Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Nordio, Andrea (2017) Correction of distortions in MR Echo Planar images using a super-resolution T2-Weighted volume. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2822Kb

Abstract (inglese)

Magnetic resonance imaging (MRI) is a widely used technique to assess brain diseases without the use of ionizing radiations. Brain anatomy can be captured using T1-Weighted (T1W) and T2-Weighted (T2W) acquisitions. In addition to mapping brain anatomy, MRI can be also applied to study the brain functions through a process called the hemodynamic response. Blood releases oxygen to neurons at a greater rate than to inactive neurons: this causes a change of the relative levels of oxygenated and deoxygenated blood, i.e. a change of the contrast between the two level of blood oxygenation that can be detected on the basis of their differential magnetic susceptibility. This acquisition technique is
called functional Magnetic Resonance Imaging (fMRI), and it represents an indirect measure of the neuron activity. Although BOLD-based techniques have been shown to work reliably for a huge range of applications, straight-forward BOLD imaging has some inherent problems (such as macroscopic field inhomogeneity effects that produce spatial distortions in the acquisitions).

The aim of this thesis is to give an overview of the fMRI data analysis focusing on some aspects of the preprocessing pipeline.

In chapter 1 we will introduce the problem of Echo Planar Imaging (EPI) spatial distortions and a new method to correct them, based on non-linear registrations to an intra-subject T2W volume.

In chapter 2 we will show the procedure for the construction of a good reference to apply the EPI-distortions correction method. This method belongs to the super-resolution algorithms and it aims to produce a T2W high resolution reference.

In chapter 3, the previous methods will be combined together to perform the EPI distortion correction method.

Finally, in chapter 4 we will present a bunch of clinical fMRI studies where the correction method was performed.

Our results provide a good evidence of the effectiveness of the combined approach, which gives the advantage of using only standard acquisition protocol to have alle the information required to perform the proposed EPI-distortion correction.

Abstract (italiano)

L'imaging con risonanza magnetica (MRI) è una tecnica largamente usata per diagnosticare malattie cerebrali senza l'uso di radiazioni ionizzanti. L'anatomia del cervello può essere acquisita con sequenze T1 pesate (T1W) o T2 pesate (T2W). Oltre all'anatomia, l'MRI può essere applicata anche per studiare le funzioni cerebrali attraverso il precesso di risposta emodinamica. Il sangue rilascia ossigeno ai neuroni attivi in maniera maggiore di quello rilasciato a neuroni inattivi: questo causa un cambio dell'ossigenzaione del sangue che può essere rilevato tramite la differenza di suscettività magnetica. Tale tecnica di acquisizione viene chiamata risonanza magnetica funzionale (fMRI), e rappresenta una misura indiretta dell'attività neuronale. Nonostante le tecniche basate sull'effetto BOLD possano essere usate per una vasta gamma di applicazioni, l'analisi BOLD diretta ha una serie di problemi intrinseci (come ad esempio la disomogeneità del campo magnetico che produce distorsioni spaziali nelle acquisizioni).

Lo scopo di questa tesi è quello di dare una panoramica dell'analisi fMRI, concentrandosi su alcuni aspetti del pre-processamento dei dati.

Nel capitolo 1 introdurremo il problema della distorsione spaziale delle Echo Planar Imaging (EPI), ed un nuovo metodo per correggerla, basato su registrazioni non lineari su una T2W dello stesso soggetto.

Nel capitolo 2 presenteremo la procedura per costruire un ottimo volume di riferimento su cui applicare la correzione EPI. Tale metodo appartiene agli algoritmi di super-risoluzione e aspira a creare una T2W di riferimento ad alta risoluzione.

Nel capitolo 3, I precedenti metodi verranno combinati per applicare la correzione delle distorsioni EPI.

Infine, nel capitolo 4 presenteremo una serie di studi clinici con fMRI dove abbiamo usato il metodo descritto.

I risultati ottenuti forniscono una buona prova dell'efficacia dell'approccio combinato, il quale ci fornisce il vantaggio di usare solo un protocollo di acquisizione standard per avere tutte le informazioni richieste per applicare il metodo di correzione delle distorsioni EPI.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Bertoldo, Alessandra
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:31 Luglio 2017
Anno di Pubblicazione:31 Luglio 2017
Parole chiave (italiano / inglese):MRI, fMRI, EPI, distortion, functional, super-resolution
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:10472
Depositato il:16 Nov 2018 09:42
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Williams D. S. et al, “Magnetic resonance imaging of perfusion using spin inversion of arterial water”, Proceedings of National Academy of science of USA, vol 89 (1), pag 212-216, Jan 1, 1992; Cerca con Google

[2] BR Rosen et al, “Perfusion imaging with NMR contrast agent”, Magnetic Cerca con Google

Resonance in Medicine, vol 14 (2), pag 249-265, May, 1990; Cerca con Google

[3] D. Le Bihand et al, “Diffusion Tensor Imaging: concepts and application”, Journal of Magnetic Resonance Imaging, vol 13 (4), pag 534-546, Apr, 2001; Cerca con Google

[4] T. Tran et al, “Magnetic resonance spectroscopy in neurological diagnosis”, Cerca con Google

Neurologic Clinics, vol 27 (1), pag 21-60, Feb, 2009; Cerca con Google

[5] Jeff H. Duyn et al, “Functional Magnaetic Resonance Neuroimaing Data Cerca con Google

Acquisition Techniques”, Neuroimage, vol 4, pag S78-S83, 1996; Cerca con Google

[6] J. Henning et al, “Functional magnetic resonance imaging: a review of Cerca con Google

methodological aspects and clinical applications”, vol 18 (1), pag 1-15, Jul 2003; Cerca con Google

[7] KJ Friston et al, “Movement-related effect in fmri time series”, Magnetic Resonance in Medicine, vol 35 (3), pag 346-355, Mar, 1996; Cerca con Google

[8] DH Wu et al, “Inadequacy of motion correction algorithms in functiona MRI: role of susceptibility-induced artifacts”, Journal of Magnetic Resonance Imaging, vol 7 (2), pag 365-370, Mar-Apr, 1997; Cerca con Google

[9] RM Birn et al, “Magnetic field changes in the human brain due to swallowing or speaking”, Magnetic Resonance in Medicine, vol 40 (1), pag 55-60, Jul, 1998; Cerca con Google

[10] RM Birn et al, “Event-related fMRI of task involving brief motion”, Human Brain Mapping, vol 7 (2), pag 106-114, 1999; Cerca con Google

[11] MS Beauchamp, “Detection of eye movement from fmri data”, Magnetic Cerca con Google

Resonance in Medicine, vol 49 (2), pag 376-380, Feb, 2003; Cerca con Google

[12] LR Frank et al, “Estimation of respiration-induced noise fluctuations from Cerca con Google

undersampled multislice fMRI data”, Magnetic Resonance in Medicine, vol 45 (4), pag 635-644, Apr, 2001; Cerca con Google

[13] G Kruger et al, “Physiological noise in oxygenation-sensitive magnetic resonance imaging”, Magnetic Resonance in Medicine, vol 46 (4), pag 631-637, Oct, 2001; Cerca con Google

[14] RW Brown et al, “Magnetic Resonance Imaging: Physical Principles and Cerca con Google

Sequence Design, Second edition”, 16 May 2014. Cerca con Google

[15] P. Mansfield, “Multi-planar imaging formation using NMR spin-echo”, Journal of Physics C: Solid State Physics, vol 10 (3), pag L55-L58, 1977; Cerca con Google

[16] RJ Ordidge et al, “Rapid Biomedical imaging by NMR”, The British Journal of Radiology, vol 54 (646), pag 850-855, Oct, 1981; Cerca con Google

[17] M Poustchi-Amin et al, “Principles and Applications of Echo-planar imaging: a review for general radiologist”, Radiographics, vol 21 (3), pag 767-779, May-Jun, 2001; Cerca con Google

[18] MJ Stehling et al, “Whole Body echo planar MR imaging at 0.5 T”, Radiology, vol 170 (1), Jan, 1989; Cerca con Google

[19] P. Mansfield, “Real-time echo planar imaging by NMR”, British Medical Bulletin, vol 40 (2), pag 187-190, Apr, 1984; Cerca con Google

[20] DA Feinberg et al, “Echo-planar imaging with asymmetric gradi- ent modulation and inner-volume excitation”, Magnetic Resonance in Medicine, vol 13 (1), pag 162- 169, Jan, 1990; Cerca con Google

[21] R. Weisskoff et al, “Fat suppression techniques: a comparison of results in instant imaging”, Conference Paper, May, 2017; Cerca con Google

[22] GM Bydder et al, “MR imaging: clinical use of the inversion recovery sequence”, Journal of Computer Assisted Tomography, vol 9 (4), pag 659-675, Jul-Aug, 1985; Cerca con Google

[23] R. Turner et al, “Passive screening of switched magnetic field gradients”, Journal of Physics E: Scientific Instruments, vol 19 (10), pag 876, Nov, 2000; Cerca con Google

[24] H. Bruder et al, “Reconstruction procedures for Echo Planar Imaging”, abstr. 359, 1989; Cerca con Google

[25] F. Schmitt et al, “Useful filterings and phase corrections for EPI derived from a calibration scan”, Society for Magnetic Resonance Imaging abstr., 464, 1990; Cerca con Google

[26] P. Jezzard et al, “Correction for geometric distortion in Echo Planar Images from B0 Field Variations”, Magnetic Resonance in Medicine, vol 34 (1), pag 65-73, Jul, 1995; Cerca con Google

[27] X. Wan et al, “Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan”, Magnetic Resonance in Medicine, vol 37 (6), pag 932-942, Jun 1997; Cerca con Google

[28] H. Chang et al, “A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities”, IEEE Transaction on Medical Imaging, vol 11 (3), pag 319-329, 1992; Cerca con Google

[29] PS Morgan et al, “Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method”, Journal of Magnetic Resonance Imaging, vol 19 (4), pag 499-507, Apr, 2004; Cerca con Google

[30] R. Bowtell et al, “Correction of geometric distortion in echo planar images”, Book of abstracts: Society of Magnetic Resonance, 2nd Annual Meeting, San Francisco, 6-12 Aug, p 411, 1994; Cerca con Google

[31] JL Andersson et al, “How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging”, Neuroimage, vol 20 (2), pag 870-888, Oct, 2003; Cerca con Google

[32] J. Kybic et al, “Unwarping of unidirectionally distorted EPI images”, IEEE Cerca con Google

Transaction on Medical Imaging, vol 19 (2), pag 80-93, Feb, 2000; Cerca con Google

[33] C. Studholme et al, “Accurate alignement of functional EPI data to anatomical MRI using a physic-based distortion model”, IEEE Transaction on Medical Imaging, vol 19 (11), pag 1115-1127, Nov, 2000; Cerca con Google

[34] B.B. Avants et al, “Symmetric diffeomorphic image registration with cross- Cerca con Google

correlation: Evaluating automated labeling of elderly and neurodegenerative brain” Medical Image Analysis, vol 12 (1), pag 26-41, 23 Jun, 2007; Cerca con Google

[35] J. Kim et al, “Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study”, Neuroimage, vol 39 (3), pag 1014-1026, 1 Feb, 2008; Cerca con Google

[36] RN Denison et al., “Functional mapping of the magnocellular and parvocellular subdivision of human LGN”, Neuroimage, vol 102 (2), pag 358-369, 15 Nov, 2014; Cerca con Google

[37] S.M. Smith et al, “Advances in functional and structural MR image analysis and implementation as FSL” Neuroimage, vol 23 Supp 1, pag S208-S219, 2004; Cerca con Google

[38] B.B Avants et al, “The Insight ToolKit image registration framework”, Frontiers in Neuroinformatics, 8:44, Apr, 2014; Cerca con Google

[39] NJ Tustison et al, “N4ITK: improved N3 bias field correction”, IEEE Transaction on Medical Imaging, vol 29 (6), pag 1310-1320, Jun, 2010; Cerca con Google

[40] M. Jenkinson et al, “BET2: MR-based estimation of brain, skull and scalp Cerca con Google

surfaces” 11th Annual Meeting of the Organization for Human Brain Mapping, 2005; [41] M. Jenkinson et al, “Improved Optimisation for the Robust and Accurate Linear Registration and Motion Correction of Brain Images” Neuroimage, vol 17 (2), pag 825- 841, Oct, 2002; Cerca con Google

[42] K.J. Friston et al, “Statistical parametric maps in Functional imaging: a general linear approach”, Human Brain Mapping, vol 2, pag 189-210, 1995; Cerca con Google

[43] http://gablab.mit.edu/index.php/software; Vai! Cerca con Google

[44] B.B Avants et al, “Geodesic estimation for large deformation anatomical shape averaging and interpolation”, Neuroimage, vol 23 Supp 23, pag S139-S150, 2004; Cerca con Google

[45] Y. Zhang et al, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm”, IEEE Transaction on Medical Imaging, vol 20 (1), pag 45-57, Jan, 2001; Cerca con Google

81 Cerca con Google

[46] E.V. Reeth et al, “Super-resolution in magnetic resonance imaging: a review” Concepts in Magnetic Resonance, vol 40A (6), pag 306-325, Nov, 2012; Cerca con Google

[47] H. Greenspan et al,” MRI inter-slice reconstruction using super-resolution”, vol 20 (5), pag 437–446, Jun, 2002; Cerca con Google

[48] E. Plenge et al., “ Super-Resolution reconstruction in MRI: better images faster?”, in Proc. SPIE Medical Imaging: Image Processing, San Diego, CA, USA, pag 138.1-138.8., 2012; Cerca con Google

[49] B. Scherrer et al, “Super-resolution reconstruction to increase the spatial Cerca con Google

resolution of diffusion weighted images from orthogonal anisotropic acquisitions” Medical Image Analysis, vol 16 (7), pag 1465-1476, Oct, 2013; Cerca con Google

[50] R. Z. Shilling et al, “ Sampling strategies for super-resolution in multi-slice MRI” , in Proc. Image Processing, 15th IEEE International Conference on, San Diego, CA, USA, pag 1465-1476, 2008; Cerca con Google

[51] A. Gholipour et al, “Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI”, Medical Physics, vol 42 (12), pag 6919-6932, Dec, 2015. Cerca con Google

[52] M. Irani et al., “Super Resolution from image sequences”, in Proceedings 10th Cerca con Google

International Conference in Pattern Recognition, Atlantic City, USA, vol 2, pag Cerca con Google

115-120, 1990; Cerca con Google

[53] M. Irani et al, “Improving resolution by image registration”, Graphical Models and Cerca con Google

Image Processing, vol 53 (3), pag 231-239, May, 1991; Cerca con Google

[54] D. Poot et al, “General and efficient super-resolution method for multi-slice MRI”, in MICCAI, Berlin/Heidelberg, vol. 6361, pag 615-622Germany, Jan, 2010; Cerca con Google

[55] SH. Joshi et al, “MRI resolution enhancement using total variation regularization”, Proceedings in IEEE International Symposium on Biomedical Imaging, Boston, MA, USA, pag 161-164, Jun-Jul. 2009; Cerca con Google

[56] A. Ben-Ezra et al, “Regularized super-resolution of brain MRI”, IEEE Cerca con Google

International Symposium on Biomedical Imaging, Boston, MA, USA, pag 254-257, Jun-Jul. 2009; Cerca con Google

[57] A. Gholipour et al, “Robust Super-resolution Volume Reconstruction from Slice Acquisitions: Application to Fetal Brain MRI”, IEEE Transaction on Medical Imaging, vol 29 (10), pag 1739-1758, Jun , 2010; Cerca con Google

[58] A. Gholipour et al, “Maximum A Posteriori Estimation of Isotropic High- Cerca con Google

Resolution Volumetric MRI from Orthogonal Thick-Slice Scans”, in MICCAI, vol 6362, pag 109-116, Sep, 2010; Cerca con Google

[59] E. Plenge et al, “Super-Resolution Reconstruction using cross-scale self-similarity in multi-slice MRI”, MICCAI, vol 16 (pt 3), pag 123-130, 2013; Cerca con Google

[60] Y. Iwamoto et al, “Super-Resolution of MR volumetric images using sparse representation and self-similarity”, Conference: Pattern Recognition 21st International Conference, 2012; Cerca con Google

[61] J. V. Manjón et al, “MRI Superesolution using self-similarity and Image Priors”, International Journal of Biomedical Imaging, vol 2010, 12 pag, Oct, 2010; [62] P. Coupé et al, “An optimized blockwise non local means denoising filter for 3D magnetic resonance images”, IEEE Transaction on Medical Imaging, vol 27 (4), pag 425-441, Sep, 2008; Cerca con Google

[63] A. Buades et al, “A review of image denoising algorithms, with a new one”, Multiscale Model and Simulation, vol 4 (2), pag 490-530, 2005; Cerca con Google

[64] C. A. Cocosco et al, “Brain web: online interface to a 3D MRI simulated brain database”, Neuroimage, vol 5 (4), pag S425, 1997; Cerca con Google

[65] D. L. Collins et al, “Design and construction of a realistic digital brain phantom”, IEEE Transaction on Medical Imaging, vol 17 (3), pag 463-468, 1998. Cerca con Google

[66] AM Coleen et al, “Williams Syndrome”, GeneReviews, 23 March, 2017; Cerca con Google

[67] CF Beckmann et al, “Group comparison of resting-state FMRI data using multi-subject ICA and dual regression”, Organization of Human Brain Mapping, 2009; Cerca con Google

[68] F. Arrigoni et al, “Learning to live without the cerebellum”, Neuroreport, vol 26 (14), pag 809-813, 30 Sep, 2015; Cerca con Google

[69] A. Hyvarien, “Fast and Robust Fixed-Point Algorithms for Independent component Analysis”, IEEE Transaction on Neural Networks, vol 10 (3), pag 626-634, 1999; Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record