Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Hierro Rodriguez, Ignacio Miguel (2017) Scalars beyond the Standard Model: Composite Higgs, dark matter and neutrino masses. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
1152Kb

Abstract (english)

This thesis deals with Composite Higgs (CH) models, dark matter and neutrino masses. In CH models, the Higgs is a pseudo-Goldstone boson of a high-energy strong dynamics. We construct CP-even and CP-odd bosonic effective chiral Lagrangian for a generic symmetric coset G/H. Assuming that the only sources of custodial symmetry are the ones present in the SM, we study the projection of this Lagrangian into the low-energy SM chiral Lagrangian. This is applied in three particular scenarios: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodialpreserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2)×U(1)) model, which intrinsically breaks custodial symmetry. We furthermore consider an extension of the Standard Model involving two new scalar particles around the TeV scale: a singlet neutral scalar φ, to be eventually identified as the Dark Matter candidate, plus a doubly charged SU(2)L singlet scalar, S++, that can be the source for the nonvanishing neutrino masses and mixings. Assuming an unbroken Z_2 symmetry in the scalar sector, under which only the additional neutral scalar φ is odd, we write the most general (renormalizable) scalar potential. This model may be regarded as a possible extension of the conventional Higgs portal Dark Matter scenario which in addition accounts for neutrino masses and mixings. This framework cannot completely explain the observed positron excess. However a softening of the discrepancy observed in conventional Higgs portal framework can be obtained, especially when the scale of new physics responsible, for generating neutrino masses and lepton number violating processes, is around 2 TeV.

Abstract (italian)

Questa tesi si occupa di studiare modelli di Higgs Composto (HC), materia oscura e masse dei neutrini. In modelli di tipo HC, lo scalare di Higgs è uno pseudo-bosone di Goldstone associato che origina dalla rottura di una simmetria forte ad alta energia. Nella tesi costruiamo la Lagrangiana chirale bosonica effettiva, per un generico coset simmetrico G/H, derivando esplicitamente tutti gli operatori (sia CP-even che CP-odd) che appaiono fino a quattro derivate. Supponendo che l’uniche fonte di rottura di simmetria custodial siano quelle già presente nel Modello Standard (MS), studiamo la proiezione di questa Lagrangiana sulla Lagrangiana chirale di bassa energia del MS. Particolareggiamo questo studio considerando tre scenari particolari: il modello originale di Georgi-Kaplan SU(5)/SO(5), il modello minimale con simmetria custodial, SO(5)/SO(4), ed il modello minimale senza simmetria custodial, SU(3)/(SU(2) × U(1)). Nella tesi consideriamo inoltre unestensione del MS che coinvolge due nuove particelle scalari con massa alla scala TeV: un singoletto scalare neutro φ, che sarà poi identificato come candidato di materia oscura e un singoletto di SU(2)L scalare con carica q = 2, S++, che può essere la fonte per le masse e del mixing dei neutrini. Supponendo l’esistenza di una simmetria Z_2 nel settore scalare, sotto la quale solo φ è dispari, scriviamo il potenziale scalare (rinormalizzabile) più generale possibile. Il modello si può vedere come una possible estensione dei modelli con Higgs Portal in cui si tiene anche conto del meccanismo con cui generare le masse e i mixings dei neutrini. Il modello da noi studiato, pur predice un eccesso di positroni, non tale tuttavia da poter spiegare l’eccesso di positroni sperimentalmente osservato. Pur tuttavia si possono ottenere dei limiti meno stringenti rispetto ai normali modelli di Higgs Portal, in particolare se la scala della nuova fisica, responsabile della generazione delle masse dei neutrini e dei processi che violano il numero leptonico, è intorno ai 2 TeV.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Rigolin, Stefano
Ph.D. course:Ciclo 29 > Corsi 29 > FISICA
Data di deposito della tesi:31 July 2017
Anno di Pubblicazione:31 July 2017
Key Words:High Energy Physics, Particle Physics, Phenomenology, Higgs, Dark Matter, Neutrinos, Composite Higgs, Goldstone Higgs
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/04 Fisica nucleare e subnucleare
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:10471
Depositato il:26 Oct 2018 09:34
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13, 2016. doi: 10.1051/0004-6361/201525830. Cerca con Google

[2] I. M. Hierro, L. Merlo, and S. Rigolin. Sigma Decomposition: The CP-Odd Lagrangian. JHEP, 04:016, 2016. doi: 10.1007/JHEP04(2016)016. Cerca con Google

[3] I. M. Hierro, S. F. King, and S. Rigolin. Higgs portal dark matter and neutrino mass and mixing with a doubly charged scalar. 2016. doi: 10.1016/j.physletb.2017.03.037. Cerca con Google

[4] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1{29, 2012. doi: 10.1016/j.physletb.2012.08.020. Cerca con Google

[5] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett., B716:30{61, 2012. doi: 10.1016/j.physletb.2012.08.021. Cerca con Google

[6] Chiara Mariotti and Giampiero Passarino. Higgs boson couplings: measurements and theoretical interpretation. Int. J. Mod. Phys., A32(04):1730003, 2017. doi: 10.1142/ S0217751X17300034. Cerca con Google

[7] Gerard 't Hooft. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B, 59:135{157, 1980. doi: 10.1007/978-1-4684-7571-5 9. Cerca con Google

[8] StevenWeinberg. Implications of Dynamical Symmetry Breaking. Phys. Rev., D13:974{996, 1976. doi: 10.1103/PhysRevD.13.974. Cerca con Google

[9] Leonard Susskind. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Phys. Rev., D20:2619{2625, 1979. doi: 10.1103/PhysRevD.20.2619. Cerca con Google

[10] Peter W. Graham, David E. Kaplan, and Surjeet Rajendran. Cosmological Relaxation of the Electroweak Scale. Phys. Rev. Lett., 115(22):221801, 2015. doi: 10.1103/PhysRevLett. 115.221801. Cerca con Google

[11] Savas Dimopoulos and John Preskill. Massless Composites With Massive Constituents. Nucl. Phys., B199:206{222, 1982. doi: 10.1016/0550-3213(82)90345-5. Cerca con Google

[12] David B. Kaplan and Howard Georgi. SU(2) x U(1) Breaking by Vacuum Misalignment. Phys. Lett., B136:183{186, 1984. doi: 10.1016/0370-2693(84)91177-8. Cerca con Google

[13] David B. Kaplan, Howard Georgi, and Savas Dimopoulos. Composite Higgs Scalars. Phys. Lett., B136:187{190, 1984. doi: 10.1016/0370-2693(84)91178-X. Cerca con Google

[14] Howard Georgi, David B. Kaplan, and Peter Galison. Calculation of the Composite Higgs Mass. Phys. Lett., B143:152{154, 1984. doi: 10.1016/0370-2693(84)90823-2. Cerca con Google

[15] Howard Georgi and David B. Kaplan. Composite Higgs and Custodial SU(2). Phys. Lett., B145:216{220, 1984. doi: 10.1016/0370-2693(84)90341-1. Cerca con Google

[16] Michael J. Dugan, Howard Georgi, and David B. Kaplan. Anatomy of a Composite Higgs Model. Nucl. Phys., B254:299{326, 1985. doi: 10.1016/0550-3213(85)90221-4. Cerca con Google

[17] Kaustubh Agashe, Roberto Contino, and Alex Pomarol. The Minimal composite Higgs model. Nucl. Phys., B719:165{187, 2005. doi: 10.1016/j.nuclphysb.2005.04.035. Cerca con Google

[18] C. Vafa and Edward Witten. Restrictions on Symmetry Breaking in Vector-Like Gauge Theories. Nucl. Phys., B234:173{188, 1984. doi: 10.1016/0550-3213(84)90230-X. Cerca con Google

[19] Aneesh Manohar and Howard Georgi. Chiral Quarks and the Nonrelativistic Quark Model. Nucl. Phys., B234:189{212, 1984. doi: 10.1016/0550-3213(84)90231-1. Cerca con Google

[20] David Marzocca and Alfredo Urbano. Composite Dark Matter and LHC Interplay. JHEP, 07:107, 2014. doi: 10.1007/JHEP07(2014)107. Cerca con Google

[21] W. Buchmuller and D. Wyler. Eective Lagrangian Analysis of New Interactions and Flavor Conservation. Nucl. Phys., B268:621{653, 1986. doi: 10.1016/0550-3213(86)90262-2. Cerca con Google

[22] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek. Dimension-Six Terms in the Standard Model Lagrangian. JHEP, 10:085, 2010. doi: 10.1007/JHEP10(2010)085. Cerca con Google

[23] Kaoru Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld. Low-energy eects of new interactions in the electroweak boson sector. Phys. Rev., D48:2182{2203, 1993. doi: 10. 1103/PhysRevD.48.2182. Cerca con Google

[24] Kaoru Hagiwara, T. Hatsukano, S. Ishihara, and R. Szalapski. Probing nonstandard bosonic interactions via W boson pair production at lepton colliders. Nucl. Phys., B496:66{102, 1997. doi: 10.1016/S0550-3213(97)00208-3. Cerca con Google

[25] Marco Ciuchini, Enrico Franco, Satoshi Mishima, Maurizio Pierini, Laura Reina, and Luca Silvestrini. Update of the electroweak precision t, interplay with Higgs-boson signal strengths and model-independent constraints on new physics. Nucl. Part. Phys. Proc., 273-275:2219{2225, 2016. doi: 10.1016/j.nuclphysbps.2015.09.361. Cerca con Google

[26] Thomas Appelquist and Claude W. Bernard. Strongly Interacting Higgs Bosons. Phys. Rev., D22:200, 1980. doi: 10.1103/PhysRevD.22.200. Cerca con Google

[27] Anthony C. Longhitano. Heavy Higgs Bosons in the Weinberg-Salam Model. Phys. Rev., D22:1166, 1980. doi: 10.1103/PhysRevD.22.1166. Cerca con Google

[28] Anthony C. Longhitano. Low-Energy Impact of a Heavy Higgs Boson Sector. Nucl. Phys., B188:118{154, 1981. doi: 10.1016/0550-3213(81)90109-7. Cerca con Google

[29] F. Feruglio. The Chiral approach to the electroweak interactions. Int. J. Mod. Phys., A8: 4937{4972, 1993. doi: 10.1142/S0217751X93001946. Cerca con Google

[30] Benjamin Grinstein and Michael Trott. A Higgs-Higgs bound state due to new physics at a TeV. Phys. Rev., D76:073002, 2007. doi: 10.1103/PhysRevD.76.073002. Cerca con Google

[31] Roberto Contino, Christophe Grojean, Mauro Moretti, Fulvio Piccinini, and Riccardo Rattazzi. Strong Double Higgs Production at the LHC. JHEP, 05:089, 2010. doi: Cerca con Google

10.1007/JHEP05(2010)089. Cerca con Google

[32] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, and J. Yepes. The Eective Chiral Lagrangian for a Light Dynamical "Higgs Particle". Phys. Lett., B722:330{335, Cerca con Google

2013. doi: 10.1016/j.physletb.2013.04.037,10.1016/j.physletb.2013.09.028. [Erratum: Phys. Lett.B726,926(2013)]. Cerca con Google

[33] M. B. Gavela, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia, L. Merlo, S. Rigolin, and J. Yepes. CP violation with a dynamical Higgs. JHEP, 10:044, 2014. doi: 10.1007/JHEP10(2014)044. Cerca con Google

[34] Rodrigo Alonso, Ilaria Brivio, Belen Gavela, Luca Merlo, and Stefano Rigolin. Sigma Decomposition. JHEP, 12:034, 2014. doi: 10.1007/JHEP12(2014)034. Cerca con Google

[35] Sidney R. Coleman, J. Wess, and Bruno Zumino. Structure of phenomenological Lagrangians. 1. Phys. Rev., 177:2239{2247, 1969. doi: 10.1103/PhysRev.177.2239. Cerca con Google

[36] Elizabeth E. Jenkins, Aneesh V. Manohar, and Michael Trott. Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions. Phys. Lett., B726:697{702, 2013. doi: 10.1016/j.physletb.2013.09.020. Cerca con Google

[37] Michele Frigerio, Alex Pomarol, Francesco Riva, and Alfredo Urbano. Composite Scalar Dark Matter. JHEP, 07:015, 2012. doi: 10.1007/JHEP07(2012)015. Cerca con Google

[38] Roberto Contino, David Marzocca, Duccio Pappadopulo, and Riccardo Rattazzi. On the eect of resonances in composite Higgs phenomenology. JHEP, 10:081, 2011. doi: 10.1007/JHEP10(2011)081. Cerca con Google

[39] I. Brivio, T. Corbett, O. J. P. boli, M. B. Gavela, J. Gonzalez-Fraile, M. C. Gonzalez- Garcia, L. Merlo, and S. Rigolin. Disentangling a dynamical Higgs. JHEP, 03:024, 2014. doi: 10.1007/JHEP03(2014)024. Cerca con Google

[40] I. Brivio, O. J. P. boli, M. B. Gavela, M. C. Gonzalez-Garcia, L. Merlo, and S. Rigolin. Higgs ultraviolet softening. JHEP, 12:004, 2014. doi: 10.1007/JHEP12(2014)004. Cerca con Google

[41] Sidney R. Coleman and Erick J. Weinberg. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev., D7:1888{1910, 1973. doi: 10.1103/PhysRevD.7. 1888. Cerca con Google

[42] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev., D86:010001, 2012. doi: 10.1103/PhysRevD.86.010001. Cerca con Google

[43] Giuliano Panico and Andrea Wulzer. The Composite Nambu-Goldstone Higgs. Lect. Notes Phys., 913:pp.1{316, 2016. doi: 10.1007/978-3-319-22617-0. Cerca con Google

[44] Stephen F. King, Alexander Merle, and Luca Panizzi. Eective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC. JHEP, 11:124, 2014. doi: 10.1007/JHEP11(2014)124. Cerca con Google

[45] Tanja Geib, Stephen F. King, Alexander Merle, Jose Miguel No, and Luca Panizzi. Probing the Origin of Neutrino Masses and Mixings via Doubly Charged Scalars: Complementarity of the Intensity and the Energy Frontiers. Phys. Rev., D93(7):073007, 2016. doi: 10.1103/PhysRevD.93.073007. Cerca con Google

[46] Brian Patt and Frank Wilczek. Higgs-eld portal into hidden sectors. 2006. Cerca con Google

[47] Murray Gell-Mann, Pierre Ramond, and Richard Slansky. Complex Spinors and Unied Theories. Conf. Proc., C790927:315{321, 1979. Cerca con Google

[48] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Mass and Spontaneous Parity Violation. Phys. Rev. Lett., 44:912, 1980. doi: 10.1103/PhysRevLett.44.912. Cerca con Google

[49] A. Zee. Quantum Numbers of Majorana Neutrino Masses. Nucl. Phys., B264:99{110, 1986. doi: 10.1016/0550-3213(86)90475-X. Cerca con Google

[50] K. S. Babu. Model of 'Calculable' Majorana Neutrino Masses. Phys. Lett., B203:132{136, 1988. doi: 10.1016/0370-2693(88)91584-5. Cerca con Google

[51] K. S. Babu and C. Macesanu. Two loop neutrino mass generation and its experimental consequences. Phys. Rev., D67:073010, 2003. doi: 10.1103/PhysRevD.67.073010. Cerca con Google

[52] Ernest Ma. Veriable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev., D73:077301, 2006. doi: 10.1103/PhysRevD.73.077301. Cerca con Google

[53] Michael Gustafsson, Jose Miguel No, and Maximiliano A. Rivera. Predictive Model for Radiatively Induced Neutrino Masses and Mixings with Dark Matter. Phys. Rev. Lett., 110(21):211802, 2013. doi: 10.1103/PhysRevLett.110.211802,10.1103/PhysRevLett.112.259902. [Erratum: Phys. Rev. Lett.112,no.25,259902(2014)]. Cerca con Google

[54] Michael Gustafsson, Jose M. No, and Maximiliano A. Rivera. Radiative neutrino mass generation linked to neutrino mixing and 0-decay predictions. Phys. Rev., D90(1):013012, 2014. doi: 10.1103/PhysRevD.90.013012. Cerca con Google

[55] Miguel Nebot, Josep F. Oliver, David Palao, and Arcadi Santamaria. Prospects for the Zee-Babu Model at the CERN LHC and low energy experiments. Phys. Rev., D77:093013, 2008. doi: 10.1103/PhysRevD.77.093013. Cerca con Google

[56] Juan Herrero-Garcia, Miguel Nebot, Nuria Rius, and Arcadi Santamaria. The ZeeBabu model revisited in the light of new data. Nucl. Phys., B885:542{570, 2014. doi: 10.1016/j. nuclphysb.2014.06.001. Cerca con Google

[57] M. Agostini et al. Results on Neutrinoless Double- Decay of 76Ge from Phase I of the GERDA Experiment. Phys. Rev. Lett., 111(12):122503, 2013. doi: 10.1103/PhysRevLett.111.122503. Cerca con Google

[58] Vanda Silveira and A. Zee. SCALAR PHANTOMS. Phys. Lett., B161:136{140, 1985. doi:10.1016/0370-2693(85)90624-0. Cerca con Google

[59] John McDonald. Gauge singlet scalars as cold dark matter. Phys. Rev., D50:3637{3649,1994. doi: 10.1103/PhysRevD.50.3637. Cerca con Google

[60] C. P. Burgess, Maxim Pospelov, and Tonnis ter Veldhuis. The Minimal model of nonbaryonic dark matter: A Singlet scalar. Nucl. Phys., B619:709{728, 2001. doi: Cerca con Google

10.1016/S0550-3213(01)00513-2. Cerca con Google

[61] Hooman Davoudiasl, Ryuichiro Kitano, Tianjun Li, and Hitoshi Murayama. The New minimal standard model. Phys. Lett., B609:117{123, 2005. doi: 10.1016/j.physletb.2005.01.026. Cerca con Google

[62] S. W. Ham, Y. S. Jeong, and S. K. Oh. Electroweak phase transition in an extension of the standard model with a real Higgs singlet. J. Phys., G31(8):857{871, 2005. doi:10.1088/0954-3899/31/8/017. Cerca con Google

[63] Donal O'Connell, Michael J. Ramsey-Musolf, and Mark B. Wise. Minimal Extension of the Standard Model Scalar Sector. Phys. Rev., D75:037701, 2007. doi: 10.1103/PhysRevD.75.037701. Cerca con Google

[64] Xiao-Gang He, Tong Li, Xue-Qian Li, and Ho-Chin Tsai. Scalar dark matter effects in Higgs and top quark decays. Mod. Phys. Lett., A22:2121{2129, 2007. doi: Cerca con Google

10.1142/S0217732307025376. Cerca con Google

[65] Stefano Profumo, Michael J. Ramsey-Musolf, and Gabe Shaughnessy. Singlet Higgs phenomenology and the electroweak phase transition. JHEP, 08:010, 2007. doi: 10.1088/1126-6708/2007/08/010. Cerca con Google

[66] Vernon Barger, Paul Langacker, Mathew McCaskey, Michael J. Ramsey-Musolf, and Gabe Shaughnessy. LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet. Phys. Rev., D77:035005, 2008. doi: 10.1103/PhysRevD.77.035005. Cerca con Google

[67] Xiao-Gang He, Tong Li, Xue-Qian Li, Jusak Tandean, and Ho-Chin Tsai. Constraints on Scalar Dark Matter from Direct Experimental Searches. Phys. Rev., D79:023521, 2009. doi:10.1103/PhysRevD.79.023521. Cerca con Google

[68] Eduardo Ponton and Lisa Randall. TeV Scale Singlet Dark Matter. JHEP, 04:080, 2009. doi: 10.1088/1126-6708/2009/04/080. Cerca con Google

[69] Rose Natalie Lerner and John McDonald. Gauge singlet scalar as in aton and thermal relic dark matter. Phys. Rev., D80:123507, 2009. doi: 10.1103/PhysRevD.80.123507. Cerca con Google

[70] Marco Farina, Duccio Pappadopulo, and Alessandro Strumia. CDMS stands for Constrained Dark Matter Singlet. Phys. Lett., B688:329{331, 2010. doi: 10.1016/j.physletb.2010.04.025. Cerca con Google

[71] Abhijit Bandyopadhyay, Sovan Chakraborty, Ambar Ghosal, and Debasish Majumdar. Constraining Scalar Singlet Dark Matter with CDMS, XENON and DAMA and Prediction for Direct Detection Rates. JHEP, 11:065, 2010. doi: 10.1007/JHEP11(2010)065. Cerca con Google

[72] Vernon Barger, Yu Gao, Mathew McCaskey, and Gabe Shaughnessy. Light Higgs Boson, Light Dark Matter and Gamma Rays. Phys. Rev., D82:095011, 2010. doi: 10.1103/PhysRevD.82.095011. Cerca con Google

[73] Wan-Lei Guo and Yue-Liang Wu. The Real singlet scalar dark matter model. JHEP, 10:083, 2010. doi: 10.1007/JHEP10(2010)083. Cerca con Google

[74] Jose R. Espinosa, Thomas Konstandin, and Francesco Riva. Strong Electroweak Phase Transitions in the Standard Model with a Singlet. Nucl. Phys., B854:592{630, 2012. doi:10.1016/j.nuclphysb.2011.09.010. Cerca con Google

[75] Stefano Profumo, Lorenzo Ubaldi, and Carroll Wainwright. Singlet Scalar Dark Matter: monochromatic gamma rays and metastable vacua. Phys. Rev., D82:123514, 2010. doi:10.1103/PhysRevD.82.123514. Cerca con Google

[76] Abdelhak Djouadi, Adam Falkowski, Yann Mambrini, and Jeremie Quevillon. Direct Detection of Higgs-Portal Dark Matter at the LHC. Eur. Phys. J., C73(6):2455, 2013. doi:10.1140/epjc/s10052-013-2455-1. Cerca con Google

[77] Yann Mambrini, Michel H. G. Tytgat, Gabrijela Zaharijas, and Bryan Zaldivar. Complementarity of Galactic radio and collider data in constraining WIMP dark matter models. JCAP, 1211:038, 2012. doi: 10.1088/1475-7516/2012/11/038. Cerca con Google

[78] A. Drozd, B. Grzadkowski, and JoseWudka. Multi-Scalar-Singlet Extension of the Standard Model - the Case for Dark Matter and an Invisible Higgs Boson. JHEP, 04:006, 2012. doi:10.1007/JHEP04(2012)006,10.1007/JHEP11(2014)130. [Erratum: JHEP11,130(2014)]. Cerca con Google

[79] Bohdan Grzadkowski and Jose Wudka. Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics. Phys. Rev. Lett., 103:091802, 2009. doi:10.1103/PhysRevLett.103.091802. Cerca con Google

[80] James M. Cline, Kimmo Kainulainen, Pat Scott, and Christoph Weniger. Update on scalar singlet dark matter. Phys. Rev., D88:055025, 2013. doi: 10.1103/PhysRevD.92.039906,10.1103/PhysRevD.88.055025. [Erratum: Phys. Rev.D92,no.3,039906(2015)]. Cerca con Google

[81] Farinaldo S. Queiroz, Kuver Sinha, and Alessandro Strumia. Leptoquarks, Dark Matter, and Anomalous LHC Events. Phys. Rev., D91(3):035006, 2015. doi: 10.1103/PhysRevD.91.035006. Cerca con Google

[82] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. micrOMEGAs: Version 1.3. Comput. Phys. Commun., 174:577{604, 2006. doi: 10.1016/j.cpc.2005.12.005. Cerca con Google

[83] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun.,176:367{382, 2007. doi: 10.1016/j.cpc.2006.11.008. Cerca con Google

[84] Junji Hisano, Shigeki Matsumoto, Minoru Nagai, Osamu Saito, and Masato Senami. Nonperturbative eect on thermal relic abundance of dark matter. Phys. Lett., B646:34{38,2007. doi: 10.1016/j.physletb.2007.01.012. Cerca con Google

[85] Jonathan L. Feng, Manoj Kaplinghat, and Hai-Bo Yu. Sommerfeld Enhancements for Thermal Relic Dark Matter. Phys. Rev., D82:083525, 2010. doi: 10.1103/PhysRevD.82.083525. Cerca con Google

[86] Huayong Han and Sibo Zheng. Higgs-portal Scalar Dark Matter: Scattering Cross Section and Observable Limits. Nucl. Phys., B914:248{256, 2017. doi: 10.1016/j.nuclphysb.2016.11.015. Cerca con Google

[87] D. S. Akerib et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett., 112:091303, 2014. doi: 10.1103/PhysRevLett.112.091303. Cerca con Google

[88] E. Aprile et al. Dark Matter Results from 225 Live Days of XENON100 Data. Phys. Rev. Lett., 109:181301, 2012. doi: 10.1103/PhysRevLett.109.181301. Cerca con Google

[89] E. Aprile et al. Physics reach of the XENON1T dark matter experiment. JCAP, 1604(04):027, 2016. doi: 10.1088/1475-7516/2016/04/027. Cerca con Google

[90] P. Salati, F. Donato, and N. Fornengo. Indirect Dark Matter Detection with Cosmic Antimatter.2010. Cerca con Google

[91] Troy A. Porter, Robert P. Johnson, and Peter W. Graham. Dark Matter Searches with Astroparticle Data. Ann. Rev. Astron. Astrophys., 49:155{194, 2011. doi: 10.1146/annurev-astro-081710-102528. Cerca con Google

[92] Carlos E. Yaguna. Gamma rays from the annihilation of singlet scalar dark matter. JCAP, 0903:003, 2009. doi: 10.1088/1475-7516/2009/03/003. Cerca con Google

[93] A. Goudelis, Y. Mambrini, and C. Yaguna. Antimatter signals of singlet scalar dark matter. JCAP, 0912:008, 2009. doi: 10.1088/1475-7516/2009/12/008. Cerca con Google

[94] Chiara Arina and Michel H. G. Tytgat. Constraints on Light WIMP candidates from the Isotropic Diuse Gamma-Ray Emission. JCAP, 1101:011, 2011. doi: 10.1088/1475-7516/2011/01/011. Cerca con Google

[95] G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati, and A. Semenov. Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun., 182:842{856, 2011. doi: 10.1016/j.cpc.2010.11.033. Cerca con Google

[96] Andrew W. Strong, Igor V. Moskalenko, and Olaf Reimer. Diuse galactic continuum gamma rays. A Model compatible with EGRET data and cosmic-ray measurements. Astrophys. J., 613:962{976, 2004. doi: 10.1086/423193. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record