Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Poli, Francesco (2017) The Information Content of Financial Textual Data: Creating News Measures for Volatility Modeling and for the Analysis of Price Jumps. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
3170Kb

Abstract (english)

We retrieve news stories and earnings announcements of the S&P 100 constituents from two professional news providers, along with ten macroeconomic indicators. We also gather data from Google Trends about these firms' assets as an index of retail investors' attention. Thus, we create an extensive and innovative database that contains precise information with which to analyze the link between news and asset price dynamics. We detect the sentiment of news stories using a dictionary of sentiment-related words and negations and propose a set of more than five thousand information-based variables that provide natural proxies for the information used by heterogeneous market players. We first shed light on the impact of information measures on daily realized volatility and select them by penalized regression. Then we use these measures to forecast volatility and obtain superior results with respect to the results of models that omit them. Thereafter, we detect intraday price jumps in the S&P 100 constituents' stocks and we build high frequency news indicators from news stories released by two professional news providers, earnings announcements, and twenty-three US macroeconomic indicators. We investigate the extent to which statistically significant intraday jumps are associated with the news indicators and select them by penalized logistic regression. We compare the economic significance of jumps and we find effects on returns and volatility at both high frequency and daily level, and that these effects vary depending on the type of news to which jumps are associated. We also find that future quarterly and yearly returns seem to be exposed to jump risk measures built using jumps related to macro-announcements. A common method to detect the sentiment of a text is the so-called bag-of-words approach. Finally, we extend the method in three directions, by using: 1) an extended negations list of single words, two-word sequences, and three-word sequences; 2) lists of sentiment-related expressions; 3) lists of sentiment-related words combinations. The aim is creating a general method suitable for detecting the sentiment of a financial text of any type.

Abstract (italian)

Ricaviamo da due news provider professionali le news e gli annunci sugli utili dei componenti dell'S&P 100 e dieci indicatori macroeconomici, inoltre raccogliamo i Google Trends associati ai titoli come indice dell'attenzione dei piccoli investitori. Creiamo un database esteso ed innovativo, utile per analizzare il legame tra le news e gli andamenti dei prezzi dei titoli. Rileviamo il sentiment delle news usando un dizionario di parole associate a un sentiment e delle negazioni, e proponiamo un insieme di più di cinquemila variabili che rappresentano l'informazione usata da agenti eterogenei. Facciamo luce sull'impatto delle misure di informazione sulla volatilità realizzata giornaliera e le selezioniamo con la regressione penalizzata; poi le usiamo per prevedere la volatilità, ottenendo risultati superiori rispetto a modelli che le omettono.
Dopodiché, rileviamo i salti intragiornalieri nei prezzi dei componenti dell'S&P 100 e costruiamo indicatori di news ad alta frequenza dalle news di due news provider professionali, dagli annunci sugli utili e da ventitré indicatori macroeconomici. Mettiamo in relazione i salti nei prezzi con gli indicatori di news e li selezioniamo con la regressione logistica penalizzata. Confrontiamo l'importanza economica dei salti e troviamo effetti sui rendimenti e sulla volatilità sia a livello di alta frequenza che giornaliero, e che questi effetti variano a seconda del tipo di news a cui i salti sono associati. Troviamo anche che i rendimenti futuri trimestrali e annuali sembrano esposti a misure di rischio basate sui salti associati ad annunci macroeconomici. Un metodo comune per rilevare il sentiment di un testo è il cosiddetto bag-of-words. Estendiamo il metodo in tre direzioni, usando: 1) una lista estesa di negazioni composta da parole singole, sequenze di due parole, e sequenze di tre parole; 2) liste di espressioni associate a un sentiment; 3) liste di combinazioni di parole associate a un sentiment. Lo scopo è creare un metodo generale adatto a rilevare il sentiment di un testo finanziario di qualsiasi tipo.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Caporin, Massimiliano
Ph.D. course:Ciclo 29 > Corsi 29 > ECONOMIA E MANAGEMENT
Data di deposito della tesi:01 August 2017
Anno di Pubblicazione:01 August 2017
Key Words:news, Google Trends, sentiment, volatility, forecasting, jumps, regularization, big data
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-P/05 Econometria
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Economiche e Aziendali "Marco Fanno"
Codice ID:10481
Depositato il:14 Nov 2018 13:20
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P. Modeling and Forecasting Realized Volatility. Econometrica 2003, 71, 579-625. Cerca con Google

Andersen, T.G.; Bollerslev, T.; Diebold, F.X. Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility. Rev Econ Stat 2007, 89, 701-720. Cerca con Google

Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Vega, C. Real-time price discovery in global stock, bond and foreign exchange markets. J Int Econ 2007, 73, 251-277. Cerca con Google

Andersen, T.G.; Bollerslev, T.; Dobrev, D. No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications. J Econometrics 2007, 138, 125-180. Cerca con Google

Andrei, D.; Hasler, M. Investor Attention and Stock Market Volatility. Rev Financ Stud 2015, 28, 33-72. Cerca con Google

Audrino, F.; Knaus, S.D. Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics. J Economet Rev 2016, 35, 1485-1521. Cerca con Google

Antweiler, W.; Frank, M.Z. Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards. J Financ 2004, 59, 1259-1294. Cerca con Google

Bajgrowicz, P.; Scaillet, O.; Treccani, A. Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News. Management Sci, 2016, 62, 2198-2217. Cerca con Google

Baker, S.; Fradkin, A. What Drives Job Search? Evidence from Google Search Data. Discussion Papers, Stanford Instititute for Economic Policy Research 2011. Cerca con Google

Baklaci, H.F.; Tunc, G.; Aydogan, B.; Vardar, G. The Impact of Firm-Specific Public News on Intraday Market Dynamics: Evidence from the Turkish Stock Market. Emerg Mark Financ Tr 2011, 47, 99-119. Cerca con Google

Berry, T.D.; Howe, K.M. Public Information Arrival. J Financ 1994, 49, 1331-1346. Cerca con Google

Barndorff-Nielsen, O.E.; Shephard, N. Power and Bipower Variation with Stochastic Volatility and Jumps. J Financ Economet 2004, 2, 1-37. Cerca con Google

Barndorff-Nielsen, O.E.; Shephard, N. Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation. J Financ Economet 2006, 4, 1-30. Cerca con Google

Beine, M.; Lahaye, J.; Laurent, S.; Neely, C.J.; Palm, F.C. Central Bank Intervention and Exchange Rate Volatility, its Continuous and Jump Components. Int J Financ Econ 2007, 12, 201-223. Cerca con Google

Bjursell, J.; Wang, G.H.K.; Webb, R.I. Jumps and Trading Activity in Interest Rate Futures Markets: The Response to Macroeconomic Announcements. Asia-Pac J Financ St, 2013, 42, 689-723. Cerca con Google

Birz, G.; Lott, J.R., Jr. The Effect of Macroeconomic News on Stock Returns: New Evidence from Newspaper Coverage. J Bank Financ 2011, 35, 2791-2800. Cerca con Google

Bollerslev, T. Generalized Autoregressive Conditional Heteroskedasticity. J Econometrics 1986, 31, 307-327. Cerca con Google

Bollerslev, T.; Ghysels, E. Periodic Autoregressive Conditional Heteroscedasticity. J Bus Econ Stat 1996, 14, 139-151. Cerca con Google

Bollerslev, T.; Law, T.H.; Tauchen, G. Risk, jumps, and diversification. J Econometrics 2008, 144, 234-256. Cerca con Google

Bomfim, A.N. Pre-announcement Effects, News Effects, and Volatility: Monetary Policy and the Stock Market. J Bank Financ 2003, 27, 133-151. Cerca con Google

Borovkova, S.; Mahakena, D. News, volatility and jumps: the case of natural gas futures. Quant Financ, 2015, 15, 1217-1242. Cerca con Google

Bouchaud, J.P.; Kockelkoren, J.; Potters, M. Random walks, liquidity molasses and critical response in financial markets. Quant Financ 2006, 6, 115-123. Cerca con Google

Boudt, K.; Croux, C.; Laurent, S. Robust estimation of intraweek periodicity in volatility and jump detection. J Empir Financ, 2011, 18, 353-367. Cerca con Google

Boudt, K.; Petitjean, M. Intraday Liquidity Dynamics and News Releases Around Price Jumps: Evidence from the DJIA Stocks. J Financ Mark, 2014, 17, 121-149. Cerca con Google

Brailsford, T.J. The Empirical Relationship between Trading Volume, Returns and Volatility. Account Financ 1996, 36, 89-111. Cerca con Google

Brenner, M.; Pasquariello, P.; Subrahmanyam, M. On the Volatility and Comovement of U.S. Financial Markets around Macroeconomic News Announcements. J Financ Quant Anal 2009, 44, 1265-1289. Cerca con Google

Busse, J.A.; Green, T.C. Market Efficiency in Real Time. J Financ Econ 2002, 65, 415-437. Cerca con Google

Caporin, M.; Kolokolov, A.; Renò, R. Systemic Co-jumps. J Financ Econ, forthcoming. Cerca con Google

Caporin, M.; Poli, F. Building News Measures from Textual Data and an Application to Volatility Forecasting. Working Paper Cerca con Google

Chatrah, A.; Miao, H.; Ramchander, S.; Villupuram, S. Currency jumps, cojumps and the role of macro news. J Int Money Financ, 2014, 40, 42-62. Cerca con Google

Clark, P. A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices. Econometrica 1973, 41, 135-155. Cerca con Google

Corsi, F. A Simple Approximate Long-Memory Model of Realized Volatility. J Financ Economet 2009, 7, 174-196. Cerca con Google

Corsi, F.; Pirino, D.; Renò, R. Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting. J Econometrics 2010, 159, 276-288. Cerca con Google

Cui, J.; Zhao, H. Intraday jumps in China's Treasury bond market and macro news announcements. Int Rev Econ Financ, 2015, 39, 211-223. Cerca con Google

Cutler, D.M.; Poterba, J.M.; Summers, L.H. What Moves Stock Prices? J Portfolio Manage 1989, 15, 4-12. Cerca con Google

Da, Z.; Engelberg, J.; Gao, P. In Search of Attention. J Financ 2011, 66, 1461-1499. Cerca con Google

Da, Z.; Engelberg, J.; Gao, P. The Sum of All FEARS Investor Sentiment and Asset Prices. Rev Financ Stud 2015, 28, 1-32. Cerca con Google

D'Amuri, F.; Marcucci, J. The Predictive Power of Google Searches in Forecasting Unemployment. Banca D'Italia Working Papers, n. 891 2012. Cerca con Google

Dewatcher, H.; Erdemlioglu, D.; Gnabo, J-Y. The intra-day impact of communication on euro-dollar volatility and jumps. J Int Money Financ, 2014, 43, 131-154. Cerca con Google

Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J Bus Econ Stat 1995, 13, 253-263. Cerca con Google

Dimpfl, T.; Jank, S. Can Internet Search Queries Help to Predict Stock Market Volatility? Eur Financ Manag 2016, 22, 171-192. Cerca con Google

Dougal, C.; Engelberg, J.; Garcia, D.; Parsons, C.A. Journalists and the Stock Market. Rev Financ Stud 2012, 25, 639-679. Cerca con Google

Dungey, M.; McKenzie, M.; Smith, L.V. Empirical Evidence on Jumps in the Term Structure of the US Treasury Market. J Empir Financ, 2009, 16, 430-445. Cerca con Google

Ederington, L.H.; Lee, J.H. How Markets Process Information: News Releases and Volatility. J Financ 1993, 48, 1161-1191. Cerca con Google

Elder, J.; Miao, H.; Ramchander, S. Jumps in Oil Prices: The Role of Economic News. Energ J, 2013, 34, 217-237. Cerca con Google

Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987-1007. Cerca con Google

Engle R.F.; Rangel J.G. The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes. Rev Financ Stud 2008, 21, 1187-1222. Cerca con Google

Epps, T.W.; Epps, M.L. The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis. Econometrica 1976, 44, 305-321. Cerca con Google

Evans, K.P. Intraday jumps and US macroeconomic news announcements. J Bank Financ 2011, 35, 2511-2527. Cerca con Google

Fang, L.; Peress, J. Media Coverage and the Cross-section of Stock Returns. J Financ 2009, 64, 2023-2052. Cerca con Google

Flannery, M.J.; Protopapadakis, A.A. Macroeconomic Factors do Influence Aggregate Stock Returns. Rev Financ Stud 2002, 15, 751-782. Cerca con Google

Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw 2010, 33, 1-22. Cerca con Google

Frommel, M.; Han, X.; van Gysegem, F. Further Evidence on Foreign Exchange Jumps and News Announcements. Emerg Mark Financ Tr, 2015, 51, 774-787. Cerca con Google

Gallo, G.; Pacini, B. The Effects of Trading Activity on Market Volatility. Eur J Financ 2000, 6, 163-175. Cerca con Google

Garcia, D. Sentiment during Recessions. J Financ 2013, 68, 1267-1300. Cerca con Google

Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting Influenza Epidemics Using Search Engine Query Data. Nature 2009, 457, 1012-1014. Cerca con Google

Gloss-Klussmann, A.; Hautsch, N. When Machines Read the News: Using Automated Text Analytics to Quantify High Frequency News-Implied Market Reactions. J Empir Financ 2011, 18, 321-340. Cerca con Google

Goddard, J.; Kita, A.; Wang, Q. Investor Attention and FX Market Volatility. J Int Finan Markets Inst Money 2015, 38, 79-96. Cerca con Google

Guo, J.F.; Ji, Q. How does Market Concern Derived from the Internet Affect Oil Prices? Appl Energ 2013, 112, 1536-1543. Cerca con Google

Hamid, A.; Heiden, M. Forecasting Volatility with Empirical Similarity and Google Trends. J Econ Behav Organ 2015, 117, 62-81. Cerca con Google

Hautsch, N.; Hess, D.; Veredas, D. The Impact of Macroeconomic News on Quote Adjustments, Noise, and Informational Volatility. J Bank Financ 2011, 35, 2733-2746. Cerca con Google

Ho, K.Y.; Shi, Y.; Zhang, Z. How Does News Sentiment Impact Asset Volatility? Evidence from Long Memory and Regime-Switching Approaches. N Am J Econ Financ 2013, 26, 436-456. Cerca con Google

Huang, X. Macroeconomic News Announcements, Systemic Risk, Financial Market Volatility and Jumps. Economics Discussion Series 2015-097. Washington: Board of Governors of the Federal Reserve System, 2015. Cerca con Google

James, G.; Hastie, T.; Witten, D.; Tibshirani, R. An Introduction to Statistical Learning; Springer-Verlag: New York, NY, USA, 2013. Cerca con Google

Janssen, G. Public Information Arrival and Volatility Persistence in Financial Markets. Eur J Financ 2004, 10, 177-197. Cerca con Google

Jiang, G.J.; Lo, I.; Verdelhan, A. Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market. J Financ Quant Anal, 2011, 46, 527-551. Cerca con Google

Jones, C.M.; Lamont, O.; Lumsdaine, R.L. Macroeconomic News and Bond Market Volatility. J Financ Econ 1998, 47, 315-337. Cerca con Google

Joulin, A.; Lefevre, A.; Grunberg, D.; Bouchaud, J.P. Stock price jumps: News and volume play a minor role. Wilmott Magazine, 2008, 1-7. Cerca con Google

Kalev, P.S.; Liu, W.M.; Pham, P.K.; Jarnecic, E. Public Information Arrival and Volatility of Intraday Stock Returns. J Bank Financ 2004, 28, 1441-1467. Cerca con Google

Kim, D.; Kon, S.J. Alternative Models for the Conditional Heteroscedasticity of Stock Returns. J Bus 1994, 67, 563-598. Cerca con Google

Kraussl, R.; Mirgorodskaya, E. Media, Sentiment and Market Performance in the Long Run. Eur J Financ 2016, 22, 1-24. Cerca con Google

Lahaye, J.; Laurent, S.; Neely, C.J. Jumps, cojumps and macro announcements. J Appl Econom 2011, 26, 893-921. Cerca con Google

Lamoureux, C.G.; Lastrapes, W.D. Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects. J Financ 1990, 45, 221-229. Cerca con Google

Larkin, F.; Ryan, C. Good News: Using News Feeds with Genetic Programming to Predict Stock Prices. In Genetic Programming. EuroGP 2008. Lecture Notes in Computer Science, vol 4971; ONeill M. et al. (eds); Springer, Berlin, Heidelberg; 2008; pp. 49-60. Cerca con Google

Lee, S.S.; Mykland, P.A. Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics. Rev Financ Stud 2008, 21, 2535-2563. Cerca con Google

Léon, A.; Sebestyén, S. New measures of monetary policy surprises and jumps in interest rates. J Bank Financ, 2012, 36, 2323-2343. Cerca con Google

Li, L.; Engle, R.F. Macroeconomic Announcements and Volatility of Treasury Futures. Discussion Paper, Dept. of Economics, University of California, San Diego 1998. Cerca con Google

Loughran, T.; McDonald, B. When is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. J Financ 2011, 66, 35-65. Cerca con Google

Madhavan, A. Market microstructure: A survey. J Financ Mark 2000, 3, 205-258. Cerca con Google

Maheu, J.M.; McCurdy, T.H. News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns. J Financ 2004, 59, 755-793. Cerca con Google

Martens, M.; van Dijk, D.; de Pooter, M. Forecasting S&P 500 Volatility: Long Memory, Level Shifts, Leverage Effects, Day-of-the-Week Seasonality, and Macroeconomic Announcements. Int J Forecasting 2009, 25, 282-303. Cerca con Google

McMillan, D.G.; Garcia, R.Q. Does Information Help Intra-Day Volatility Forecasts? J Forecasting 2013, 32, 1-9. Cerca con Google

Meurer, R.; Santos, A.A.P.; Turatti, D.E. Monetary policy surprises and jumps in interest rates: evidence from Brazil. J Econ Stud, 2015, 42, 893-907. Cerca con Google

Miao, H.; Ramchander, S.; Zumwalt, K. S$P 500 Index-Futures Price Jumps and Macroeconomic News. J Futures Markets 2014, 34, 980-1001. Cerca con Google

Mitchell, M.L.; Mulherin, J.H. The Impact of Public Information on the Stock Market. J Financ 1994, 49, 923-950. Cerca con Google

Mizrach, B. Jumps and Cojumps in Subprime Home Equity Derivatives. J Portfolio Manage, 2012, 38, 136-146. Cerca con Google

Mood, A. The distribution theory of runs. Ann Math Statist, 1940, 11, 367-392. Cerca con Google

Neely, C.J. A Survey of Announcement Effects on Foreign Exchange Volatility and Jumps. Federal Reserve Bank of St. Louis Review, 2011, 93, 361-407. Cerca con Google

Omran, M.F.; McKenzie, E. Heteroscedasticity in Stock Returns Data Revisited: Volume versus GARCH Effects. Appl Finan Econ 2000, 10, 553-560. Cerca con Google

Pavlou, M.; Ambler, G.; Seaman, S.; De Iorio, M.; Omar, R.Z. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Statist Med 2016, 35, 1159-1177. Cerca con Google

Preis, T.; Reith, D.; Stanley, H.E. Complex Dynamics of our Economic Life on Different Scales: Insights from Search Engine Query Data. Philos T Roy Soc A 2010, 368, 5707-5719. Cerca con Google

Rangel, J.G. Macroeconomic News, Announcements, and Stock Market Jump Intensity Dynamics. J Bank Financ 2011, 35, 1263-1276. Cerca con Google

Riordan, R.; Storkenmaier, A.; Wagener, M.; Zhang, S. Public Information Arrival: Price Discovery and Liquidity in Electronic Limit Order Markets. J Bank Financ 2013, 37, 1148-1159. Cerca con Google

Roll, R. R2. J Financ 1988, 43, 541-566. Cerca con Google

Savor, P.; Wilson, M. How Much Do Investors Care About Macroeconomic Risk? Evidence from Scheduled Economic Announcements. J Financ Quant Anal 2013, 48, 343-375. Cerca con Google

Smales, L.A. Time-Variation in the Impact of News Sentiment. Int Rev Finan Anal 2015, 37, 40-50. Cerca con Google

Smith, G.P. Google Internet Search Activity and Volatility Prediction in the Market for Foreign Currency. Financ Res Lett 2012, 9, 103-110. Cerca con Google

Solomon, D.; Soltes, E.; Sosyura, D. Winners in the Spotlight: Media Coverage of Fund Holdings as a Driver of Flows. J Financ Econ 2014, 113, 53-72. Cerca con Google

Tauchen, G.E.; Pitts, M. The Price Variability-Volume Relationship on Speculative Markets. Econometrica 1983, 51, 485-505. Cerca con Google

Tauchen, G.; Zhou, H. Realized jumps on financial markets and predicting credit spreads. J Econometrics 2011, 160, 102-118. Cerca con Google

Tetlock, P.C. Giving Content to Investor Sentiment: The Role of Media in the Stock Market. J Financ 2007, 62, 1139-1168. Cerca con Google

Tetlock, P.C.; Saar-Tsechansky, M.; Macskassy, S. More than Words: Quantifying Language to Measure Firms' Fundamentals. J Financ 2008, 63, 1437-1467. Cerca con Google

Tetlock, P.C. Does Public Financial News Resolve Asymmetric Information? Rev Financ Stud 2010, 23, 3520-3557. Cerca con Google

Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J Roy Stat Soc B Met 1996, 58, 267-288. Cerca con Google

Schwert, G.W. Why Does Stock Market Volatility Change over Time? J Financ 1989, 44, 1115-1153. Cerca con Google

Vlastakis, N.; Markellos, R.N. Information Demand and Stock Market Volatility. J Bank Financ 2012, 36, 1808-1821. Cerca con Google

Vozlyublennaia, N. Investor Attention, Index Performance, and Return Predictability. J Bank Financ 2014, 41, 17-35. Cerca con Google

Vrugt, E.B. U.S. and Japanese Macroeconomic News and Stock Market Volatility in Asia-Pacific. Pac-Basin Financ J 2009, 17, 611-627. Cerca con Google

Wright, J.H.; Zhou, H. Bond risk premia and realized jump risk. J Bank Financ 2009, 33, 2333-2345. Cerca con Google

Zhang, Y.; Swanson, P.E.; Prombutr, W. Measuring Effects on Stock Returns of Sentiment Indexes Created from Stock Message Boards. J Financ Res 2012, 35, 79-114. Cerca con Google

Zhang, Y.; Feng, L.; Jin, X.; Shen, D.; Xiong, X.; Zhang, W. Internet Information Arrival and Volatility of SME PRICE INDEX. Physica A 2014, 399, 70-74. Cerca con Google

Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J Roy Stat Soc B, 2005, 67, 301-320. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record