confermano la validità di Drosophila come organismo modello per lo studio delle malattie genetiche umane

EPrint type:Ph.D. thesis
Tutor:Costa, Rodolfo
Supervisor:De Pittà, Cristiano
Ph.D. course:Ciclo 29 > Corsi 29 > BIOSCIENZE E BIOTECNOLOGIE
Data di deposito della tesi:31 July 2017
Anno di Pubblicazione:31 July 2017
Key Words:MPV17, APOPT1, Mitochondria, Mitochondrial diseases, Drosophila MPV17, APOPT1, Mitocondri, Malattie mitocondriali, Drosophila
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:10455
Depositato il:19 Nov 2018 14:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abdelwahid E, Rolland S, Teng X, Conradt B, Hardwick JM, et al. Mitochondrial involvement in cell death of non-mammalian eukaryotes. Biochim Biophys Acta. 2011 Apr; 1813(4): 597–607. doi: 10.1016/j.bbamcr.2010.10.008 Cerca con Google

2. Ackerman SH, Tzagoloff A. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proc Natl Acad Sci U S A. 1990 Jul; 87(13):4986-4990. Cerca con Google

3. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28; 281(5381):1322-1326. Cerca con Google

4. Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol. 2001; 17:25-51. doi: 10.1146/annurev.cellbio.17.1.25 Cerca con Google

5. Adams JC, Monk R, Taylor AL, Ozbek S, Fascetti N, et al. Characterisation of Drosophila thrombospondin defines an early origin of pentameric thrombospondins. J Mol Biol. 2003 Apr 25; 328(2):479-494. Cerca con Google

6. Adán C, Matsushima Y, Hernández-Sierra R, Marco-Ferreres R, Fernández-Moreno MA, et al. Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development. J Biol Chem. 2008 May 2; 283(18):12333-12342. doi: 10.1074/jbc.M801342200 Cerca con Google

7. Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, et al. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009; 364(1514):257-267. doi:10.1098/rstb.2008.0142. Cerca con Google

8. Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, et al. PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. Mol Cell. 2016 May 5; 62(3):371-384. doi: 10.1016/j.molcel.2016.03.037 Cerca con Google

9. Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity—critical analysis and update. Cold Spring Harb Perspect Biol. 2013 May; 5(5): a012641. doi: 10.1101/cshperspect.a012641 Cerca con Google

10. Altmann, R. (1890). Die Elementarorganismen Und Ihre Beziehungen Zu Den Zellen. Leipzig: Veit & comp., 145 Cerca con Google

11. Anderson PR, Kirby K, Hilliker AJ, Phillips JP. RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila. Hum Mol Genet. 2005 Nov 15; 14(22):3397-3405. Cerca con Google

12. Anderson PR, Kirby K, Orr WC, Hilliker AJ, Phillips JP. Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich’s ataxia. Proc Natl Acad Sci U S A. 2008; 105(2):611-616. doi:10.1073/pnas.0709691105. Cerca con Google

13. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9; 290(5806):457-465. doi:10.1038/290457a0 Cerca con Google

14. Angeles DC, Ho P, Chua LL, Wang C, Yap YW, et al. Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum Mol Genet. 2014 Jun 15; 23(12):3157-3165. doi: 10.1093/hmg/ddu026 Cerca con Google

15. Antonenkov VD, Isomursu A, Mennerich D, Vapola MH, Weiher H, et al. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J Biol Chem. 2015 May 29; 290(22):13840-13861. doi: 10.1074/jbc.M114.608083 Cerca con Google

16. Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol. 2015 Oct 5; 25(19):R911-921. doi: 10.1016/j.cub.2015.07.055 Cerca con Google

17. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem. 2005 Oct 21; 280(42):35742-35750. doi: 10.1074/jbc.M505970200 Cerca con Google

18. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013 Jan; 20(1):31-42. doi: 10.1038/cdd.2012.81 Cerca con Google

19. Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol. 2014; 171(8):1870-1889. doi:10.1111/bph.12430 Cerca con Google

20. Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, et al. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab. 2015 May 5; 21(5):756-763. doi: 10.1016/j.cmet.2015.04.006 Cerca con Google

21. Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, et al. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet. 2008 May; 82(5):1211-1216. doi: 10.1016/j.ajhg.2008.03.020 Cerca con Google

22. Barthélémy C, Ogier de Baulny H, Diaz J, Cheval MA, et al. Late-onset mitochondrial DNA depletion: DNA copy number, multiple deletions, and compensation. Ann Neurol. 2001 May; 49(5):607-617. Cerca con Google

23. Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013 Jul 11; 4(1):220-228. doi: 10.1016/j.celrep.2013.06.020 Cerca con Google

24. Becker T, Böttinger L, Pfanner N. Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci. 2012 Mar; 37(3):85-91. doi: 10.1016/j.tibs.2011.11.004 Cerca con Google

25. Bekri S, D’Hooghe M, Vermeersch P. X-Linked Sideroblastic Anemia and Ataxia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle; 1993-2017. 2006 Mar 01 [updated 2014 Apr 03]. Cerca con Google

26. Bier E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet. 2005 Jan; 6(1):9-23. doi:10.1038/nrg1503 Cerca con Google

27. Blakely EL, Butterworth A, Hadden RD, Bodi I, He L, et al. MPV17 mutation causes neuropathy and leukoencephalopathy with multiple mtDNA deletions in muscle. Neuromuscul Disord. 2012 Jul; 22(7):587-591. doi: 10.1016/j.nmd.2012.03.006 Cerca con Google

28. Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999 Dec 17; 294(5):1351-1362. doi: 10.1006/jmbi.1999.3310 Cerca con Google

29. Bohnert M, Zerbes RM, Davies KM, Mühleip AW, Rampelt H, et al. Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab. 2015 May 5; 21(5):747-755. doi: 10.1016/j.cmet.2015.04.007 Cerca con Google

30. Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol. 2003 Jan; 39(11):615-647. Cerca con Google

31. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun; 118(2):401-415. Cerca con Google

32. Breitwieser FP, Colinge J. Isobar(PTM): a software tool for the quantitative analysis of post-translationally modified proteins. J Proteomics. 2013 Sep 2; 90:77-84. doi: 10.1016/j.jprot.2013.02.022 Cerca con Google

33. Bridges CB, Anderson EG. Crossing over in the X chromosomes of triploid females of Drosophila melanogaster. Genetics. 1925 Sep; 10(5):418-441. Cerca con Google

34. Brière JJ, Favier J, El Ghouzzi V, Djouadi F, Bénit P, Gimenez AP, Rustin P. Succinate dehydrogenase deficiency in human. Cell Mol Life Sci. 2005 Oct; 62(19-20):2317-2324. doi: 10.1007/s00018-005-5237-6 Cerca con Google

35. Brosius U, Dehmel T, Gärtner J. Two different targeting signals direct human peroxisomal membrane protein 22 to peroxisomes. J Biol Chem. 2002 Jan 4; 277(1):774-784. doi: 10.1074/jbc.M108155200 Cerca con Google

36. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A. 2005 Feb 22; 102(8):3105-3110. doi: 10.1073/pnas.0405775102 Cerca con Google

37. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014 Dec; 14(12):796-810. doi: 10.1038/nri3763 Cerca con Google

38. Burman JL, Itsara LS, Kayser EB, Suthammarak W, Wang AM, et al. A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech. 2014 Oct; 7(10):1165-1174. doi: 10.1242/dmm.015321 Cerca con Google

39. Caggese C, Ragone G, Perrini B, Moschetti R, De Pinto V, et al. Identification of nuclear genes encoding mitochondrial proteins: isolation of a collection of D. melanogaster cDNAs homologous to sequences in the Human Gene Index database. Mol Gen Genet. 1999 Feb; 261(1):64-70. Cerca con Google

40. Calvo S, Jain M, Xie X, Sheth SA, Chang B, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet. 2006 May; 38(5):576-582. doi: 10.1038/ng1776 Cerca con Google

41. Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016 Jan 4; 44(D1):D1251-1257. doi: 10.1093/nar/gkv1003 Cerca con Google

42. Cavanaugh DJ, Vigderman AS, Dean T, Garbe DS, Sehgal A. The Drosophila circadian clock gates sleep through time-of-day dependent modulation of sleep-promoting neurons. Sleep. 2016 Feb 1; 39(2): 345–356. doi: 10.5665/sleep.5442 Cerca con Google

43. Celotto AM, Frank AC, McGrath SW, Fergestad T, Van Voorhies WA, et al. Mitochondrial encephalomyopathy in Drosophila. J Neurosci. 2006 Jan 18; 26(3):810-820. doi: 10.1523/JNEUROSCI.4162-05.2006 Cerca con Google

44. Chen C, Chen Y, Guan MX. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation. Protein Cell. 2015 Dec; 6(12): 862–870. doi: 10.1007/s13238-015-0175-z Cerca con Google

45. Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet. 1995 Aug; 57(2):239-247 Cerca con Google

46. Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta. 2011 Jun; 1807(6):562-567. doi: 10.1016/j.bbabio.2010.10.008 Cerca con Google

47. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013; 106:135-159. doi: 10.1093/bmb/ldt017 Cerca con Google

48. Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996 Nov 1; 241(3):779-786. Cerca con Google

49. Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guénal I. Apoptosis in Drosophila: which role for mitochondria? Apoptosis. 2016 Mar; 21(3):239-251. doi: 10.1007/s10495-015-1209-y Cerca con Google

50. Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev. 2000 Jun; 64(2):281-315. Cerca con Google

51. Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol. 2012 Jan-Feb; 47(1):64-74. doi: 10.3109/10409238.2011.632763. Cerca con Google

52. Copeland WC. Defects of mitochondrial DNA replication. J Child Neurol. 2014 Sep; 29(9): 1216–1224. doi: 10.1177/0883073814537380 Cerca con Google

53. Da Rè C, Franzolin E, Biscontin A, Piazzesi A, Pacchioni B, et al. Functional characterization of drim2, the Drosophila melanogaster homolog of the yeast mitochondrial deoxynucleotide transporter. J Biol Chem. 2014 Mar 14; 289(11):7448-7459. doi: 10.1074/jbc.M113.543926 Cerca con Google

54. Da Rè C, von Stockum S, Biscontin A, Millino C, Cisotto P, et al. Leigh syndrome in Drosophila melanogaster: morphological and biochemical characterization of Surf1 post-transcriptional silencing. J Biol Chem. 2014 Oct 17; 289(42):29235-29246. doi: 10.1074/jbc.M114.602938 Cerca con Google

55. Daenzer JM, Fridovich-Keil JL. Drosophila melanogaster models of galactosemia. Curr Top Dev Biol. 2017; 121:377-395. doi: 10.1016/bs.ctdb.2016.07.009 56. Dalla Rosa I, Durigon R, Pearce SF, Rorbach J, Hirst EM, et al. MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Res. 2014 Jul; 42(13):8500-8515. doi: 10.1093/nar/gku513 Cerca con Google

57. Dalla Rosa I, Cámara Y, Durigon R, Moss CF, Vidoni S, Akman G, Hunt L, Johnson MA, Grocott S, Wang L, Thorburn DR, Hirano M, Poulton J, Taylor RW, Elgar G, Martí R, Voshol P, Holt IJ, Spinazzola A. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet. 2016 Jan 13; 12(1):e1005779. doi: 10.1371/journal.pgen.1005779 Cerca con Google

58. Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, et al. Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Genet. 2010 Mar 15; 19(6):1098-1107. doi: 10.1093/hmg/ddp581 Cerca con Google

59. Danpure CJ, Cooper PJ, Wise PJ, Jennings PR. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol. 1989 Apr; 108(4):1345-1352. Cerca con Google

60. Davey KM, Parboosingh JS, McLeod DR, Chan A, Casey R, et al. Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet. 2006 May; 43(5):385-393. doi: 10.1136/jmg.2005.036657 Cerca con Google

61. Dean M. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. Bethesda (MD): National Center for Biotechnology Information (US); 2002 Nov 18 Cerca con Google

62. Di Fonzo A, Ronchi D, Lodi T, Fassone E, Tigano M, et al. The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am J Hum Genet. 2009 May; 84(5):594-604. doi: 10.1016/j.ajhg.2009.04.004 Cerca con Google

63. Di Giovanni S, Mirabella M, Papacci M, Odoardi F, Silvestri G, et al. Apoptosis and ROS detoxification enzymes correlate with cytochrome c oxidase deficiency in mitochondrial encephalomyopathies. Mol Cell Neurosci. 2001 Apr; 17(4):696-705. doi: 10.1006/mcne.2001.0970 Cerca con Google

64. Diekert K, Kispal G, Guiard B, Lill R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci U S A. 1999; 96(21):11752-11757. Cerca con Google

65. DiMauro S, Hirano M. Mitochondrial DNA Deletion Syndromes. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al, editors. GeneReviews. Seattle (WA): University of Washington, Seattle; 1993-2017. 2003 Dec 17 [updated 2011 May 3]. Cerca con Google

66. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003 Jun 26; 348(26):2656-2668. doi: 10.1056/NEJMra022567 Cerca con Google

67. DiMauro S. Mitochondrial diseases. Biochim Biophys Acta. 2004 Jul 23; 1658(1-2):80-88. doi: 10.1016/j.bbabio.2004.03.014 Cerca con Google

68. Dolce V, Fiermonte G, Runswick MJ, Palmieri F, Walker JE. The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc Natl Acad Sci U S A. 2001 Feb 27; 98(5):2284-2288. doi:10.1073/pnas.031430998 Cerca con Google

69. Dorn GW, Clark CF, Eschenbacher WH, Kang MY, Engelhard JT, et al. MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ Res. 2011 Jan 7; 108(1):12-7. doi: 10.1161/CIRCRESAHA.110.236745 Cerca con Google

70. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015 Jul 1; 43(W1):W389-394. doi: 10.1093/nar/gkv332 Cerca con Google

71. Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet. 2009 May; 84(5):558-566. doi: 10.1016/j.ajhg.2009.03.018 Cerca con Google

72. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009 Dec 28; 187(7):1023-1036. doi: 10.1083/jcb.200906084 Cerca con Google

73. El-Hattab AW, Li FY, Schmitt E, Zhang S, Craigen WJ, et al. MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab. 2010 Mar; 99(3):300-308. doi: 10.1016/j.ymgme.2009.10.003 Cerca con Google

74. El-Hattab AW, Scaglia F, Craigen WJ, Wong LJC. MPV17-Related Hepatocerebral Mitochondrial DNA Depletion Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle; 1993-2017. 2012 May 17. Cerca con Google

75. El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013 Apr; 10(2):186-198. doi: 10.1007/s13311-013-0177-6 Cerca con Google

76. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495–516. doi: 10.1080/01926230701320337 Cerca con Google

77. Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012 Jun 26; 31(14):3038-3062. doi: 10.1038/emboj.2012.170 Cerca con Google

78. Fassone E, Rahman S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012 Sep; 49(9):578-590. doi: 10.1136/jmedgenet-2012-101159 Cerca con Google

79. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature. 2000 Mar 23; 404(6776):394-398. doi:10.1038/35006074 Cerca con Google

80. Fergestad T, Bostwick B, Ganetzky B. Metabolic disruption in Drosophila Bang-sensitive seizure mutants. Genetics. 2006 Jul 1; 173 (3):1357-1364. https://doi.org/10.1534/genetics.106.057463 Vai! Cerca con Google

81. Fernández-Vizarra E, Tiranti V, Zeviani M. Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochim Biophys Acta. 2009 Jan; 1793(1):200-211. doi: 10.1016/j.bbamcr.2008.05.028 Cerca con Google

82. Ferraro P, Nicolosi L, Bernardi P, Reichard P, Bianchi V. Mitochondrial deoxynucleotide pool sizes in mouse liver and evidence for a transport mechanism for thymidine monophosphate. Proc Natl Acad Sci U S A. 2006 Dec 5; 103(49):18586-18591. doi:10.1073/pnas.0609020103 Cerca con Google

83. Ferraro P, Franzolin E, Pontarin G, Reichard P, Bianchi V. Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res. 2010 Apr; 38(6):e85. doi: 10.1093/nar/gkp1141 Cerca con Google

84. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016 Jan 4; 44(D1):D279-285. doi: 10.1093/nar/gkv1344 Cerca con Google

85. Foriel S, Willems P, Smeitink J, Schenck A, Beyrath J. Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. Int J Biochem Cell Biol. 2015 Jun; 63:60-65. doi: 10.1016/j.biocel.2015.01.024 Cerca con Google

86. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014 Jan 16; 505(7483):335-343. doi: 10.1038/nature12985 Cerca con Google

87. Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. Elife. 2015 Apr 28; 4. doi: 10.7554/eLife.07739 Cerca con Google

88. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015 Apr; 14(4):1113-1126. doi: 10.1074/mcp.M114.043083 Cerca con Google

89. Gabaldón T, Huynen MA. Shaping the mitochondrial proteome. Biochim Biophys Acta. 2004 Dec 6; 1659(2-3):212-220. doi: 10.1016/j.bbabio.2004.07.011 Cerca con Google

90. Gaignard P, Menezes M, Schiff M, Bayot A, Rak M, et al. Mutations in CYC1, encoding cytochrome c1 subunit of respiratory chain complex III, cause insulin-responsive hyperglycemia. Am J Hum Genet. 2013 Aug 8; 93(2):384-389. doi: 10.1016/j.ajhg.2013.06.015 Cerca con Google

91. Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002 Sep 2; 1592(1):63-77. Cerca con Google

92. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012 Oct 12; 111(9):1198-1207. doi: 10.1161/CIRCRESAHA.112.268946 Cerca con Google

93. Gandhi VV, Samuels DC. A review comparing deoxyribonucleoside triphosphate (dNTP) concentrations in the mitochondrial and cytoplasmic compartments of normal and transformed cells. Nucleosides Nucleotides Nucleic Acids. 2011 May; 30(5):317-339. doi: 10.1080/15257770.2011.586955 Cerca con Google

94. Ganetzky B, Wu CF. Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics. 1982 Apr; 100(4):597-614. Cerca con Google

95. García-Rodríguez LJ, Gay AC, Pon LA. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J Cell Biol. 2007 Jan 15; 176(2):197-207. doi:10.1083/jcb.200606054 Cerca con Google

96. Garesse R, Kaguni LS. A Drosophila model of mitochondrial DNA replication: proteins, genes and regulation. IUBMB Life. 2005 Aug; 57(8):555-561. Cerca con Google

97. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 2010 Dec 15; 19(24):4861-4870. doi: 10.1093/hmg/ddq419 Cerca con Google

98. Ghezzi D, Goffrini P, Uziel G, Horvath R, Klopstock T, et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet. 2009 Jun; 41(6):654-656. doi: 10.1038/ng.378 Cerca con Google

99. Ghezzi D, Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol. 2012; 748:65-106. doi: 10.1007/978-1-4614-3573-0_4 Cerca con Google

100. Glasscock E, Tanouye MA. Drosophila couch potato mutants exhibit complex neurological abnormalities including epilepsy phenotypes. Genetics. 2005 Apr; 169(4):2137-2149. doi: 10.1534/genetics.104.028357 Cerca con Google

101. Goldstein AC, Bhatia P, Vento JM. Mitochondrial disease in childhood: nuclear encoded. Neurotherapeutics. 2013 Apr; 10(2): 212–226. doi: 10.1007/s13311-013-0185-6 Cerca con Google

102. Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nature Reviews Cancer. 2013 Mar; 13, 172-183. doi:10.1038/nrc3461 Cerca con Google

103. González M, Martín-Ruíz I, Jiménez S, Pirone L, Barrio R, et al. Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep. 2011; 1:75. doi: 10.1038/srep00075 Cerca con Google

104. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015 May; 77(5):753-759. doi: 10.1002/ana.24362 Cerca con Google

105. Graham P, Pick L. Drosophila as a model for diabetes and diseases of insulin resistance. Curr Top Dev Biol. 2017; 121:397-419. doi: 10.1016/bs.ctdb.2016.07.011 106. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, et al. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease. Genetics. 2013 Aug 1; 194(4):1029-1035. https://doi.org/10.1534/genetics.113.152710 Vai! Cerca con Google

107. Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, et al. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 1998 Feb 15; 26(4):865-78. Cerca con Google

108. Guarani V, McNeill EM, Paulo JA, Huttlin EL, Fröhlich F, et al. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. Elife. 2015 May 21;4. doi: 10.7554/eLife.06265 Cerca con Google

109. Guest ST, Yu J, Liu D, Hines JA, Kashat MA, et al. A protein network-guided screen for cell cycle regulators in Drosophila. BMC Syst Biol. 2011 May 6; 5:65. doi: 10.1186/1752-0509-5-65 Cerca con Google

110. Guo M. Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease. Cold Spring Harb Perspect Med. 2012 Nov; 2(11): a009944. doi: 10.1101/cshperspect.a009944 Cerca con Google

111. Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 2005 Aug 4; 47(3):379-393. doi: 10.1016/j.neuron.2005.06.027 Cerca con Google

112. Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V, et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet. 2010 Dec; 42(12):1131-1134. doi: 10.1038/ng.706 Cerca con Google

113. Habersetzer J, Ziani W, Larrieu I, Stines-Chaumeil C, Giraud MF, Brethes D, et al. ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology. Int J Biochem Cell Biol. 2013; 45:99–105. doi: 10.1016/j.biocel.2012.05.017 Cerca con Google

114. Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 1997 Jul 11; 90(1):121-129. Cerca con Google

115. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, et al. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 2011 Oct 18; 30(21):4356-4370. doi: 10.1038/emboj.2011.379 Cerca con Google

116. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 2009 Dec 28; 187(7):959-966. doi: 10.1083/jcb.200906083 Cerca con Google

117. Hejzlarová K, Mráček T, Vrbacký M, Kaplanová V, Karbanová V, et al. Nuclear genetic defects of mitochondrial ATP synthase. Physiol Res. 2014; 63 Suppl 1:S57-71. Cerca con Google

118. Hell K. The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim Biophys Acta. 2008 Apr; 1783(4):601-609. doi: 10.1016/j.bbamcr.2007.12.005 Cerca con Google

119. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature. 1998 Oct 1; 395(6701):516-521. doi:10.1038/26780 Cerca con Google

120. Hill RB, Pellegrini L. The PARL family of mitochondrial rhomboid proteases. Semin Cell Dev Biol. 2010 Aug; 21(6):582-592. doi: 10.1016/j.semcdb.2009.12.011 Cerca con Google

121. Hoffmann JA. The immune response of Drosophila. Nature. 2003 Nov 6; 426(6962):33-38. doi: 10.1038/nature02021 Cerca con Google

122. Hofmann K, Stoffel W. TMBASE - A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374,166 (1993) Cerca con Google

123. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717-719 (25 February 1988); doi:10.1038/331717a0 Cerca con Google

124. Holt IJ, Lorimer HE, Jacobs HT. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000 Mar 3; 100(5):515-524. http://dx.doi.org/10.1016/S0092-8674(00)80688-1 Vai! Cerca con Google

125. Homyk T, Sheppard DE. Behavioral Mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability. Genetics. 1977 Sep; 87(1):95-104. Cerca con Google

126. Houstek J, Kmoch S, Zeman J. TMEM70 protein - a novel ancillary factor of mammalian ATP synthase. Biochim Biophys Acta. 2009 May; 1787(5):529-532. doi: 10.1016/j.bbabio.2008.11.013 Cerca con Google

127. Huynen MA, Mühlmeister M, Gotthardt K, Guerrero-Castillo S, Brandt U. Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochim Biophys Acta. 2016 Jan; 1863(1):91-101. doi: 10.1016/j.bbamcr.2015.10.009 Cerca con Google

128. Hwa JJ, Zhu AJ, Hiller MA, Kon CY, Fuller MT, et al. Germ-line specific variants of components of the mitochondrial outer membrane import machinery in Drosophila. FEBS Lett. 2004 Aug 13; 572(1-3):141-146. doi:10.1016/j.febslet.2004.07.025 Cerca con Google

129. Iida R, Yasuda T, Tsubota E, Takatsuka H, Masuyama M, et al. M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene. J Biol Chem. 2003 Feb 21; 278(8):6301-6306. doi: 10.1074/jbc.M210886200 Cerca con Google

130. Iida R, Yasuda T, Tsubota E, Takatsuka H, Masuyama M, et al. A novel alternative spliced Mpv17-like protein isoform localizes in cytosol and is expressed in a kidney- and adult-specific manner. Exp Cell Res. 2005 Jan 1; 302(1):22-30. doi: 10.1016/j.yexcr.2004.08.027 Cerca con Google

131. Iida R, Yasuda T, Tsubota E, Takatsuka H, Matsuki T, et al. Human Mpv17-like protein is localized in peroxisomes and regulates expression of antioxidant enzymes. Biochem Biophys Res Commun. 2006 Jun 9; 344(3):948-954. doi: 10.1016/j.bbrc.2006.04.008 Cerca con Google

132. Iida R, Ueki M, Yasuda T. A novel transcriptional repressor, Rhit, is involved in heat-inducible and age-dependent expression of Mpv17-like protein, a participant in reactive oxygen species metabolism. Mol Cell Biol. 2010 May; 30(10):2306-2315. doi: 10.1128/MCB.01025-09 Cerca con Google

133. Iida R, Ueki M, Yasuda T. Identification of Rhit as a novel transcriptional repressor of human Mpv17-like protein with a mitigating effect on mitochondrial dysfunction, and its transcriptional regulation by FOXD3 and GABP. Free Radic Biol Med. 2012 Apr 15; 52(8):1413-1422. doi: 10.1016/j.freeradbiomed.2012.01.003 Cerca con Google

134. Iida R, Ueki M, Yasuda T. Identification of interacting partners of Human Mpv17-like protein with a mitigating effect of mitochondrial dysfunction through mtDNA damage. Free Radic Biol Med. 2015 Oct; 87:336-345. doi: 10.1016/j.freeradbiomed.2015.07.008 Cerca con Google

135. Indrieri A, van Rahden VA, Tiranti V, Morleo M, Iaconis D, et al. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet. 2012 Nov 2; 91(5):942-949. doi: 10.1016/j.ajhg.2012.09.016 Cerca con Google

136. Invernizzi F, Tigano M, Dallabona C, Donnini C, Ferrero I, et al. A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity. Hum Mutat. 2013 Dec; 34(12):1619-1622. doi: 10.1002/humu.22441 Cerca con Google

137. Jacobs HT, Fernández-Ayala DJ, Manjiry S, Kemppainen E, Toivonen JM, et al. Mitochondrial disease in flies. Biochim Biophys Acta. 2004 Dec 6; 1659(2-3):190-196. http://doi.org/10.1016/j.bbabio.2004.07.004 Vai! Cerca con Google

138. Johansson M, Bajalica-Lagercrantz S, Lagercrantz J, Karlsson A. Localization of the human deoxyguanosine kinase gene (DGUOK) to chromosome 2p13. Genomics. 1996 Dec 15; 38(3):450-451. doi: 10.1006/geno.1996.0654 Cerca con Google

139. Johansson M, Karlsson A. Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2. J Biol Chem. 1997 Mar 28;272(13):8454-8458. Cerca con Google

140. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012 Sep; 342(3): 619–630. doi: 10.1124/jpet.112.192138 Cerca con Google

141. Jones BA, Fangman WL. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 1992 Mar; 6(3):380-389. Cerca con Google

142. Kadenbach B, Arnold S, Lee I, Hüttemann M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta. 2004 Apr 12; 1655(1-3):400-408. doi: 10.1016/j.bbabio.2003.06.005 Cerca con Google

143. Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol. 2014 Apr; 171(8):1798-1817. doi: 10.1111/bph.12456 Cerca con Google

144. Karadimas CL, Vu TH, Holve SA, Chronopoulou P, Quinzii C, et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am J Hum Genet. 2006 Sep; 79(3):544-548. doi: 10.1086/506913 Cerca con Google

145. Karasawa M, Zwacka RM, Reuter A, Fink T, Hsieh CL, et al. The human homolog of the glomerulosclerosis gene Mpv17: structure and genomic organization. Hum Mol Genet. 1993 Nov; 2(11):1829-1834. Cerca con Google

146. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. 2002 Dec 23; 159(6):931-938 doi: 10.1083/jcb.200209124 Cerca con Google

147. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ. Role of Bax and Bak in mitochondrial morphogenesis. Nature. 2006 Oct 12; 443(7112):658-662. doi: 10.1038/nature05111 Cerca con Google

148. Kaukonen J, Juselius JK, Tiranti V, Kyttälä A, Zeviani M, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000 Aug 4; 289(5480):782-785. doi: 10.1126/science.289.5480.782 Cerca con Google

149. Kemppainen KK, Rinne J, Sriram A, Lakanmaa M, Zeb A, et al. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency. Hum Mol Genet. 2014 Apr 15; 23(8): 2078–2093. doi: 10.1093/hmg/ddt601 Cerca con Google

150. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell. 2009 Feb 27; 33(4):505-516. doi: 10.1016/j.molcel.2009.01.020 Cerca con Google

151. Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta. 2008 Oct; 1778(10):1978-2021. doi: 10.1016/j.bbamem.2008.04.011 Cerca con Google

152. Kondapalli KC, Kok NM, Dancis A, Stemmler TL. Drosophila frataxin: an iron chaperone during cellular Fe–S cluster bioassembly. Biochemistry. 2008; 47(26):6917-6927. doi:10.1021/bi800366d Cerca con Google

153. Koshkin V, Greenberg ML. Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J. 2002 May 15; 364(Pt 1): 317–322. Cerca con Google

154. Kowluru A, Tannous M, Chen HQ. Localization and characterization of the mitochondrial isoform of the nucleoside diphosphate kinase in the pancreatic beta cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase. Arch Biochem Biophys. 2002 Feb 15; 398(2):160-169. doi: 10.1006/abbi.2001.2710 Cerca con Google

155. Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell Tissue Res. 2017 Jan; 367(1):83-93. doi: 10.1007/s00441-016-2433-7 Cerca con Google

156. Krauss J, Astrinides P, Frohnhöfer HG, Walderich B, Nüsslein-Volhard C. transparent, a gene affecting stripe formation in zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol Open. 2013 Jul 15; 2(7): 703–710. doi: 10.1242/bio.20135132 Cerca con Google

157. Krick S, Shi S, Ju W, Faul C, Tsai SY, et al. Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease. Proc Natl Acad Sci U S A. 2008 Sep 16; 105(37):14106-14111. doi: 10.1073/pnas.0801146105 Cerca con Google

158. Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A. 2015 Aug 18; 112(33):10139-10146. doi: 10.1073/pnas.1421385112 Cerca con Google

159. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015; 13: 89. doi: 10.1186/s12915-015-0201-x Cerca con Google

160. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016 Jul; 33(7):1870-1874. doi: 10.1093/molbev/msw054 Cerca con Google

161. Kutik S, Guiard B, Meyer HE, Wiedemann N, Pfanner N. Cooperation of translocase complexes in mitochondrial protein import. J Cell Biol. 2007 Nov 19; 179(4): 585–591. doi: 10.1083/jcb.200708199 Cerca con Google

162. Lamperti C, Zeviani M. Encephalomyopathies caused by abnormal nuclear-mitochondrial intergenomic cross-talk. Acta Myol. 2009 Jul; 28(1): 2–11. Cerca con Google

163. Lane AN, Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015 Feb 27; 43(4): 2466–2485. doi: 10.1093/nar/gkv047 Cerca con Google

164. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007 Nov 1; 23(21):2947-2948. doi: 10.1093/bioinformatics/btm404 Cerca con Google

165. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998 Mar; 18(3):231-236. doi: 10.1038/ng0398-231 Cerca con Google

166. Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, et al. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech. 2015 Jun; 8(6):509-526. doi: 10.1242/dmm.020438. Cerca con Google

167. Lawler J.The functions of thrombospondin-1 and-2. Curr Opin Cell Biol. 2000 Oct; 12(5):634-640. Cerca con Google

168. Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. 2012 Feb 14; 22(2):320-333. doi:10.1016/j.devcel.2011.12.014 Cerca con Google

169. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010 May 17; 189(4):671-679. doi: 10.1083/jcb.201001039 Cerca con Google

170. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. 2004 Nov; 15(11):5001-5011. doi: 10.1091/mbc.E04-04-0294 Cerca con Google

171. Lehninger AL, Kennedy EP. The requirements of the fatty acid oxidase complex of rat liver. J Biol Chem. 1948 Apr; 173(2):753-771. Cerca con Google

172. Liu S, Sawada T, Lee S, Yu W, Silverio G, et al. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 2012; 8(3):e1002537. doi: 10.1371/journal.pgen.1002537 Cerca con Google

173. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec; 25(4):402-408. oi: 10.1006/meth.2001.1262 Cerca con Google

174. Löllgen S, Weiher H. The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species. Biol Chem. 2015 Jan; 396(1):13-25. doi: 10.1515/hsz-2014-0198 Cerca con Google

175. Lu B, Vogel H. Drosophila models of neurodegenerative diseases. Annu Rev Pathol. 2009; 4: 315–342. doi: 10.1146/annurev.pathol.3.121806.151529 Cerca con Google

176. Luk E, Yang M, Jensen LT, Bourbonnais Y, Culotta VC. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem. 2005 Jun 17; 280(24):22715-22720. doi:10.1074/jbc.M504257200 Cerca con Google

177. Marc P, Margeot A, Devaux F, Blugeon C, Corral-Debrinski M, et al. Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 2002 Feb; 3(2):159-164. doi:10.1093/embo-reports/kvf025 Cerca con Google

178. Martin LJ, Lau E, Singh H, Vergnes L, Tarling EJ, et al. ABCC6 Localizes to the Mitochondria-Associated Membrane. Circulation research. 2012; 111(5):516-520. doi:10.1161/CIRCRESAHA.112.276667 Cerca con Google

179. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011 Jul 19; 21(1): 92–101. doi: 10.1016/j.devcel.2011.06.017 Cerca con Google

180. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012 Sep 7; 337(6099):1190-1195. doi: 10.1126/science.1222794 Cerca con Google

181. Mayr JA, Havlícková V, Zimmermann F, Magler I, Kaplanová V, et al. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet. 2010 Sep 1; 19(17):3430-3439. doi: 10.1093/hmg/ddq254 Cerca con Google

182. McFarland R, Clark KM, Morris AA, Taylor RW, Macphail S, et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet. 2002 Feb; 30(2):145-146. doi:10.1038/ng819 Cerca con Google

183. McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond). 2013; 10: 63. doi: 10.1186/1743-7075-10-63 Cerca con Google

184. McKenzie M, Lazarou M, Thorburn DR, Ryan MT. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol. 2006 Aug 18; 361(3):462-469. doi: 10.1016/j.jmb.2006.06.057 Cerca con Google

185. Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell. 2006 Oct 20; 127(2):383-95. doi:10.1016/j.cell.2006.09.021 Cerca con Google

186. Melchionda L, Haack TB, Hardy S, Abbink TE, Fernandez-Vizarra E, et al Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet. 2014 Sep 4; 95(3):315-325. doi: 10.1016/j.ajhg.2014.08.003 Cerca con Google

187. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Löwer B et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008 Feb 15; 22(4): 476–488. doi: 10.1101/gad.460708 Cerca con Google

188. Meyer zum Gottesberge AM, Massing T, Hansen S. Missing mitochondrial Mpv17 gene function induces tissue-specific cell-death pathway in the degenerating inner ear. Cell Tissue Res. 2012 Feb; 347(2):343-356. doi: 10.1007/s00441-012-1326-7 Cerca con Google

189. Miles WO, Dyson NJ, Walker JA. Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech. 2011 Nov; 4(6):753-761. doi: 10.1242/dmm.006908 Cerca con Google

190. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014 Oct; 15(10):634-646. doi: 10.1038/nrm3877 Cerca con Google

191. Miyake N, Yano S, Sakai C, Hatakeyama H, Matsushima Y, et al. Mitochondrial complex III deficiency caused by a homozygous UQCRC2 mutation presenting with neonatal-onset recurrent metabolic decompensation. Hum Mutat. 2013 Mar; 34(3):446-452. doi: 10.1002/humu.22257 Cerca con Google

192. Mizushima N, Yoshimorim T, Levine B. Methods in mammalian autophagy research. Cell. 2010; 140(3):313-326. doi:10.1016/j.cell.2010.01.028. Cerca con Google

193. Morgan TH. Sex limited inheritance in Drosophila. Science. 1910 Jul 22; 32(812):120-122. doi: 10.1126/science.32.812.120 Cerca con Google

194. Muller HJ. The production of mutations by x-rays. Proc Nat Acad Sci. 1928 Sep; 14(9):714–726. Cerca con Google

195. Muñoz-Soriano V, Paricio N. Drosophila models of Parkinson's disease: discovering relevant pathways and novel therapeutic strategies. Parkinsons Dis. 2011; 2011: 520640. doi: 10.4061/2011/520640 Cerca con Google

196. Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011 May 15; 14(10):1929-1938. doi: 10.1089/ars.2010.3799 Cerca con Google

197. Narendra D, Walker JE, Youle RJ. Mitochondrial quality control mediated by PINK1 and Parkin: links to Parkinsonism. Cold Spring Harb Perspect Biol. 2012 Nov; 4(11): a011338. doi: 10.1101/cshperspect.a011338 Cerca con Google

198. Navarro JA, Llorens JV, Soriano S, Botella JA, Schneuwly S, et al. Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels. PLoS ONE. 2011; 6(7):e21017. doi:10.1371/journal.pone.0021017 Cerca con Google

199. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997; 66:863-917. doi:10.1146/annurev.biochem.66.1.863 Cerca con Google

200. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010 Apr 1;6(4):e1000888. doi: 10.1371/journal.pgen.1000888 Cerca con Google

201. Nogueira C, Almeida LS, Nesti C, Pezzini I, Videira A, et al. Syndromes associated with mitochondrial DNA depletion. Ital J Pediatr. 2014 Apr 3; 40:34. doi: 10.1186/1824-7288-40-34 Cerca con Google

202. Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, et al. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 2010 Sep 8; 12(3):283-294. doi: 10.1016/j.cmet.2010.08.002 Cerca con Google

203. Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 2012; 3:1016. doi: 10.1038/ncomms2016. Cerca con Google

204. qOPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ. 2007 Apr; 14(4):682-692. doi: 10.1038/sj.cdd.4402048 Cerca con Google

205. Ott C, Dorsch E, Fraunholz M, Straub S, Kozjak-Pavlovic V. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits. Cobine PA, ed. PLoS ONE. 2015; 10(3):e0120213. doi:10.1371/journal.pone.0120213. Cerca con Google

206. Ott C, Ross K, Straub S, Thiede B, Götz M, et al. Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol Cell Biol. 2012 Mar; 32(6):1173-1188. doi: 10.1128/MCB.06388-11 Cerca con Google

207. Owusu-Ansah E, Perrimon N. Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Model Mech. 2014 Mar; 7(3):343-350. doi: 10.1242/dmm.012989 Cerca con Google

208. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008 Jul 11; 134(1):112-123. doi: 10.1016/j.cell.2008.06.016 Cerca con Google

209. Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953 Jul; 1(4):188-211. doi: 10.1177/1.4.188 Cerca con Google

210. Palladino MJ. Modeling mitochondrial encephalomyopathy in Drosophila. Neurobiol Dis. 2010 Oct; 40(1): 40–45. doi: 10.1016/j.nbd.2010.05.009 Cerca con Google

211. Palmieri L, Alberio S, Pisano I, Lodi T, Meznaric-Petrusa M, et al. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet. 2005 Oct 15; 14(20):3079-3088. https://doi.org/10.1093/hmg/ddi341 Vai! Cerca con Google

212. Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011 Jun; 63(2): 411–436. doi: 10.1124/pr.110.003293 Cerca con Google

213. Park J, Lee G, Chung J. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem Biophys Res Commun. 2009 Jan 16; 378(3):518-523. doi: 10.1016/j.bbrc.2008.11.086 Cerca con Google

214. Patel PI, Isaya G.. Friedreich Ataxia: From GAA Triplet–Repeat Expansion to Frataxin Deficiency. Am J Hum Genet. 2001 Jul; 69(1): 15–24. Cerca con Google

215. Peng YT, Chen P, Ouyang RY, Song L. Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis. 2015; 20(9): 1135–1149. doi: 10.1007/s10495-015-1143-z Cerca con Google

216. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999 Dec; 20(18):3551-3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 Cerca con Google

217. Perkins G, Bossy-Wetzel E, Ellisman MH. New insights into mitochondrial structure during cell death . Exp Neurol. 2009 Aug; 218(2): 183–192. doi: 10.1016/j.expneurol.2009.05.021 Cerca con Google

218. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, et al. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. The Journal of Cell Biology. 2014; 204(7):1083-1086. doi:10.1083/jcb.201401006. Cerca con Google

219. Pierce SB, Gulsuner S, Stapleton GA, Walsh T, Lee MK, et al. Infantile onset spinocerebellar ataxia caused by compound heterozygosity for Twinkle mutations and modeling of Twinkle mutations causing recessive disease. Cold Spring Harb Mol Case Stud. 2016 Jul; 2(4):a001107. doi: 10.1101/mcs.a001107 Cerca con Google

220. Pitceathly RD, Smith C, Fratter C, Alston CL, He L, et al. Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics. Brain. 2012 Nov; 135(Pt 11):3392-3403. doi: 10.1093/brain/aws231 Cerca con Google

221. Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K. Model organisms in the fight against muscular dystrophy: lessons from Drosophila and zebrafish. Molecules. 2015 Apr 9; 20(4):6237-6253. doi: 10.3390/molecules20046237 Cerca con Google

222. Pontarin G, Gallinaro L, Ferraro P, Reichard P, Bianchi V. Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proc Natl Acad Sci U S A. 2003 Oct 14; 100(21):12159-12164. doi: 10.1073/pnas.1635259100 Cerca con Google

223. Pontarin G, Fijolek A, Pizzo P, Ferraro P, Rampazzo C, et al. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A. 2008 Nov 18; 105(46):17801-17806. doi: 10.1073/pnas.0808198105 Cerca con Google

224. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One. 2010 Apr 7; 5(4):e10054. doi: 10.1371/journal.pone.0010054. Cerca con Google

225. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002 May; 9(5):505-512. doi: 10.1038/sj/cdd/4400998 Cerca con Google

226. Rafelski SM. Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol. 2013 Jun 24; 11:71. doi: 10.1186/1741-7007-11-71 Cerca con Google

227. Raimundo N, Song L, Shutt TE, McKay SE, Cotney J, et al. Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell. 2012 Feb 17; 148(4):716-726. doi: 10.1016/j.cell.2011.12.027 Cerca con Google

228. Rampazzo C, Fabris S, Franzolin E, Crovatto K, Frangini M, et al. Mitochondrial thymidine kinase and the enzymatic network regulating thymidine triphosphate pools in cultured human cells. J Biol Chem. 2007 Nov 30; 282(48):34758-34769. doi:10.1074/jbc.M705923200 Cerca con Google

229. Reinhold R, Krüger V, Meinecke M, Schulz C, Schmidt B, et al. The channel-forming Sym1 protein is transported by the TIM23 complex in a presequence-independent manner. Mol Cell Biol. 2012 Dec; 32(24):5009-5021. doi: 10.1128/MCB.00843-12 Cerca con Google

230. Richter-Dennerlein R, Korwitz A, Haag M, Tatsuta T, Dargazanli S, et al. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab. 2014 Jul 1; 20(1):158-171. doi: 10.1016/j.cmet.2014.04.016 Cerca con Google

231. Rikhy R, Kamat S, Ramagiri S, Sriram V, Krishnan KS. Mutations in dynamin-related protein result in gross changes in mitochondrial morphology and affect synaptic vesicle recycling at the Drosophila neuromuscular junction. Genes Brain Behav. 2007 Feb; 6(1):42-53. doi: 10.1111/j.1601-183X.2006.00218.x 232. Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, et al. Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One. 2009; 4(4):e5090. doi: 10.1371/journal.pone.0005090 Cerca con Google

233. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016 May; 30(5):1712-1723. doi: 10.1096/fj.15-283408 Cerca con Google

234. Royden CS, Pirrotta V, Jan LY. The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell. 1987 Oct 23; 51(2):165-173. https://doi.org/10.1016/0092-8674(87)90144-9 Vai! Cerca con Google

235. Rudrapatna VA, Cagan RL, Das TK. Drosophila cancer models. Dev Dyn. 2012 Jan;241(1):107-118. doi: 10.1002/dvdy.22771 Cerca con Google

236. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D Yi C, Kreuziger J, Baldi P, Wallace DC. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007 Jan; 35. (Database issue): D823–D828. doi: 10.1093/nar/gkl927 Cerca con Google

237. Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008 Apr; 29(4):200-207. doi: 10.1016/j.tips.2008.01.006 Cerca con Google

238. Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Mol Genet Metab. 2003 May; 79(1):1-5. Cerca con Google

239. Saada A. Fishing in the (deoxyribonucleotide) pool. Biochem J. 2009 Aug 27; 422(3):e3-6. doi: 10.1042/BJ20091194 Cerca con Google

240. Sakowska P, Jans DC, Mohanraj K, Riedel D, Jakobs S, et al. The Oxidation Status of Mic19 Regulates MICOS Assembly. Mol Cell Biol. 2015 Dec; 35(24):4222-4237. doi: 10.1128/MCB.00578-15 Cerca con Google

241. Sánchez-Martínez A, Luo N, Clemente P, Adán C, Hernández-Sierra R, et al. Modeling human mitochondrial diseases in flies. Biochim Biophys Acta. 2006 Sep-Oct; 1757(9-10):1190-1198. doi: 10.1016/j.bbabio.2006.05.008 Cerca con Google

242. Schneiderman HA, Gateff E. Control systems in insect development. Science. 1967 Oct 27; 158(3800):534-535. doi: 10.1126/science.158.3800.534-c Cerca con Google

243. Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012 Dec; 13(12): 878–890. doi: 10.1038/nrg3275 Cerca con Google

244. Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016 Mar 3; 61(5):683-694. doi: 10.1016/j.molcel.2016.02.022 Cerca con Google

245. Scott I, Youle RJ. Mitochondrial fission and fusion. Essays Biochem. 2010; 47: 85–98. doi: 10.1042/bse0470085 Cerca con Google

246. Seelert H, Dencher NA. ATP synthase superassemblies in animals and plants: two or more are better. Biochim Biophys Acta. 2011 Sep; 1807(9):1185-1197. doi: 10.1016/j.bbabio.2011.05.023 Cerca con Google

247. Sehgal A, Joiner W, Crocker A, Koh K, Sathyanarayanan S, et al. Molecular analysis of sleep: wake cycles in Drosophila. Cold Spring Harb Symp Quant Biol. 2007; 72:557-564. doi: 10.1101/sqb.2007.72.018 Cerca con Google

248. Sen A, Cox RT. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease. Curr Top Dev Biol. 2017; 121:1-27. doi: 10.1016/bs.ctdb.2016.07.001 249. Seo AY, Joseph AM, Dutta D, Hwang JCY, Aris JP, et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010 Aug 1; 123(15): 2533–2542. doi: 10.1242/jcs.070490 Cerca con Google

250. Song Z, Chen H, Fiket M, Alexander C, Chan DC.OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007 Aug 27; 178(5): 749–755. doi: 10.1083/jcb.200704110 Cerca con Google

251. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012 May 31; 7(6):1235-1246. doi: 10.1038/nprot.2012.058 Cerca con Google

252. Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D'Adamo P, et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet. 2006 May; 38(5):570-575. doi: 10.1038/ng1765 Cerca con Google

253. Stepien, A. Torroni, A.B. Chung, J.A. Hodge, D.C. Wallace, Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation, J. Biol. Chem. 267 (1992) 14592–14597. Cerca con Google

254. Stojanovski D, Bohnert M, Pfanner N, van der Laan M. Mechanisms of protein sorting in mitochondria. Cold Spring Harb Perspect Biol. 2012 Oct; 4(10): a011320. doi: 10.1101/cshperspect.a011320 Cerca con Google

255. Stowers RS, Megeath LJ, Górska-Andrzejak J, Meinertzhagen IA, Schwarz TL. Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron. 2002 Dec 19; 36(6):1063-77. Cerca con Google

256. Su B, Wang X, Zheng L, Perry G, Smith MA, et al. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta. 2010 Jan; 1802(1):135-142. doi: 10.1016/j.bbadis.2009.09.013 Cerca con Google

257. Sun X, Yasuda O, Takemura Y, Kawamoto H, Higuchi M, Baba Y, Katsuya T, Fukuo K, Ogihara T, Rakugi H. Akt activation prevents Apop-1-induced death of cells. Biochem Biophys Res Commun. 2008 Dec 26;377(4):1097-1101. doi: 10.1016/j.bbrc.2008.10.109 Cerca con Google

258. Takakubo F, Cartwright P, Hoogenraad N, Thorburn DR, Collins F, et al. An amino acid substitution in the pyruvate dehydrogenase E1 alpha gene, affecting mitochondrial import of the precursor protein. Am J Hum Genet. 1995 Oct; 57(4):772-780. Cerca con Google

259. Takata A, Matsumoto N, Kato T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci. Nat Commun. 2017 Feb 27; 8:14519. doi: 10.1038/ncomms14519 Cerca con Google

260. Tang S, Khanh Le P, Tse S, Wallace DC, Huang T. Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE. 2009; 4(2): e4492. doi: 10.1371/journal.pone.0004492 Cerca con Google

261. Tarasenko D, Barbot M, Jans DC, Kroppen B, Sadowski B, et al. The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. J Cell Biol. 2017 Apr 3; 216(4):889-899. doi: 10.1083/jcb.201609046 Cerca con Google

262. Terhzaz S, Cabrero P, Chintapalli VR, Davies SA, Dow JA. Mislocalization of mitochondria and compromised renal function and oxidative stress resistance in Drosophila SesB mutants. Physiol Genomics. 2010 Mar 3; 41(1):33-41. doi: 10.1152/physiolgenomics.00147.2009 263. Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet. 1998 Dec; 63(6):1609-1621. http://doi.org/10.1086/302150 Vai! Cerca con Google

264. Toivonen JM, O'Dell KM, Petit N, Irvine SC, Knight GK, et al. technical knockout, a Drosophila model of mitochondrial deafness. Genetics. 2001 Sep; 159(1):241-254. Cerca con Google

265. Tranebjaerg L, Schwartz C, Eriksen H, Andreasson S, Ponjavic V, et al. A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet. 1995 Apr; 32(4):257-263. Cerca con Google

266. Tripoli G, D'Elia D, Barsanti P, Caggese C. Comparison of the oxidative phosphorylation (OXPHOS) nuclear genes in the genomes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae. Genome Biol. 2005; 6(2):R11. doi: 10.1186/gb-2005-6-2-r11 Cerca con Google

267. Trott A, Morano KA. Sym1 is the stress-induced Saccharomyces cerevisiae ortholog of the mammalian kidney disease gene Mpv17 and is required for ethanol metabolism and tolerance during heat shock. Eukaryot Cell. 2004 Jun; 3(3):620-631. doi: 10.1128/EC.3.3.620-631.2004 Cerca con Google

268. Tsujimoto Y, Shimizu S. Bcl-2 family: life-or-death switch. FEBS Lett. 2000 Jan 21; 466(1):6-10. Cerca con Google

269. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010 Feb; 1797(2):113-128. doi: 10.1016/j.bbabio.2009.09.005 Cerca con Google

270. Uusimaa J, Evans J, Smith C, Butterworth A, Craig K, et al. Clinical, biochemical, cellular and molecular characterization of mitochondrial DNA depletion syndrome due to novel mutations in the MPV17 gene. Eur J Hum Genet. 2014 Feb; 22(2):184-191. doi: 10.1038/ejhg.2013.112 Cerca con Google

271. van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013 Jun; 5(6): a011072. doi: 10.1101/cshperspect.a011072 Cerca con Google

272. Vartiainen S, Chen S, George J, Tuomela T, Luoto KR, et al. Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease. Dis Model Mech. 2014 Jun; 7(6): 635–648. doi: 10.1242/dmm.016527 Cerca con Google

273. Viscomi C, Spinazzola A, Maggioni M, Fernandez-Vizarra E, Massa V, et al. Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice. Hum Mol Genet. 2009 Jan 1; 18(1):12-26. doi: 10.1093/hmg/ddn309 Cerca con Google

274. Viscomi C, Zeviani M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis. 2017 Mar 21. doi: 10.1007/s10545-017-0027-5 Cerca con Google

275. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010 Jan 5; 107(1):378-383. doi: 10.1073/pnas.0911187107 Cerca con Google

276. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science. 1988 Dec 9; 242(4884):1427-1430. doi: 10.1126/science.3201231 Cerca con Google

277. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013 Nov 1; 5(11):a021220. doi: 10.1101/cshperspect.a021220 Cerca con Google

278. Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009; 43: 95–118. doi: 10.1146/annurev-genet-102108-134850 Cerca con Google

279. Wang L. Mitochondrial purine and pyrimidine metabolism and beyond. Nucleosides Nucleotides Nucleic Acids. 2016 Dec; 35(10-12):578-594. doi:10.1080/15257770.2015.1125001 Cerca con Google

280. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001 Nov 15; 15(22):2922-2933. Cerca con Google

281. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011 Nov 11; 147(4):893-906. doi: 10.1016/j.cell.2011.10.018 Cerca con Google

282. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001 Apr 27; 292(5517):727-730. doi: 10.1126/science.1059108 Cerca con Google

283. Weiher H, Noda T, Gray DA, Sharpe AH, Jaenisch R. Transgenic mouse model of kidney disease: insertional inactivation of ubiquitously expressed gene leads to nephrotic syndrome. Cell. 1990 Aug 10; 62(3):425-434. Cerca con Google

284. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry. 2009 Mar 10; 48(9):2045-52. doi: 10.1021/bi8019178 Cerca con Google

285. Westermann B. Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta. 2012 Oct; 1817(10):1833-8. doi: 10.1016/j.bbabio.2012.02.033 Cerca con Google

286. Whitworth AJ. Drosophila models of Parkinson's disease. Adv Genet. 2011; 73:1-50. doi: 10.1016/B978-0-12-380860-8.00001-X Cerca con Google

287. Wiedemann N, Frazier AE, Pfanner N. The protein import machinery of mitochondria. J Biol Chem. 2004 Apr 9; 279(15):14473-14476. doi:10.1074/jbc.R400003200 Cerca con Google

288. Willis S, Day CL, Hinds MG, Huang DC. The Bcl-2-regulated apoptotic pathway. J Cell Sci. 2003 Oct 15; 116(Pt 20):4053-4056. doi: 10.1242/jcs.00754 Cerca con Google

289. Wittig I, Schagger H. Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta. 2009; 1787:672–680. doi: 10.1016/j.bbabio.2008.12.016 Cerca con Google

290. Wolff JN, Camus MF, Clancy DJ, Dowling DK. Complete mitochondrial genome sequences of thirteen globally sourced strains of fruit fly (Drosophila melanogaster) form a powerful model for mitochondrial research. Mitochondrial DNA A DNA Mapp Seq Anal. 2016 Nov; 27(6):4672-4674. doi:10.3109/19401736.2015.1106496 Cerca con Google

291. Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000 Oct 16; 151(2):341-352 Cerca con Google

292. Xu X, Duan S, Yi F, Ocampo A, Liu GH, et al. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 2013 Sep 3; 18(3):325-332. doi: 10.1016/j.cmet.2013.06.005 Cerca con Google

293. Yarosh W, Monserrate J, Tong JJ, Tse S, Le PK, et al. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet. 2008 Jan; 4(1):e6. doi: 10.1371/journal.pgen.0040006 Cerca con Google

294. Yasuda O, Fukuo K, Sun X, Nishitani M, Yotsui T, et al. Apop-1, a novel protein inducing cyclophilin D-dependent but Bax/Bak-related channel-independent apoptosis. J Biol Chem. 2006 Aug 18; 281(33):23899-23907. doi: 10.1074/jbc.M512610200 Cerca con Google

295. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012 Aug 31; 337(6098): 1062–1065. doi: 10.1126/science.1219855 Cerca con Google

296. Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003 Jan 10; 112(1):41-50. http://dx.doi.org/10.1016/S0092-8674(02)01250-3 Vai! Cerca con Google

297. Zeczycki TN, Whelan J, Hayden WT, Brown DA, Shaikh SR. Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane. Biochem Biophys Res Commun. 2014 Jul 18; 450(1):366-371. doi: 10.1016/j.bbrc.2014.05.133 Cerca con Google

298. Zeng X, Neupert W, Tzagoloff A. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol Biol Cell. 2007 Feb; 18(2):617-626. Cerca con Google

299. Zerbes R.M., Bohnert M., Stroud D.A., von der Malsburg K., Kram A., et al. Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J. Mol. Biol. 2012; 422:183–191 10.1016/j.jmb.2012.05.004 Cerca con Google

300. Zeviani M, Carelli V. Mitochondrial disorders. Curr Opin Neurol. 2007 Oct; 20(5):564-571. doi: 10.1097/WCO.0b013e3282ef58cd Cerca con Google

301. Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, et al. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol. 2013 Mar 18; 200(6):807-820. doi: 10.1083/jcb.201208033 Cerca con Google

302. Zheng X, Ruas JL, Cao R, Salomons FA, Cao Y, et al. Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization. Mol Cell Biol. 2006 Jun; 26(12):4628-4641. Cerca con Google

303. Zhou C, Huang Y, Shao Y, May J, Prou D, et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008 Aug 19; 105(33):12022-12027. doi: 10.1073/pnas.0802814105 Cerca con Google

304. Zhu Z, Yao J, Johns T, Fu K, De Bie I, et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet. 1998 Dec; 20(4):337-343. doi:10.1038/3804 Cerca con Google

305. Zick M, Rabl R, Reichert AS. Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta. 2009 Jan; 1793(1):5-19. doi: 10.1016/j.bbamcr.2008.06.013 Cerca con Google

306. Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014 Dec; 22:38-48. doi: 10.1016/j.mib.2014.09.008 Cerca con Google

307. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A. 2010 Mar 16; 107(11):5018-5023. doi: 10.1073/pnas.0913485107 Cerca con Google

308. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial Reactive Oxygen Species (ROS) and ROS-induced ROS release. Physiol Rev. 2014 Jul; 94(3): 909–950. doi: 10.1152/physrev.00026.2013 Cerca con Google

309. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004 May; 36(5):449-451. doi: 10.1038/ng1341 Cerca con Google

310. Zwacka RM, Reuter A, Pfaff E, Moll J, Gorgas K, et al. The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species. EMBO J. 1994 Nov 1; 13(21):5129-5134. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record