Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Padoan, Simone (2008) Computational methods for complex problems in extreme value theory. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Rare events are part of the real world but inevitably environmental extreme events may have a massive impact on everyday life. We are familiar, for example, with the consequences and damage caused by hurricanes and floods etc. Consequently, there is considerable attention in studying, understanding and predicting the nature of such phenomena and the problems caused by them, not least because of
the possible link between extreme climate events and global warming or climate change. Thus the study of extreme events has become ever more important, both in terms of probabilistic and statistical research.
This thesis aims to provide statistical modelling and methods for making inferences about extreme events for two types of process. First, non-stationary univariate processes; second, spatial stationary processes. In each case the statistical aspects focus on model fitting and parameter estimation with applications to the
modelling of environmental processes including, in particular, nonstationary extreme
temperature series and spatially recorded rainfall measures.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Coles , Stuart
Supervisor:Wand, Matt and Pauli, Francesco and Sisson, Scott
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE STATISTICHE
Data di deposito della tesi:29 January 2008
Anno di Pubblicazione:29 January 2008
Key Words:Generalized extreme value distribution, max-stable processes, mixed models, penalized splines, spatial extremes, smoothing.
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:1047
Depositato il:06 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Barndorff-Nielson, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343–365. Cerca con Google

2. Barndorff-Nielson, O. E. and Cox, D. R. (1994). Inference and Asymptotics. London: Chapman & Hall. Cerca con Google

3. Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162, 2025–2035. Cerca con Google

4. Bllio, R., Varin, C. (2005). A pairwise likelihood approach to generalized linear models with crossed random effects. Statistical Modelling, 5, 217–227. Cerca con Google

5. Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian computation. Journal of the Royal Statistical Society, Series B, 55, 25–37. Cerca con Google

6. Bortot, P., Coles, S. G., Sisson, S. A. (2007). Inference for stereological extremes. Journal of the American Statistical Association, 102, 84–92. Cerca con Google

7. Bownman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford: Clarendon. Cerca con Google

8. Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9–25. Cerca con Google

9. Broyden, C. G. (1967). Quasi-Newton methods and their application to function minimization. Mathematics of Computation, 21, 368–81. Cerca con Google

10. Casella, G. and Edward I. G. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167–174. Cerca con Google

11. Chavez-Demoulin, V. and Davison, A. C. (2005). Generalized additive modelling of sample extremes. Applied Statistics, 54, 207–222. Cerca con Google

12. Coles, S. G. (1993). Regional modelling of extreme storms via max-stable processes. Journal of the Royal Statistical Society, Series B, 55, 797–816. Cerca con Google

13. Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer. Cerca con Google

14. Coles, S. G. and Tawn, J. A.(1990). Statistics of coastal flood prevention. Phil. Trans. R. Soc. Lond., 332, 457–476. Cerca con Google

15. Coles, S. G. and Tawn, J. A.(1991). Modelling multivariate extreme events. Journal of the Royal Statistical Society, Series B, 53, No. 1. Cerca con Google

16. Coles, S. G. and Tawn, J. A.(1996). Modelling extremes of the areal rainfall process. Journal of the Royal Statistical Society, Series B, 58, 329–347. Cerca con Google

17. Coles, S. G. and D. Walshaw (1994). Directional Modeling of Extreme Wind Speeds. Journal of Applied Statistics, 33, 139–158. Cerca con Google

18. Crainiceanu, C. and Ruppert, D. (2002). Asymptotic distribution of the likelihood ratio tests in linear mixed models. Unpublished manuscripts. Cerca con Google

19. Crainiceanu, C., Ruppert, D. and Wand, M.P. (2005). Bayesian analysis for penalized spline regression usingWinBUGS. Journal of Statistical Software, 14. Cerca con Google

20. Davison, A. C. and Ramesh, N. I. (2000). Local likelihood smoothing of sample extremes. Journal of the Royal Statistical Society, Series B, 62, 191–208. Cerca con Google

21. Davison, A. C. (2003). Statistical Models. Cambridge: University Press. Cerca con Google

22. De Haan, L. (1984). A spectral representation for max-stable processes. The Annals of Probability, 12, 1194–1204. Cerca con Google

23. De Haan, L. and Pereira, T. T. (2006). Spatial extremes: models for stationary case. The Annals of Statistics, 34, 146–168. Cerca con Google

24. De Haan, L. and Pickands, J. (1986). Stationary min-stable stochastic processes. Probability Theory Related Fields, 74, 477–492. Cerca con Google

25. De Haan, L. and Resnick, S. I. (1977). Limit Theory for Multivariate Sample Extremes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 40, 317–337. Cerca con Google

26. Denison, D. G. T., Holmes, C.C., Mallick, B.K. and Smith, A.F.M. (2002). Bayesian Methods for Nonlinear Classification and Regression. Chichester, UK: Wiley. Cerca con Google

27. Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with discussion). Statistical Science, 11, 89–121. Cerca con Google

28. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–190. Cerca con Google

29. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une s´erie al´eatorie. Annals of Mathematics, 44, 423–453. Cerca con Google

30. Gelman A., Carlin J. B., Stern H. S. and Rubin D. B. (2004). Bayesian Data Analysis. 2nd. Edn. Chapman & Hall Cerca con Google

31. Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics. 2nd. Edn. Krieger, Melbourne, Fl. Cerca con Google

32. Gilks,W. R. andWild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337–348. Cerca con Google

33. Green, P. J. (1987). Penalized likelihood for general semi-parametric regression models. International Statistical Review, 55, 245–259. Cerca con Google

34. Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models: a roughness penalty approach. London: Chapman & Hall. Cerca con Google

35. Hall, P. and Tajvidi, N. (2000). Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Statistical Science, 15, 153– 167. Cerca con Google

36. Harville, D. A. and Mee, R. W. (1984). A mixed model procedure for analyzing ordered categorical data. Biometrics, 40, 393–408. Cerca con Google

37. Hastie, T., Tibshirani, R. (1970). Monte Carlo sampling methods using markov chains and their applications. Biometrika, 57, 97–109. Cerca con Google

38. Hastings, W. K. (1990). Generalized additive models. Chapman and Hall, London. Cerca con Google

39. Hoerl A. E. and Kennard R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 55–67. Cerca con Google

40. Ihaka, R. Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299–314. Cerca con Google

41. Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological events . Quarterly Journal of the Royal Meteorological Society, 81, 158–272. Cerca con Google

42. Kent, J. T. (1982). Information gain and a general measure of correlation . Biometrika, 70, 163–173. Cerca con Google

43. Lee Y. and Nelder, J. A. (1996). Hierarchical generalized linear models . Journal of the Royal Statistical Society, Series B, 58, 619–678. Cerca con Google

44. Lee Y., Nelder, J. A. and Pawitan, Y. (2006). Generalized Linear ModelsWith Random Effects: Unified Analysis Via H-Likelihood. Chapman & Hall. Cerca con Google

45. Lindsay, B. (1988). Composite likelihood methods. Statistical Inference from Stochastic Processes. American Mathematical Society, Providence RI. Cerca con Google

46. Lindstrom, M. J. and Bates D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 673–687. Cerca con Google

47. Marjoram, P., Molitor, J., Plagnol, V., and Tavaré S. (2003). Markov chain Monte Carlo without likelihoods. PNAS, 100, 15324–15328. Cerca con Google

48. McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. Chapman and Hall, London. Cerca con Google

49. Miller, J. J. (1977). Asymptotic proprieties of maximum likelihood estimates in the mixed model of the analysis of variance. The Annal od Statistics, 5, 746–762. Cerca con Google

50. Nott, D. J. and Rydé, T. (1999). Pairwise likelihood methods for inference in image models. Biometrika, 86, 661–667. Cerca con Google

51. Pauli, F. and Coles, S. G. (2001). Penalized likelihood inference in extreme value analysis. Journal of Applied Statistics, 28, 547–560. Cerca con Google

52. Pickands, J. (1981). Multivariate extreme value distribution. In Proceedings of the 43rd Session of the I.S.I., pages 859–878. The Hague. International Statistical Institute. Cerca con Google

53. Prescott, P. and Walden, A. T. (2001). Maximum likelihood of the parameters of the generalized extreme-value distribution. Biometrika, 67, 723–724. Cerca con Google

54. Resnick, S. (1987). Extreme Values, Point Processes and Regular Variation.,Springer Verlag, New York. Cerca con Google

55. Ripley, B. D. (1987). Stochastic Simulation, Wiley. Cerca con Google

56. Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random effects. Statistical Science, 6, 15–51. Cerca con Google

57. Ruppert, D., Wand, M. P. and Carroll, R.J. (2003). Semiparametric Regression, New York: Cambridge University Press. Cerca con Google

58. Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. J.Wiley & Sons, New York. Cerca con Google

59. Self, S. G. and Liang, K. Y. (1997). Asymptotic proprieties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–610. Cerca con Google

60. Severini, T. A. (2005). Elements of Distribution Theory. Cambridge: University Press. Cerca con Google

61. Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5, 33–44. Cerca con Google

62. Schlather, M. and Tawn J. A. (2003). A dependence measure for multivariate and spatial extreme value: Properties and inference. Biometrika, 90, 139–154. Cerca con Google

63. Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72, 67–90. Cerca con Google

64. Smith, R. L. (1990). Max-Stable processes and spatial extremes. Unpublished manuscript. Cerca con Google

65. Tawn, J. A. (1988). Extreme value theory model for dependent observations. Journal of Hydrology, 101, 227–250. Cerca con Google

66. Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 22, 1701–1728. Cerca con Google

67. Varin, C., Høst, G. and Skare, Ø. (2004). Pairwise likelihood inference in spatial generalized linear mixed models. Computational Statistics and Data Analysis, 49, 1173–1191. Cerca con Google

68. Varin, C., Vidoni, P. (2005). A note on composite likelihood inference and model selection. Biometrika, 92, 519–528. Cerca con Google

69. Von Mises, R. (1954). La distribution de la plus grande de n valeurs. In Selected Papers, Vlume II, pages 271–294. American Mathematical Society, Providence, RI. Cerca con Google

70. Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM. Cerca con Google

71. Wand, M. P. (2002). Vector differential calculus in statistics. The American Statistician, 56, 55–62. Cerca con Google

72. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics. 18, 223–249. Cerca con Google

73. Wand, M. P. and Ormerod, J. T. (2007). On semiparametric regression with O’ Sullivan penalised splines. Australian and New Zealand Journal of Statistics, to appear. Cerca con Google

74. Welham, S. J., Cullis, B. R., Kenward, M. G. and Thompson, R. (2006). A comparison of mixed model splines. Australian and New Zealand Journal of Statistics, 49, 1–23. Cerca con Google

75. Wolfinger, R. and O”Connell, M. (1993). Generalized linear mixed models: A pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 48, 233–243. Cerca con Google

76. Yee, T. W. and Stephenson, A. G. (2007). Vector generalized linear and additive extreme value models. Extremes. 10, 1–19. Cerca con Google

77. Zhao, Y., Staudenmayer, J., Coull B. A. and Wand, M. P. (2006). General design Bayesian generalized linear mixed model. Statistical Science. 21, 35–51. Cerca con Google

78. Zhao, Y., Joe, H. (2005). Composite likelihood estimation in multivariate data analysis. Canadian Journal of Statistics. 33, 335–356. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record