Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Nagy, Dóra (2017) Peptidergic control of dormancy in Drosophila melanogaster. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 01 August 2020 for intellectual property related reasons.
Visibile to: nobody

10Mb

Abstract (english)

Organisms, especially those living in temperate zones, are constantly exposed to the cyclical changes of environmental factors due to the alternating seasons. In order to increase their chances of survival, they evolved different adaptive mechanisms to withstand the stress of harsh periods. Among insects, diapause is the most commonly used strategy to achieve seasonal synchronization.
Diapause is a neuro-hormonally regulated state of dormancy that enables insects to switch to an alternative developmental program when external conditions are not suitable for normal development. In the fruit fly, Drosophila melanogaster, diapause is characterized by the arrest of the ovarian development at previtellogenic stages. Insulin-like signaling has been identified as a key regulator of dormancy in many organisms. The insulin producing cells (IPCs), located in the Pars intercerebralis, are crucial neurosecretory cells that are neuroanatomically connected to the neuroendocrine center that governs hormonal regulation of diapause. They are responsible for the production and release of different insulin-like peptides that have been found to act as diapause-antagonist hormones. Here we found that two neuropeptides, pigment dispersing factor (PDF) and short neuropeptide F (sNPF), produced in a small subset of neurons (ventrolateral clock neurons, LNvs), modulate the diapause response of the flies, and this regulation is likely to exist via the IPCs. We discovered that an additional PDF-expressing neuron cluster in the tritocerebrum (PDF-Tri), previously shown to undergo apoptosis very early during adulthood, actually survives at cold temperatures and could be involved in cold-related functions. Interestingly, these PDF-Tri neurons were found to be synaptically connected to the IPCs in the cold.
Expression of genetically encoded sensors for the second messenger cAMP revealed that, IPCs respond to both synthetic neuropeptides PDF and sNPF. Surprisingly, they react with large cAMP increases to the co-application of the two peptides, raising the possibility of a synergistic effect between sNPF and PDF in controlling IPC activity. Since the detected cAMP responses are all abolished in PDF receptor mutant background, they seem to be regulated by PDFR. The study of two differently diapausing field lines highlighted marked differences between their PDF expression patterns, possibly related to diapause regulation.
When studying the general properties of D. melanogaster dormancy, we explored the relative relevance of some features of the experimental protocols used for diapause assays. While in the standard protocol flies are raised at temperatures in the range 23-25°C and exposed to diapause-inducing conditions starting from the adult stage, we investigated the effects of lower growing temperatures on diapause levels. We documented changes in diapause levels due to these altered settings, highlighting their importance in controlling dormancy. Additionally, adopting semi-natural light-dark profiles that better mimic outdoor conditions, strong photoperiodic diapause was observed, which was not detectable when simple rectangular light-dark regimes were used. Our findings should be considered in designing new protocols for diapause studies.

Abstract (italian)

Gli organismi, soprattutto quelli che vivono in zone temperate, sono costantemente esposti a variazioni cicliche di fattori ambientali a causa dell’alternarsi delle stagioni. Si sono evoluti diversi meccanismi di adattamento che permettono di resistere e superare i periodi sfavorevoli. Tra gli insetti, la diapausa è la più comune strategia usata per raggiungere la sincronizzazione stagionale.
La diapausa è uno stato di dormienza, regolato a livello neurologico ed ormonale, che permette agli insetti di avviare un programma di sviluppo alternativo quando le condizioni ambientali non permettono un normale sviluppo. Nel moscerino della frutta Drosophila melanogaster, la diapausa si manifesta con l’arresto dello sviluppo delle ovaie nella frase previtellogenica. Segnali di tipo insulin-like sono stati identificati come regolatori chiave della dormienza in molti organismi. Le insulin-producing cells (IPCs) si trovano nella Pars intercerebralis, sono neuroanatomicamente connessi al centro neuroendocrino che controlla la regolazione ormonale della diapausa. Queste cellule sono responsabili della produzione e del rilascio di differenti insulin-like peptides che sono stati identificati come ormoni antagonisti della diapausa. Abbiamo scoperto che due neuropeptidi, pigment dispersing factor (PDF) e short neuropeptide F (sNPF), prodotti da un piccolo gruppo di neuroni chiamati ventrolateral clock neurons, regolano il processo della diapausa nei moscerini attraverso le IPCs.
Inoltre, abbiamo osservato che un altro gruppo di neuroni che producono PDF nel tritocerebrum (PDF-Tri) e che si ritenevano strutture rapidamente eliminate per apoptosi nell’adulto, in realtà sopravvivono e persistono nell’adulto a basse temperature, suggerendo quindi un loro coinvolgimento in funzioni correlate con la resistenza al freddo. L’espressione di sensori genetically-encoded per il secondo messaggero cAMP, ha rilevato che le IPCs reagiscono ad entrambi i neuropeptidi PDF e sNPF. Sorprendentemente reagiscono con grandi aumenti di cAMP alla somministrazione dei due peptidi, suggerendo un effetto sinergico tra sNPF e PDF nel controllo dell’attività delle IPCs. Dal momento che le risposte cAMP sono state abolite nel background mutante per il recettore PDF, sembrano essere regolate dallo stesso.
Lo studio di due diverse linee che manifestano differenze nel comportamento relativo alla diapausa ha evidenziato differenze marcate nell’espressione di PDF, potenzialmente collegata della regolazione della diapausa.
Studiando le proprietà generali della diapausa in D. melanogaster, abbiamo esplorato l’importanza relativa di alcuni aspetti dei protocolli sperimentali usati per i saggi di diapausa. Mentre nel protocollo originale i moscerini vengono fatti sviluppare a temperature comprese nel range 23-25oC e quindi esposti a condizioni che inducono la diapausa solo a partire dallo stadio adulto, noi abbiamo studiato gli effetti sui livelli di diapausa dello sviluppo a temperature inferiori. Abbiamo documentato cambiamenti nei livelli di diapausa indotti da queste modifiche, sottolineando la loro importanza nel controllo della dormienza. Inoltre, adottando profili di luce-buio seminaturali, che mimano meglio le condizioni esterne, è stata osservata una diapausa altamente regolata dal fotoperiodo. Una risposta fotoperiodica non era stata rilevata in studi precedenti nei quali venivano utilizzati regimi di luce-buio rettangolari. I nostri risultati suggeriscono l’opportunità di disegnare nuovi protocolli, più rappresentativi delle condizioni naturali, per lo studio delle basi genetiche e fisiologiche della diapausa.

EPrint type:Ph.D. thesis
Tutor:Costa, Rodolfo
Supervisor:Mazzotta, Gabriella
Ph.D. course:Ciclo 29 > Corsi 29 > BIOSCIENZE E BIOTECNOLOGIE
Data di deposito della tesi:31 July 2017
Anno di Pubblicazione:31 July 2017
Key Words:diapausa Drosophila melanogaster Insulin producing cells neuropeptidi Pigment dispersing factor short neuropeptide F fotoperiodismo diapause Drosophila melanogaster Insulin producing cells neuropeptides Pigment dispersing factor short neuropeptide F photoperiodism
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:10456
Depositato il:16 Nov 2018 09:35
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Accili, D., & Arden, K. C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 117(4), 421-426. Cerca con Google

Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., ... & George, R. A. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195. Cerca con Google

Alfa, R. W., Park, S., Skelly, K. R., Poffenberger, G., Jain, N., Gu, X., … & Kim, S. K. (2015). Suppression of insulin production and secretion by a decretin hormone. Cell Metabolism, 21(2), 323-333. Cerca con Google

Alic, N., Hoddinott, M. P., Vinti, G., & Partridge, L. (2011). Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell, 10(1), 137-147. Cerca con Google

Allada, R., & Chung, B. Y. (2010). Circadian organization of behavior and physiology in Drosophila. Annual Review of Physiology, 72, 605-624. Cerca con Google

Allen, M. (2007). What makes a fly enter diapause? Fly, 1(6), 307-310. Cerca con Google

Alvarez, B., Martínez-A, C., Burgering, B. M., & Carrera, A. C. (2001). Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature, 413(6857), 744-747. Cerca con Google

Antonova, Y., Arik, A. J., Moore, W., Riehle, M. A., Brown, M. R. (2012). Insulin-like peptides: structure, signaling, and function, in Insect Endocrinology, ed Gilbert L. I., editor. (San Diego, CA: Academic Press), 63-92. Cerca con Google

Arquier, N., Géminard, C., Bourouis, M., Jarretou, G., Honegger, B, Paix A, Léopold, P. (2008). Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metabolism, 7(4), 333-338. Cerca con Google

Atsuko, M., Hiromu, K., & Tetsuya, O. (1988). Different profiles of ecdysone secretion and its metabolism between diapause-and nondiapause-destined cultures of the fleshfly, Boettcherisca peregrina. Comparative Biochemistry and Physiology Part A: Physiology, 91(1), 157-164. Cerca con Google

Ayala, J. E., Streeper, R. S., Desgrosellier, J. S., Durham, S. K., Suwanichkul, A., Svitek, C. A., … & O’Brien, R. M. (1999). Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes, 48(9), 1885-9. Cerca con Google

Bai, H., Kang, P., & Tatar, M. (2012). Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell, 11(6), 978-985. Cerca con Google

Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., & Bate, M. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. Journal of Neuroscience, 21(5), 1523-1531. Cerca con Google

Baker, F. C., Tsai, L. W., Reuter, C. C., & Schooley, D. A. (1987). In vivo fluctuation of JH, JH acid, and ecdysteroid titer, and JH esterase activity, during development of fifth stadium Manduca sexta. Insect Biochemistry, 17(7), 989-996. Cerca con Google

Barber, A. F., Erion, R., Holmes, T. C., & Sehgal, A. (2016). Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells. Genes & Development, 30(23), 2596-2606. Cerca con Google

Beckingham, K. M., Armstrong, J. D., Texada, M. J., Munjaal, R., & Baker, D. A. (2007). Drosophila melanogaster - the model organism of choice for the complex biology of multi-cellular organisms. Gravitational and Space Research, 18(2), 17-29. Cerca con Google

Belgacem, Y. H., & Martin, J. R. (2006). Disruption of insulin pathways alters trehalose level and abolishes sexual dimorphism in locomotor activity in Drosophila. Journal of Neurobiology, 66(1), 19-32. Cerca con Google

Birse, R. T., Söderberg, J. A., Luo, J., Winther, A. M., & Nässel, D. R. (2011). Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. The Journal of Experimental Biology, 214(24), 4201-8. Cerca con Google

Blanchardon, E., Grima, B., Klarsfeld, A., Chélot, E., Hardin, P. E., Préat, T., & Rouyer, F. (2001). Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. European Journal of Neuroscience, 13(5), 871-888. Cerca con Google

Boerjan, B., Verleyen, P., Huybrechts, J., Schoofs, L., & De Loof, A. (2010). In search for a common denominator for the diverse functions of arthropod corazonin: a role in the physiology of stress? General and Comparative Endocrinology, 166(2), 222-33. Cerca con Google

Böhni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B. F., Beckingham, K., & Hafen, E. (1999). Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell, 97(7), 865-875. Cerca con Google

Boothroyd, C. E., Wijnen, H., Naef, F., Saez, L., & Young, M. W. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genetics, 3(4), e54. Cerca con Google

Bownes, M., & Nöthiger, R. (1981). Sex determining genes and vitellogenin synthesis in Drosophila melanogaster. Molecular Genetics and Genomics, 182(2), 222-8. Cerca con Google

Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401-415. Cerca con Google

Bridges, C. B. (1916). Non-disjunction as proof of the chromosome theory of heredity. Genetics, 1(2), 107. Cerca con Google

Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M., & Edgar, B. A. (2002). Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell, 2(2), 239-249. Cerca con Google

Brody, T., & Cravchik, A. (2000). Drosophila melanogaster G protein-coupled receptors. The Journal of Cell Biology, 150(2), F83-F88. Cerca con Google

Broeck, J. V. (2001). Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides, 22(2), 241-254. Cerca con Google

Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., & Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology, 11(4), 213-221. Cerca con Google

Broughton, S. J., Piper, M. D. W., Ikeya, T., Bass, T. M., Jacobson, J., Driege, Y., … Partridge, L. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 3105-3110. Cerca con Google

Broughton, S., Alic, N., Slack, C., Bass, T., Ikeya, T., Vinti, G., … & Partridge, L. (2008). Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One, 3(11), e3721. Cerca con Google

Broughton, S. J., Slack, C., Alic, N., Metaxakis, A., Bass, T. M., & Driege, Y. & Partridge, L. (2010). DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to dietary restriction. Aging Cell, 9(3), 336-346. Cerca con Google

Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., … & Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6), 857-868. Cerca con Google

Buch, S., Melcher, C., Bauer, M., Katzenberger, J., & Pankratz, M. J. (2008). Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metabolism, 7(4), 321-332. Cerca con Google

Buszczak, M., Freeman, M. R., Carlson, J. R., Bender, M., Cooley, L., & Segraves, W. A. (1999). Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development, 126(20), 4581-9. Cerca con Google

Carlsson, M. A., Enell, L. E., & Nässel, D. R. (2013). Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila. Cell and Tissue Research, 353(3), 511-523. Cerca con Google

Cavaliere, V., Bernardi, F., Romani, P., Duchi, S., & Gargiulo, G. (2008). Building up the Drosophila eggshell: first of all the eggshell genes must be transcribed. Developmental Dynamics, 237(8), 2061-2072. Cerca con Google

Cavanaugh, D. J., Geratowski, J. D., Wooltorton, J. R., Spaethling, J. M., Hector, C. E., Zheng, X., ... & Sehgal, A. (2014). Identification of a circadian output circuit for rest: activity rhythms in Drosophila. Cell, 157(3), 689-701. Cerca con Google

Cazzamali, G., Saxild, N. P. ., & Grimmelikhuijzen, C. J. (2002). Molecular cloning and functional expression of a corazonin receptor. Biochemical and Biophysical Research Communications, 298(1), 31-36. Cerca con Google

Cerstiaensa, A. N. J. A., Benfekihb, L., Zouitenc, H., Verhaerta, P., De Loofa, A., & Schoofsa, L. (1999). Led-NPF-1 stimulates ovarian development in locusts. Peptides, 20(1), 39-44. Cerca con Google

Chen, C., Jack, J., & Garofalo, R. S. (1996). The Drosophila insulin receptor is required for normal growth. Endocrinology, 137(3), 846-856. Cerca con Google

Chen, W., Shi, W., Li, L., Zheng, Z., Li, T., Bai, W., & Zhao, Z. (2013). Regulation of sleep by the short neuropeptide F (sNPF) in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 43(9), 809-819. Cerca con Google

Chintapalli, V. R., Wang, J., & Dow, J. A. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, 39(6), 715-20. Cerca con Google

Chippendale, G. M., & Yin, C. M. (1974). Juvenile hormone and the induction of larval polymorphism and diapause of the southwestern corn borer, Diatraea grandiosella. Journal of Insect Physiology, 20(9), 1833-1847. Cerca con Google

Choi, Y. J., Lee, G., Hall, J. C., & Park, J. H. (2005). Comparative analysis of Corazonin-encoding genes (Crz’s) in Drosophila species and functional insights into Crz-expressing neurons. Journal of Comparative Neurology, 482(4), 372-385. Cerca con Google

Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., … & Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292(5514), 104-106. Cerca con Google

Coast, G. M. (1995). Synergism between diuretic peptides controlling ion and fluid transport in insect malpighian tubules. Regulatory Peptides, 57(3), 283-296. Cerca con Google

Colombani, J., Andersen, D. S. & Léopold, P. (2012). Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science, 336(6081), 582–585. Cerca con Google

Colombani, J., Andersen, D. S., Boulan, L., Boone, E., Romero, N., Virolle, V., … & Léopold, P. (2015). Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Current Biology, 25(20), 2723-2729. Cerca con Google

Conchon, S., Barrault, M. B., Miserey, S., Corvol, P., & Clauser, E. (1997). The C-terminal third intracellular loop of the rat AT1A angiotensin receptor plays a key role in G protein coupling specificity and transduction of the mitogenic signal. Journal of Biological Chemistry, 272(41), 25566-25572. Cerca con Google

Cong, X., Wang, H., Liu, Z., He, C., An, C., & Zhao, Z. (2015). Regulation of sleep by Insulin-like peptide system in Drosophila melanogaster. Sleep, 38(7), 1075-83. Cerca con Google

Crocker, A., Shahidullah, M., Levitan, I. B., & Sehgal, A. (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron, 65(5), 670-681. Cerca con Google

de Rooij, J., Zwartkruis, F. J., Verheijen, M. H., Cool, R. H., Nijman, S. M., Wittinghofer, A., & Bos, J. L. (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 396(6710), 474-477. Cerca con Google

Denlinger, D. L. (1985). Hormonal control of diapause. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon Press, Oxford. p. 353-412. Cerca con Google

Denlinger, D. L. (2002). Regulation of Diapause. Annual Review of Entomology, 47, 93-122. Cerca con Google

Depetris-Chauvin, A., Berni, J., Aranovich, E. J., Muraro, N. I., Beckwith, E. J., & Ceriani, M. F. (2011). Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs. Current Biology, 21(21), 1783-1793. Cerca con Google

Dijkers, P. F., Medema, R. H., Lammers, J. W. J., Koenderman, L., & Coffer, P. J. (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Current Biology, 10(19), 1201-1204. Cerca con Google

Dolezel, D. (2015). Photoperiodic time measurement in insects. Current Opinion in Insect Science, 7, 98-103. Cerca con Google

Donlea, J. M., Ramanan, N., & Shaw, P. J. (2009). Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science, 324(5923), 105-108. Cerca con Google

Dubrovsky, E. B. (2005). Hormonal cross talk in insect development. Trends in Endocrinology and Metabolism, 16(1), 6-11. Cerca con Google

Duvall, L. B., & Taghert, P. H. (2012). The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila. PLoS Biology, 10(6), e1001337. Cerca con Google

Gwinner, E. (1986). Circannual rhythms. Springer; Heidelberg, Germany Cerca con Google

Emerson, K. J., Uyemura, A. M., McDaniel, K. L., Schmidt, P. S., Bradshaw, W. E., & Holzapfel, C. M. (2009a). Environmental control of ovarian dormancy in natural populations of Drosophila melanogaster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(9), 825-829. Cerca con Google

Emerson, K. J., Bradshaw, W. E., & Holzapfel, C. M. (2009b). Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends in Genetics, 25(5), 217-225. Cerca con Google

Enell, L. E., Kapan, N., Söderberg, J. A., Kahsai, L., & Nässel, D. R. (2010). Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila. PloS One, 5(12), e15780. Cerca con Google

Feinberg, E. H., VanHoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., & Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57(3), 353-363. Cerca con Google

Fernández, M. P., Berni, J., & Ceriani, M. F. (2008). Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biology, 6(3), e69. Cerca con Google

Fernandez, R., Tabarini, D., Azpiazu, N., Frasch, M., & Schlessinger, J. (1995). The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. The EMBO Journal, 14(14), 3373-84. Cerca con Google

Flatt, T., Tu, M. P., & Tatar, M. (2005). Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays, 27(10), 999-1010. Cerca con Google

Foltenyi, K., Greenspan, R. J., & Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neuroscience, 10(9), 1160-1167. Cerca con Google

Fujiwara, Y., Tanaka, Y., Iwata, K. I, Rubio, R. O., Yaginuma, T., Yamashita, O., & Shiomi, K. (2006). ERK/MAPK regulates ecdysteroid and sorbitol metabolism for embryonic diapause termination in the silkworm, Bombyx mori. Journal of Insect Physiology, 52(6), 569-575. Cerca con Google

Fukuda, S. (1951). The Production of the diapause eggs by transplanting the suboesophageal ganglion in the silkworm. Proceedings of the Imperial Academy, 27(10), 672-677. Cerca con Google

Gäde, G., & Auerswald, L. (2003). Mode of action of neuropeptides from the adipokinetic hormone family. General and Comparative Endocrinology, 132(1), 10-20. Cerca con Google

Gäde, G., & Goldsworthy, G. J. (2003). Insect peptide hormones: A selective review of their physiology and potential application for pest control. Pest Management Science, 59(10), 1063-1075. Cerca con Google

Garczynski, S. F., Brown, M. R., Shen, P., Murray, T. F., & Crim, J. W. (2002). Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides, 23(4), 773-780. Cerca con Google

Garelli, A., Gontijo, A. M., Miguela, V., Caparros, E., & Dominguez, M. (2012). Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science, 336(6081), 579-582. Cerca con Google

Garofalo, R. S., & Rosen, O. M. (1988). Tissue localization of Drosophila melanogaster insulin receptor transcripts during development. Molecular and Cellular Biology, 8(4), 1638-47. Cerca con Google

Gatto, C. L., & Broadie, K. (2011). Fragile X mental retardation protein is required for programmed cell death and clearance of developmentally-transient peptidergic neurons. Developmental Biology, 356(2), 291-307. Cerca con Google

Gehlert, D. R. (1999). Role of hypothalamic neuropeptide Y in feeding and obesity. Neuropeptides, 33(5), 329-338. Cerca con Google

George, S. R., O'Dowd, B. F., & Lee, S. P. (2002). G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Reviews Drug Discovery, 1(10), 808-820. Cerca con Google

Giannakou, M. E., & Partridge, L. (2007). Role of insulin-like signalling in Drosophila lifespan. Trends in Biochemical Sciences, 32(4), 180-188. Cerca con Google

Goto, S. G., Han, B., & Denlinger, D. L. (2006). A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. Journal of Insect Physiology, 52(11), 1213-1218. Cerca con Google

Green, E. W., O’Callaghan, E. K., Hansen, C. N., Bastianello, S., Bhutani, S., Vanin, S., ... & Kyriacou, C. P. (2015a). Drosophila circadian rhythms in seminatural environments: Summer afternoon component is not an artifact and requires TrpA1 channels. Proceedings of the National Academy of Sciences, 112(28), 8702-8707. Cerca con Google

Green, E. W., O'Callaghan, E. K., Pegoraro, M., Armstrong, J. D., Costa, R., Kyriacou, C. P. (2015b) Genetic analysis of Drosophila circadian behavior in seminatural conditions. Methods in Enzymology, 551:121-33. Cerca con Google

Grönke, S., Clarke, D. F., Broughton, S., Andrews, T. D., & Partridge, L. (2010). Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genetics, 6(2), e1000857. Cerca con Google

Grönke, S., Partridge, L. (2010). The functions of insulin-like peptides in insects, in IGFs: Local repair and survival factors throughout life span, eds Clemmons D. C., Robinson I. C. A. F., Christen Y., editors. (Dordrecht: Springer), 105-124. Cerca con Google

Guo, S., Rena, G., Cichy, S., He, X., Cohen, P., & Unterman, T. (1999). Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. Journal of Biological Chemistry, 274(24), 17184-17192. Cerca con Google

Hahn, D. A., & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: Nutrient storage and utilization. Journal of Insect Physiology, 53(8), 760-773. Cerca con Google

Hahn, D. A., & Denlinger, D. L. (2011). Energetics of insect diapause. Annual Review of Entomology, 56(1), 103-121. Cerca con Google

Hall, R. K., Yamasaki, T., Kucera, T., Waltner-Law, M., O’Brien, R., & Granner, D. K. (2000). Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. Journal of Biological Chemistry, 275(39), 30169-30175. Cerca con Google

Hamanaka, Y., Yasuyama, K., Numata, H., & Shiga, S. (2005). Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. Journal of Comparative Neurology, 491(4), 390-399. Cerca con Google

Hardin, P. E. (2005). The circadian timekeeping system of Drosophila. Current Biology, 15(17), R714-22. Cerca con Google

Hasegawa, K. (1951). Studies on the voltinism in the silkworm, Bombyx mori L., with special reference to the organs concerning determination of voltinism (a preliminary note). Proceedings of the Japan Academy, 27(10), 667-671. Cerca con Google

Hauser, F., Cazzamali, G., Williamson, M., Blenau, W., & Grimmelikhuijzen, C. J. (2006). A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 80(1), 1-19. Cerca con Google

Helfrich-Förster, C. (1997). Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. Journal of Comparative Neurology, 380(3), 335-354. Cerca con Google

Helfrich-Förster, C. (1998). Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: A brain-behavioral study of disconnected mutants. Journal of Comparative Physiology A, 182(4), 435-453. Cerca con Google

Helfrich-Förster, C. (2005). Neurobiology of the fruit fly’s circadian clock. Genes, Brain, and Behavior, 4(2), 65-76. Cerca con Google

Helfrich-Förster, C. (2005). PDF has found its receptor. Neuron, 48(2), 161-163. Cerca con Google

Helfrich‐Förster, C., Shafer, O. T., Wülbeck, C., Grieshaber, E., Rieger, D., & Taghert, P. (2007). Development and morphology of the clock‐gene‐expressing lateral neurons of Drosophila melanogaster. Journal of Comparative Neurology, 500(1), 47-70. Cerca con Google

Helfrich-Förster, C., & Homberg, U. (1993). Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. Journal of Comparative Neurology, 337(2), 177-190. Cerca con Google

Hentze, J. L., Carlsson, M. A., Kondo, S., Nässel, D. R., & Rewitz, K. F. (2015). The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila. Scientific Reports, 5, 11680. Cerca con Google

Hewes, R. S., Schaefer, A. M., & Taghert, P. H. (2000). The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics, 155(4), 1711-1723. Cerca con Google

Hewes, R. S., & Taghert, P. H. (2001). Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research, 11(6), 1126-1142. Cerca con Google

Hodek, I. (1971). Induction of adult diapause in Pyrrhocoris apterus L. by short cold exposure. Oecologia, 6(2), 109-117. Cerca con Google

Hodková, M. (1976). Nervous inhibition of corpora allata by photoperiod in Pyrrhocoris apterus. Nature, 263, 619-21. Cerca con Google

Holst, B., Hastrup, H., Raffetseder, U., Martini, L., & Schwartz, T. W. (2001). Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis. Journal of Biological Chemistry, 276(23), 19793-19799. Cerca con Google

Homberg, U., Würden, S., Dircksen, H., & Rao, K. R. (1991). Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell and Tissue Research, 266(2), 343-357. Cerca con Google

Honegger, B., Galic, M., Köhler, K., Wittwer, F., Brogiolo, W., Hafen, E., & Stocker, H. (2008). Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. Journal of Biology, 7(3), 10. Cerca con Google

Hong, S. H., Lee, K. S., Kwak, S. J., Kim, A. K., Bai, H., Jung, M. S., … & Yu, K. (2012). Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genetics, 8(8), 1-15. Cerca con Google

Huang, H., & Tindall, D. J. (2011). Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(11), 1961-1964. Cerca con Google

Huang, X., Warren, J. T., & Gilbert, L. I. (2008). New players in the regulation of ecdysone biosynthesis. Journal of Genetics and Genomics, 35(1), 1-10. Cerca con Google

Huybrechts, J., De Loof, A., & Schoofs, L. (2004). Diapausing Colorado potato beetles are devoid of short neuropeptide F I and II. Biochemical and Biophysical Research Communications, 317(3), 909-916. Cerca con Google

Hyun, S., Lee, Y., Hong, S. T., Bang, S., Paik, D., Kang, J., … & Bae, E. (2005). Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron, 48(2), 267-78. Cerca con Google

Iga, M., Nakaoka, T., Suzuki, Y., & Kataoka, H. (2014). Pigment dispersing factor regulates ecdysone biosynthesis via bombyx neuropeptide G protein coupled receptor-B2 in the prothoracic glands of Bombyx mori. PLoS One, 9(7), e103239. Cerca con Google

Ikeno, T., Tanaka, S. I., Numata, H., & Goto, S. G. (2010). Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biology, 8(1), 116. Cerca con Google

Ikeno, T., Numata, H., & Goto, S. G. (2011a). Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. Journal of Insect Physiology, 57(7), 935-938. Cerca con Google

Ikeno, T., Numata, H., & Goto, S. G. (2011b). Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochemical and Biophysical Research Communications, 410(3), 394-397. Cerca con Google

Ikeno, T., Ishikawa, K., Numata, H., Goto, S.G. (2013). Circadian clock gene, Clock, is involved in the photoperiodic response of the bean bug Riptortus pedestris. Physiological entomology, 38(2), 157-162. Cerca con Google

Ikeno, T., Numata, H., Goto, S. G., & Shiga, S. (2014). Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris. The Journal of Experimental Biology, 217(3), 453-62. Cerca con Google

Ikeya, T., Galic, M., Belawat, P., Nairz, K., & Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current Biology, 12(15), 1293-1300. Cerca con Google

Im, S. H., & Taghert, P. H. (2010). PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. Journal of Comparative Neurology, 518(11), 1925-1945. Cerca con Google

Inagaki, H. K., Panse, K. M., & Anderson, D. J. (2014). Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4), 806-820. Cerca con Google

Jan, L. Y., & Jan, Y. N. (1982). Peptidergic transmission in sympathetic ganglia of the frog. The Journal of Physiology, 327(1), 219-246. Cerca con Google

Jaramillo, A. M., Zheng, X., Zhou, Y., Amado, D. A., Sheldon, A., Sehgal, A., & Levitan, I. B. (2004). Pattern of distribution and cycling of SLOB, Slowpoke channel binding protein, in Drosophila. BMC Neuroscience, 5(3). Cerca con Google

Johard, H. A., Yoishii, T., Dircksen, H., Cusumano, P., Rouyer, F., Helfrich-Förster, C., & Nässel, D. R. (2009). Peptidergic clock neurons in Drosophila: ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. Journal of Comparative Neurology, 516(1), 59-73. Cerca con Google

Johnson, E. C., Shafer, O. T., Trigg, J. S., Park, J., Schooley, D. A., Dow, J. A., & Taghert, P. H. (2005). A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. The Journal of Experimental Biology, 208(7), 1239-46. Cerca con Google

Kahsai, L., Kapan, N., Dircksen, H., Winther, Å. M. E., & Nässel, D. R. (2010a). Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS One, 5(7), e11480. Cerca con Google

Kahsai, L., Martin, J. R., & Winther, A. M. (2010b). Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. The Journal of Experimental Biology, 213(13), 2256-2265. Cerca con Google

Kapan, N., Lushchak, V., Luo, J., & Nässel, D. R. (2012). Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cellular and Molecular Life Sciences, 69(23), 4051-4066. Cerca con Google

Kilts, J. D., Gerhardt, M. A., Richardson, M. D., Sreeram, G., Mackensen, G. B., Grocott, H. P., ... & Schwinn, D. A. (2000). β2-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both Gs and Gi. Circulation Research, 87(8), 705-709. Cerca con Google

Kim, W. J., Jan, L. Y., & Jan, Y. N. (2013). A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron, 80(5), 1190-1205. Cerca con Google

Kim, J., & Neufeld, T. P. (2015). Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3. Nature Communications, 6, 1-10. Cerca con Google

Kim, Y. J., Spalovská-Valachová, I., Cho, K.-H., Zitnanova, I., Park, Y., Adams, M. E., & Zitnan, D. (2004). Corazonin receptor signaling in ecdysis initiation. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6704-6709. Cerca con Google

Kimura, K. D., Tissenbaum, H. A., Liu, Y., & Ruvkun, G. (1997). daf-2 , an insulin receptor–like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 277(5328), 942-946. Cerca con Google

Kops, G. J., de Ruiter, N. D., De Vries-Smits, A. M., Powell, D. R., Bos, J. L., & Boudewijn M. T. (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature, 398(6728), 630-634. Cerca con Google

Kramer, J. M., Davidge, J. T., Lockyer, J. M., & Staveley, B. E. (2003). Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Developmental Biology, 3(1), 5. Cerca con Google

Kreitzman, L., & Foster, R. (2009). Seasons of Life: The biological rhythms that enable living things to thrive and survive. Yale University Press. Cerca con Google

Krupp, J. J., Billeter, J. C., Wong, A., Choi, C., Nitabach, M. N., & Levine, J. D. (2013). Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in Drosophila. Neuron, 79(1), 54-68. Cerca con Google

Kubrak, O. I., Kučerová, L., Theopold, U., & Nässel, D. R. (2014). The sleeping beauty: How reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One, 9(11), e113051. Cerca con Google

Kubrak, O. I., Lushchak, V., Zandawala, M., & Nässel, D. R. (2016). Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biology, 6(11), 160152. Cerca con Google

Kučerová, L., Kubrak, O. I., Bengtsson, J. M., Strnad, H., Nylin, S., Theopold, U., & Nässel, D. R. (2016). Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics, 17(1), 50. Cerca con Google

Kula-Eversole, E., Nagoshi, E., Shang, Y., Rodriguez, J., Allada, R., & Rosbash, M. (2010). Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13497-502. Cerca con Google

Kwak, S. J., Hong, S. H., Bajracharya, R., Yang, S. Y., Lee, K. S., & Yu, K. (2013). Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion. PLoS One, 8(7), e68641. Cerca con Google

LaFever, L., & Drummond-Barbosa, D. (2005). Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science, 309(5737), 1071-1073. Cerca con Google

Lai, S.-L., & Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nature Neuroscience, 9(5), 703-709. Cerca con Google

Lankinen, P. (1986). Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. Journal of Comparative Physiology A, 159(1), 123-142. Cerca con Google

Layalle, S., Arquier, N., & Léopold, P. (2008). The TOR pathway couples nutrition and developmental timing in Drosophila. Developmental Cell, 15(4), 568-577. Cerca con Google

Lear, B. C., Merrill, C. E., Lin, J. M., Schroeder, A., Zhang, L., & Allada, R. (2005). A G Protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron, 48(2), 221-227. Cerca con Google

Lee, K. S., Kwon, O. Y., Lee, J. H., Kwon, K., Min, K. J., Jung, S. A., … & Yu, K. (2008). Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nature Cell Biology, 10(4), 468-75. Cerca con Google

Lee, K. S., You, K. H., Choo, J. K., Han, Y. M., & Yu, K. (2004). Drosophila short neuropeptide F regulates food intake and body size. Journal of Biological Chemistry, 279(49), 50781-50789. Cerca con Google

Li, Q., & Gong, Z. (2015). Cold-sensing regulates Drosophila growth through insulin-producing cells. Nature Communications, 6:10083. Cerca con Google

Li, X. F., Bowe, J. E., Mitchell, J. C., Brain, S. D., Lightman, S. L., & O’Byrne, K. T. (2004). Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: A novel neural action for calcitonin gene-related peptide. Endocrinology, 145(4), 1556-1563. Cerca con Google

Liang, X., Holy, T. E., & Taghert, P. H. (2016). Synchronous Drosophila circadian pacemakers display nonsynchronous Ca2+ rhythms in vivo. Science, 351(6276), 976-981. Cerca con Google

Liang, X., Holy, T. E., & Taghert, P. H. (2017). A series of suppressive signals within the Drosophila circadian neural circuit generates sequential daily outputs. Neuron. 94(6):1173-1189 Cerca con Google

Lindenburg, L., & Merkx, M. (2014). Engineering genetically encoded FRET sensors. Sensors, 14(7), 11691-11713. Cerca con Google

Lissandron, V., Rossetto, M. G., Erbguth, K., Fiala, A., Daga, A., & Zaccolo, M. (2007). Transgenic fruit-flies expressing a FRET-based sensor for in vivo imaging of cAMP dynamics. Cellular Signalling, 19(11), 2296-2303. Cerca con Google

Liu, Y., Liao, S., Veenstra, J. A., & Nässel, D. R. (2016). Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Scientific Reports, 6, 26620. Cerca con Google

Lu, H. L., & Pietrantonio, P. V. (2011). Immunolocalization of the short neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis invicta Buren). BMC neuroscience, 12(1), 57. Cerca con Google

Luo, J., Becnel, J., Nichols, C. D., & Nässel, D. R. (2012). Insulin-producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A receptor. Cellular and Molecular Life Sciences, 69(3), 471-84. Cerca con Google

Luo, J., Lushchak, V., Goergen, P., Williams, M. J., & Nässel, D. R. (2014). Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior. PLoS One, 9(6), e99732 Cerca con Google

MacRae, T. H. (2010). Gene expression, metabolic regulation and stress tolerance during diapause. Cellular and Molecular Life Sciences, 67(14), 2405-2424. Cerca con Google

Marchal, E., Vandersmissen, H. P., Badisco, L., Van de Velde, S., Verlinden, H., Iga, M., … & Broeck, J. V. (2010). Control of ecdysteroidogenesis in prothoracic glands of insects: A review. Peptides, 31(3), 506-519. Cerca con Google

Masuyama, K., Zhang, Y., Rao, Y., & Wang, J. W. (2012). Mapping neural circuits with activity-dependent nuclear import of a transcription factor. Journal of neurogenetics, 26(1), 89-102. Cerca con Google

Fernández, M. P., Berni, J., & Ceriani, M. F. (2008). Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biology, 6(1), e69. Cerca con Google

McClure, K. D., & Heberlein, U. (2013). A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(9), 4044-54. Cerca con Google

McElwee, J. J., Schuster, E., Blanc, E., Thornton, J., & Gems, D. (2006). Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mechanisms of ageing and development, 127(5), 458-472. Cerca con Google

Menegazzi, P., Vanin, S., Yoshii, T., Rieger, D., Hermann, C., Dusik, V., … Costa, R. (2013). Drosophila clock neurons under natural conditions. Journal of Biological Rhythms, 28(1), 3-14. Cerca con Google

Mertens, I., Meeusen, T., Huybrechts, R., De Loof, A., & Schoofs, L. (2002). Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochemical and Biophysical Research Communications, 297(5), 1140-1148. Cerca con Google

Mertens, I., Vandingenen, A., Johnson, E. C., Shafer, O. T., Li, W., Trigg, J. S., … Taghert, P. H. (2005). PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron, 48(2), 213-219. Cerca con Google

Meuti, M. E., Stone, M., Ikeno, T., & Denlinger, D. L. (2015). Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. The Journal of Experimental Biology, 218(3), 412-22. Cerca con Google

Montelli, S., Mazzotta, G., Vanin, S., Caccin, L., Corrà, S., De Pittà, C., ... & Costa, R. (2015). period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster. Journal of Biological Rhythms, 30(3), 217-227. Cerca con Google

Montrose-Rafizadeh, C., Avdonin, P., Garant, M. J., Rodgers, B. D., Kole, S., Yang, H., ... & Bernier, M. (1999). Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology, 140(3), 1132-1140. Cerca con Google

Nadal, A., Marrero, P. F., & Haro, D. (2002). Down-regulation of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by insulin: the role of the forkhead transcription factor FKHRL1. The Biochemical Journal, 366(1), 289-97. Cerca con Google

Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nature Biotechnology, 19(2), 137-41. Cerca con Google

Nässel, D. R. (1993). Neuropeptides in the insect brain: a review. Cell and Tissue Research, 273(1), 1-29. Cerca con Google

Nässel, D. R., Enell, L. E., Santos, J. G., Wegener, C., & Johard, H. A. (2008). A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neuroscience, 9(1), 90. Cerca con Google

Nässel, D. R., & Winther, Å. M. (2010). Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology, 92(1), 42-104. Cerca con Google

Nässel, D. R., Kubrak, O. I., Liu, Y., Luo, J., & Lushchak, O. V. (2013). Factors that regulate insulin producing cells and their output in Drosophila. Frontiers in Physiology, 4, p. 252. Cerca con Google

Nijhout, H. F., & Williams, C. M. (1974). Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. Journal of Experimental Biology, 61(2), 493-501. Cerca con Google

Nikolaev, V. O., Bünemann, M., Hein, L., Hannawacker, A., & Lohse, M. J. (2004). Novel single chain cAMP sensors for receptor-induced signal propagation. Journal of Biological Chemistry, 279(36), 37215-37218. Cerca con Google

Nitabach, M. N., & Taghert, P. H. (2008). Organization of the Drosophila circadian control circuit. Current Biology, 18(2), 84-93. Cerca con Google

Offermanns, S., Iida-Klein, A., Segre, G. V., & Simon, M. I. (1996). G alpha q family members couple parathyroid hormone (PTH)/PTH-related peptide and calcitonin receptors to phospholipase C in COS-7 cells. Molecular Endocrinology, 10(5), 566-574. Cerca con Google

Okamoto, N., Yamanaka, N., Yagi, Y., & Nishida, Y. (2009). A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Developmental Cell, 17(6), 885-891. Cerca con Google

Okamoto, N., Nakamori, R., Murai, T., Yamauchi, Y., Masuda, A. & Nishimura, T. (2013). A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes and Development, 27, 87-97. Cerca con Google

Palanche, T., Ilien, B., Zoffmann, S., Reck, M. P., Bucher, B., Edelstein, S. J., & Galzi, J. L. (2001). The neurokinin A receptor activates calcium and cAMP responses through distinct conformational states. Journal of Biological Chemistry, 276(37), 34853-34861. Cerca con Google

Park, J. H., Helfrich-Förster, C., Lee, G., Liu, L., Rosbash, M., & Hall, J. C. (2000). Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3608-3613. Cerca con Google

Park, D., Veenstra, J. A., Park, J. H., & Taghert, P. H. (2008). Mapping peptidergic cells in Drosophila: where DIMM fits in. PloS One, 3(3), e1896. Cerca con Google

Pavelka, J., Shimada, K., & Kostal, V. (2003). Timeless: A link between fly’s circadian and photoperiodic clocks? European Journal of Entomology, 100(2), 255-265. Cerca con Google

Pegoraro, M., Zonato, V., Tyler, E. R., Fedele, G., Kyriacou, C. P., & Tauber, E. (2017). Geographical analysis of diapause inducibility in European Drosophila melanogaster populations. Journal of Insect Physiology, 98, 238-244. Cerca con Google

Peng, Y., Stoleru, D., Levine, J. D., Hall, J. C., & Rosbash, M. (2003). Drosophila free-running rhythms require intercellular communication. PLoS Biology, 1(1), e13. Cerca con Google

Pengelley, E. T., & Fisher, K. C. (1957). Onset and cessation of hibernation under constant temperature and light in the golden-mantled ground squirrel (Citellus lateralis). Nature, 180, 1371–1372. Cerca con Google

Persson, M. G., Eklund, M. B., Dircksen, H., Eric Muren, J., & Nässel, D. R. (2001). Pigment-dispersing factor in the locust abdominal ganglia may have roles as circulating neurohormone and central neuromodulator. Journal of Neurobiology, 48(1), 19-41. Cerca con Google

Peschel, N., & Helfrich-Förster, C. (2011). Setting the clock - By nature: Circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Letters, 585(10), 1435-1442. Cerca con Google

Petryk, A., Warren, J. T., Marqués, G., Jarcho, M. P., Gilbert, L. I., Kahler, J., … & O’Connor, M. B. (2003). Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13773-13778. Cerca con Google

Poelchau, M. F., Reynolds, J. A, Elsik, C. G., Denlinger, D. L., & Armbruster, P. A. (2013). RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. The Journal of Experimental Biology, 216(21), 4082-90. Cerca con Google

Price, E. O. (1999). Behavioral development in animals undergoing domestication. Applied Animal Behaviour Science, 65(3), 245-271. Cerca con Google

Price, M. D., Merte, J., Nichols, R., Koladich, P. M., Tobe, S. S., & Bendena, W. G. (2002). Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides, 23(4), 787-794. Cerca con Google

Puig, O., Marr, M. T., Ruhf, M. L., & Tjian, R. (2003). Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes & Development, 17(16), 2006-2020. Cerca con Google

Rajan, A., & Perrimon, N. (2012). Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 2(151), 123-137. Cerca con Google

Readio, J., Chen, M. H., & Meola, R. (1999). Juvenile hormone biosynthesis in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 36(3), 355-360. Cerca con Google

Renn, S. C. ., Park, J. H., Rosbash, M., Hall, J. C., & Taghert, P. H. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell, 99(7), 791-802. Cerca con Google

Richard, D. S., Gilbert, M., Crum, B., Hollinshead, D. M., & Scheswohl, D. (2001). Yolk protein endocytosis by oocytes in Drosophila melanogaster: immunofluorescent localization of clathrin, adaptin and the yolk protein receptor. Journal of Insect Physiology, 47, 715-723. Cerca con Google

Richard, D. S., Rybczynski, R., Wilson, T. G., Wang, Y., Wayne, M. L., Zhou, Y., … & Harshman, L. G. (2005). Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids: Female sterility of the chico1 insulin signaling mutation is autonomous to the ovary. Journal of Insect Physiology, 51(4), 455-464. Cerca con Google

Richard, D. S., Watkins, N. L., Serafin, R. B., & Gilbert, L. I. (1998). Ecdysteroids regulate yolk protein uptake by Drosophila melanogaster oocytes. Journal of Insect Physiology, 44(7), 637-644. Cerca con Google

Riddiford, L. M. (1994). Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Advances in Insect Physiology, 24, 213-274. Cerca con Google

Rieger, D., Shafer, O. T., Tomioka, K., & Helfrich-Förster, C. (2006). Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. Journal of Neuroscience, 26(9), 2531-2543. Cerca con Google

Rieger, D., Fraunholz, C., Popp, J., Bichler, D., Dittmann, R., & Helfrich-Förster, C. (2007). The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. Journal of Biological Rhythms, 22(5), 387-399. Cerca con Google

Riihimaa, A. J., & Kimura, M. T. (1988). A mutant strain of Chymomyza costata (Diptera, Drosophilidae) insensitive to diapause-inducing action of photoperiod. Physiological Entomology, 13(4), 441-445. Cerca con Google

Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., & Patel, Y. C. (2000). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science, 288(5463), 154-157. Cerca con Google

Root, C. M., Ko, K. I., Jafari, A., & Wang, J. W. (2011). Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1), 133-144. Cerca con Google

Rosato, E., Trevisan, A., Sandrelli, F., Zordan, M., Kyriacou, C. P., & Costa, R. (1997). Conceptual translation of timeless reveals alternative initiating methionines in Drosophila. Nucleic acids research, 25(3), 455-457. Cerca con Google

Rountree, D. B., & Bollenbacher, W. E. (1986). The release of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, is controlled intrinsically by juvenile hormone. Journal of Experimental Biology, 120(1), 41-58. Cerca con Google

Rozenfeld, R., & Devi, L. A. (2010). Receptor heteromerization and drug discovery. Trends in Pharmacological Sciences, 31(3), 124-130. Cerca con Google

Ruan, Y., Chen, C., Cao, Y., & Garofalo, R. S. (1995). The Drosophila insulin receptor contains a novel carboxyl-terminal extension likely to play an important role in signal transduction. Journal of Biological Chemistry, 270(9), 4236-4243. Cerca con Google

Rulifson, E. J., Kim, S. K., & Nusse, R. (2002). Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science, 296(5570), 1118-1121. Cerca con Google

Salminen, T. S., Vesala, L., Laiho, A., Merisalo, M., Hoikkala, A., & Kankare, M. (2015). Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Scientific reports, 5, 11197. Cerca con Google

Sandrelli, F., Tauber, E., Pegoraro, M., Mazzotta, G., Cisotto, P., Landskron, J., ... & Costa, R. (2007). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science, 316(5833), 1898-1900. Cerca con Google

Sano, H., Nakamura, A., Texada, M. J., Truman, J. W., Ishimoto, H., Kamikouchi, A., … & Kojima, M. (2015). The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLoS Genetics, 11(5), e1005209. Cerca con Google

Saunders, D. S., Richard, D. S., Applebaum., S. W., Ma, M., & Gilbert, L. I. (1990). Photoperiodic diapause in Drosophila melanogaster involves a block to the juvenile hormone regulation of ovarian maturation. General and Comparative Endocrinology, 79(2), 174-84. Cerca con Google

Saunders, D. S. (1990). The circadian basis of ovarian diapause regulation in Drosophila melanogaster: is the period gene causally involved in photoperiodic time measurement? Journal of Biological Rhythms, 5(4), 315-331. Cerca con Google

Saunders, D. S., Henricht, V. C., & Gilbert, L. I. (1989). Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proceedings of the National Academy of Sciences, 86(10), 3748-3752. Cerca con Google

Schiesari, L., Andreatta, G., Kyriacou, C. P., O’Connor, M. B., & Costa, R. (2016). The insulin-like proteins dILPs-2/5 determine diapause inducibility in Drosophila. PLoS One, 11(9), e0163680. Cerca con Google

Schiesari, L., Kyriacou, C. P., & Costa, R. (2011). The hormonal and circadian basis for insect photoperiodic timing. FEBS Letters, 585(10), 1450-1460. Cerca con Google

Schlichting, M., Menegazzi, P., Lelito, K. R., Yao, Z., Buhl, E., Dalla Benetta, E., ... & Shafer, O. T. (2016). A neural network underlying circadian entrainment and photoperiodic adjustment of sleep and activity in Drosophila. Journal of Neuroscience, 36(35), 9084-9096. Cerca con Google

Schmidt, P. S., Matzkin, L., Ippolito, M., & Eanes, W. F. (2005a). Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster. Evolution, 59(8), 1721-32. Cerca con Google

Schmidt, P. S., Paaby, A. B., & Heschel, M. S. (2005b). Genetic variance for diapause expression and associated life histories in Drosophila melanogaster. Evolution, 59(12), 2616-2625. Cerca con Google

Schmoll, D., Walker, K. S., Alessi, D. R., Grempler, R., Burchell, A., Guo, S., … Unterman, T. G. (2000). Regulation of glucose-6-phosphatase gene expression by protein kinase Bα and the forkhead transcription factor FKHR: Evidence for insulin response unit (IRU)-dependent and independent effects of insulin on promoter activity. Journal of Biological Chemistry, 275(46), 36324-36333. Cerca con Google

Schneider, L. E., Sun, E. T., Garland, D. J., & Taghert, P. H. (1993). An immunocytochemical study of the FMRFamide neuropeptide gene products in Drosophila. Journal of Comparative Neurology, 337(3), 446-460. Cerca con Google

Schoofs, L., Clynen, E., Cerstiaens, A., Baggerman, G., Wei, Z., Vercammen, T., … & Tanaka, S. (2001). Newly discovered functions for some myotropic neuropeptides in locusts. Peptides, 22(2), 219-227. Cerca con Google

Selcho, M., Millán, C., Palacios-Muñoz, A., Ruf, F., Ubillo, L., Chen, J., ... & Ewer, J. (2017). Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nature Communications, 8: 15563. Cerca con Google

Seluzicki, A., Flourakis, M., Kula-Eversole, E., Zhang, L., Kilman, V., & Allada, R. (2014). Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior. PLoS Biology, 12(3), e1001810. Cerca con Google

Sha, K., Choi, S. H., Im, J., Lee, G. G., Loeffler, F., & Park, J. H. (2014). Regulation of ethanol-related behavior and ethanol metabolism by the corazonin neurons and corazonin receptor in Drosophila melanogaster. PLoS One, 9(1). e87062. Cerca con Google

Shafer, O. T., Kim, D. J., Dunbar-Yaffe, R., Nikolaev, V. O., Martin, J., & Taghert, P. H. (2008). Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron, 58(2), 223-237. Cerca con Google

Shang, Y., Donelson, N. C., Vecsey, C. G., Guo, F., Rosbash, M. & Griffith, L. C. (2013). Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron, 80(1), 171-183. Cerca con Google

Shiga, S., Davis, N. T., & Hildebrand, J. G. (2003). Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. Journal of Comparative Neurology, 462(3), 275-285. Cerca con Google

Shiga, S., & Numata, H. (2007). Neuroanatomical approaches to the study of insect photoperiodism. Photochemistry and Photobiology, 83(1), 76-86. Cerca con Google

Shiga, S., & Numata, H. (2009). Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. The Journal of Experimental Biology, 212(6), 867-77. Cerca con Google

Sim, C., & Denlinger, D. L. (2008). Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6777-81. Cerca con Google

Sim, C., & Denlinger, D. L. (2013). Insulin signaling and the regulation of insect diapause. Frontiers in Physiology, 4, 189. Cerca con Google

Skrzydelski, D., Lhiaubet, A. M., Lebeau, A., Forgez, P., Yamada, M., Hermans, E., ... & Pelaprat, D. (2003). Differential involvement of intracellular domains of the rat NTS1 neurotensin receptor in coupling to G proteins: a molecular basis for agonist-directed trafficking of receptor stimulus. Molecular Pharmacology, 64(2), 421-429. Cerca con Google

Slaidina, M., Delanoue, R., Gronke, S., Partridge, L., & Léopold, P. (2009). A Drosophila insulin-like peptide promotes growth during nonfeeding states. Developmental Cell, 17(6), 874-884. Cerca con Google

Socha, R., Šula, J., Kodrík, D., & Gelbič, I. (1991). Hormonal control of vitellogenin synthesis in Pyrrhocoris apterus (L.) (Heteroptera). Journal of Insect Physiology, 37(11), 805-816. Cerca con Google

Söderberg, J. A., Birse, R. T., & Nässel, D. R. (2011). Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLoS One, 6(5), e19866. Cerca con Google

Spielman, A. (1974). Effect of synthetic juvenile hormone on ovarian diapause of Culex pipiens mosquitoes. Journal of Medical Entomology, 11(2), 223-225. Cerca con Google

Stanley, C. E., & Kulathinal, R. J. (2016). Genomic signatures of domestication on neurogenetic genes in Drosophila melanogaster. BMC Evolutionary Biology, 16(1), 6. Cerca con Google

Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J., & Wu, C. F. (1994). Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Journal of Comparative Physiology A, 175(2), 179-191. Cerca con Google

Stoleru, D., Peng, Y., Agosto, J., & Rosbash, M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature, 431(7010), 862-868. Cerca con Google

Talsma, A. D., Christov, C. P., Terriente-Felix, A., Linneweber, G. A., Perea, D., Wayland, M., … & Miguel-Aliaga, I. (2012). Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila. Proceedings of the National Academy of Sciences, 109(30), 12177-12182. Cerca con Google

Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nature reviews Molecular Cell Biology, 7(2), 85-96. Cerca con Google

Tatar, M., Chien, S. A., & Priest, N. K. (2001). Negligible senescence during reproductive dormancy in Drosophila melanogaster. The American Naturalist, 158(3), 248-258. Cerca con Google

Tatar, M., Bartke, A., & Antebi, A. (2003). The endocrine regulation of aging by insulin-like signals. Science, 299(5611), 1346-1351. Cerca con Google

Tatar, M., Kopelman, A., Epstein, D., Tu, M. P., Yin, C. M., & Garofalo, R. S. (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 292(5514), 107-10. Cerca con Google

Tauber, E., Zordan, M., Sandrelli, F., Pegoraro, M., Osterwalder, N., Breda, C., … & Costa, R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science, 316(5833), 1895-8. Cerca con Google

Tauber, M. J., Tauber, C. A., & Masaki, S. (1986). Seasonal Adaptations of Insects. (Oxford University Press, USA. Cerca con Google

Tawfik, A. I., Tanaka, S., De Loof, A., Schoofs, L., Baggerman, G., Waelkens, E., … & Pener, M. P. (1999). Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proceedings of the National Academy of Sciences of the United States of America, 96(12), 7083-7087. Cerca con Google

Teleman, A. A. (2010). Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochemical Journal, 425(1), 13-26. Cerca con Google

Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., ... & Bargmann, C. I. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods, 6(12), 875-881. Cerca con Google

Tran, H., Brunet, A., Griffith, E. C., & Greenberg, M. E. (2003). The Many Forks in FOXO’s Road. Science’s STKE, 2003(172), RE5. Cerca con Google

Tu, M. P., Yin, C. M., & Tatar, M. (2005). Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. General and Comparative Endocrinology, 142(3), 347-356. Cerca con Google

Truman, J. W., & Riddiford, L. M. (2002). Endocrine insights into the evolution of metamorphosis in insects. Annual Review of Entomology, 47(1), 467-500. Cerca con Google

Vanin, S., Bhutani, S., Montelli, S., Menegazzi, P., Green, E., Pegoraro, M., … Kyriacou, C. (2012). Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature, 484(7394), 371-375. Cerca con Google

Vecsey, C. G., Pírez, N., & Griffith, L. C. (2014). The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons. Journal of Neurophysiology, 111(5), 1033-45. Cerca con Google

Veenstra, J. A. (1989). Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters, 250(2), 231-234. Cerca con Google

Veenstra, J. A., Agricola, H. J., & Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell and Tissue Research, 334(3), 499-516. Cerca con Google

Villablanca, A. C., Murphy, C. J., & Reid, T. W. (1994). Growth-promoting effects of substance P on endothelial cells in vitro. Synergism with calcitonin gene-related peptide, insulin, and plasma factors. Circulation research, 75(6), 1113-1120. Cerca con Google

Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B., & Axel, R. (2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell, 112(2), 271-282. Cerca con Google

Williams, C. M., & Adkisson, P. L. (1964). An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antheraea pernyi. Biological Bulletin, 127(3), 511-525. Cerca con Google

Williams, K. D., Busto, M., Suster, M. L., So, A. K. C., Ben-Shahar, Y., Leevers, S. J., & Sokolowski, M. B. (2006). Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proceedings of the National Academy of Sciences, 103(43), 15911-15915. Cerca con Google

Winther, Å. M., Acebes, A., & Ferrús, A. (2006). Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Molecular and Cellular Neuroscience, 31(3), 399-406. Cerca con Google

Wise, S., Davis, N. T., Tyndale, E., Noveral, J., Folwell, M. G., Bedian, V., … & Siwicki, K. K. (2002). Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. Journal of Comparative Neurology, 447(4), 366-380. Cerca con Google

Wu, V., Yang, M., McRoberts, J. A., Ren, J., Seensalu, R., Zeng, N., ... & Walsh, J. H. (1997). First intracellular loop of the human cholecystokinin-A receptor is essential for cyclic AMP signaling in transfected HEK-293 cells. Journal of Biological Chemistry, 272(14), 9037-9042. Cerca con Google

Wülbeck, C., Grieshaber, E., & Helfrich-Förster, C. (2008). Pigment-dispersing factor (PDF) has different effects on Drosophila's circadian clocks in the accessory medulla and in the dorsal brain. Journal of Biological Rhythms, 23(5), 409-424. Cerca con Google

Yang, C. H., Belawat, P., Hafen, E., Jan, L. Y., & Jan, Y. N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science, 319(5870), 1679-83. Cerca con Google

Yasuyama, K., Hase, H., & Shiga, S. (2015). Neuroanatomy of pars intercerebralis neurons with special reference to their connections with neurons immunoreactive for pigment-dispersing factor in the blow fly Protophormia terraenovae. Cell and Tissue Research, 362(1), 33-43. Cerca con Google

Yoshii, T., Wülbeck, C., Sehadova, H., Veleri, S., Bichler, D., Stanewsky, R., & Helfrich-Förster, C. (2009). The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila's clock. Journal of Neuroscience, 29(8), 2597-2610. Cerca con Google

Zhao, X., Bergland, A. O., Behrman, E. L., Gregory, B. D., Petrov, D. A., & Schmidt, P. S. (2016). Global transcriptional profiling of diapause and climatic adaptation in Drosophila melanogaster. Molecular Biology and Evolution, 33(3), 707-720. Cerca con Google

Zhou, L., Schnitzler, A., Agapite, J., Schwartz, L. M., Steller, H., & Nambu, J. R. (1997). Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proceedings of the National Academy of Sciences, 94(10), 5131-5136. Cerca con Google

Zheng, X., Yang, Z., Yue, Z., Alvarez, J. D., & Sehgal, A. (2007). FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15899-15904. Cerca con Google

Zonato, V., Collins, L., Pegoraro, M., Tauber, E., & Kyriacou, C. P. (2017). Is diapause an ancient adaptation in Drosophila? Journal of Insect Physiology, 98, 267-274. Cerca con Google

Zupanc, G. K. (1996). Peptidergic transmission: from morphological correlates to functional implications. Micron, 27(1), 35-91. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record