Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Paduano, Andrea (2017) Development of innovative ceramic materials for electrocatalysis. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione accettata
14Mb

Abstract (inglese)

The main goal of this work is to synthetize and characterize new and innovative ceramic materials that can be used for energetic catalysis. The work is split in two main branches, the first one focused on TiOxCy ceramics, the second one on Max phases. Both of them appear to be excellent anodic materials for fuel cells, with the first one specifically developed within the European DECORE Project.
The titanium oxycarbide was developed to work at the anode of direct ethanol fuel cells because of its predicted stability in acidic and moderate high temperature ambient. The initial requirements that have to be satisfied for the European project were to have a pure powder with high surface area, that can be scaled easily to industrial scale. Several and different paths were used to satisfy and outdo the starting requirements, obtaining a process and the resulting powder that show excellent results in terms of purity, surface area, reproducibility and scalability. All of the requirements were fully satisfied. New catalysts were also synthetized to optimize the efficiency of the anode, using platinum and platinum-tin nanoparticles. Especially the latter showed very promising results, that have to be further analysed with more complete and in-depth experiments.
The Max phases are a class of innovative ceramics with nanolamitated structures. They mix the best properties of the ceramics, like acid and high temperature resistance, with the best ones of the metals, as electrical conductivity and malleability. They were studied in the last two decades, but few works aimed to discover their utility in fuel cells. Due to their very promising qualities we tried to produce them for future works aimed to use them as catalyst support. We concentrated our work on Ti3SiC2, Ti2AlC and Ti3AlC2 due to their ease of synthesis, but we obtained pure powders barely, so additional and further studies are needed. On that powders, we made a preliminary study on the feasibility of decoration with platinum nanoparticles and on the electrochemical behaviour in mild conditions. The results were promising, but require more experiments.

Abstract (italiano)

L'obiettivo principale di questo lavoro è la sintesi e la caratterizzazione di nuovi ed innovativi materiali ceramici che possono essere utilizzati per catalisi energetica. Il lavoro è diviso in due rami principale, il primo focalizzato sulle ceramiche TiOxCy, il secondo sulle Max Phases. Entrambe sembrano essere ottimi supporti anodici per celle a combustibile, con il primo sviluppato espressamente all'interno del progetto europeo DECORE.
L'ossicarburo di titanio è stato sviluppato per lavorare all'anodo di celle a combustibile a etanolo per la sua stabilità in ambienti acidi e a medie-alte temperature. Le richieste iniziali da soddisfare per il progetto europeo erano di avere una polvere pura con grande area superficile, che può essere prodotta in grande scala facilmente. Differenti e varie strade sono state percorse per soddisfare e superare gli obiettivi iniziali, ottenendo un processo e una polvere finale che mostrano eccellenti risultati in purità, area superficiale, riproducibilità e scalabilità. Tutte le richieste sono state soddisfatte. Nuovi catalizzatori sono stati sintetizzati per ottimizzare l'efficienza dell'anodo, usando nanoparticelle di platino e di platino-stagno. Le ultime in particolare hanno mostrato risultati promettenti che devono essere analizzati ulteriormente con studi più completi e dettagliati.
Le MAX phases sono una classe di ceramici innovativi con strutture nanolaminate. Uniscono le migliori proprietà dei metalli, come la conducibilità elettrica e malleabilità, con quelle dei ceramici, come la resistenza agli acidi e alle alte temperature. Sono state studiate negli ultimi venti anni, ma pochi lavori si sono focalizzati sul loro uso nelle celle a combustibile. Ci siamo concentrati su Ti3SiC2, Ti2AlC e Ti3AlC2 per la loro facilità di sintesi, ma abbiamo ottenuto scarsi risultati. Per questo sono richiesti ulteriori studi. Sulle polveri ottenute abbiamo svolto uno studio preliminare per la decorazione con nanoparticelle di platino e per il comportamento elettrochimico in condizioni blande. I risultati sono incoraggianti, ma richiedono un studio più approfondito.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Martucci, Alessandro
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:02 Agosto 2017
Anno di Pubblicazione:Luglio 2017
Parole chiave (italiano / inglese):Ceramics Powders ElectroCatalysis Titanium Oxycarbide MAX Phases
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10499
Depositato il:16 Nov 2018 10:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Badwal, S.P.S., et al., Direct ethanol fuel cells for transport and stationary applications – A comprehensive review. Applied Energy, 2015. 145: p. 80-103. Cerca con Google

2. Balat, M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 2011. 52(2): p. 858-875. Cerca con Google

3. Kim, S. and B.E. Dale, Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 2004. 26(4): p. 361-375. Cerca con Google

4. Limayem, A. and S.C. Ricke, Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 2012. 38(4): p. 449-467. Cerca con Google

5. Mielenz, J.R., Ethanol production from biomass: technology and commercialization status. Current Opinion in Microbiology, 2001. 4(3): p. 324-329. Cerca con Google

6. Sarkar, N., et al., Bioethanol production from agricultural wastes: An overview. Renewable Energy, 2012. 37(1): p. 19-27. Cerca con Google

7. Camargo, A.P.M.C., et al., Effect of temperature of the electro-oxidation of ethanol on platinum. Quimica Nova, 2010. 33(10): p. 2143-2147. Cerca con Google

8. Reimer, U., B. Schumacher, and W. Lehnert, Accelerated Degradation of High-Temperature Polymer Electrolyte Fuel Cells: Discussion and Empirical Modeling. Journal of the Electrochemical Society, 2014. 162(1): p. F153-F164. Cerca con Google

9. Honji, A., et al., Agglomeration of Platinum Particles Supported on Carbon in Phosphoric Acid. Electrochemical Science and Technology, 1988. 135(2): p. 355-359. Cerca con Google

10. Hydrogen Energy. Available from: http://www.hydrogen.energy.gov/pdfs/program_plan2011.pdf. Vai! Cerca con Google

11. Christner, L.G., et al., Corrosion of Graphite Composites in Phosphoric Acid Fuel Cells‏. Corrosion, 1987. 43: p. 571-575. Cerca con Google

12. Bashyam, R.Z., P., A class of non-precious metal composite catalysts for fuel cells. Nature, 2006. 443: p. 63-66. Cerca con Google

13. Gasteiger, H.A., et al., Electrocatalysis and catalyst degradation challenges in proton exchange membrane fuel cells. Hydrogen and fuel cells. fundamentals, technologies, and applications. Wiley-VCH, Weinheim, 2010: p. 3-16. Cerca con Google

14. DECORE. Available from: http://decore.eucoord.com/. Vai! Cerca con Google

15. G. P. Shveikin, B.V.S., Oxidation of titanium oxycarbides, carbonitrides, and oxynitrides. Poroshkovaya Metallurgiya, 1970. 2(86): p. 63-68. Cerca con Google

16. Vulcan XC-72. Available from: http://www.cabot-corp.com/Specialty-Carbon-Blacks/Products/PR200809231124AM7994/. Vai! Cerca con Google

17. Imerys Ensaco 350G. Available from: http://www.imerys-graphite-and-carbon.com/wordpress/wp-app/uploads/2014/04/Polymer_compounds1.pdf. Vai! Cerca con Google

18. Neumann, G., R. Kieffer, and P. Ettmayer, Über das System TiC−TiN−TiO. Monatshefte fur Chemie, 1972. 103: p. 1130-1137. Cerca con Google

19. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 1938. 60(2): p. 309-319. Cerca con Google

20. Ignaszak, A., et al., Titanium carbide and its core-shelled derivative TiC@TiO 2 as catalyst supports for proton exchange membrane fuel cells. Electrochimica Acta, 2012. 69: p. 397-405. Cerca con Google

21. Calvillo, L., et al., Electrochemical Behavior of TiOxCy as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders. Applied Materials and Interfaces, 2015. 8(1): p. 716-725. Cerca con Google

22. Dewan, M.A.R., G. Zhang, and O. Ostrovski, Carbothermal Reduction of Titania in Different Gas Atmospheres. Metallurgical and Materials Transactions B, 2008. 40(1): p. 62-69. Cerca con Google

23. Berger, L.M., Titanium carbide synthesis from titanium dioxide and carbon black. Journal of Hard Materials(UK), 1992. 3(1): p. 3-15. Cerca con Google

24. Borovinskaya, I.P., et al., Self-propagating high-temperature synthesis of ultrafine and nanometer-sized TiC particles. Inorganic Materials, 2007. 43(11): p. 1206-1214. Cerca con Google

25. Gotoh, Y., et al., Synthesis of titanium carbide from a composite of TiO2 nanoparticles-methyl cellulose by carbothermal reduction. Materials Research Bulletin, 2001. 36: p. 2263-2275. Cerca con Google

26. Zhang, H., et al., Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature. Journal of Sol-Gel Science and Technology, 2008. 46(2): p. 217-222. Cerca con Google

27. Preiss, H., L.M. Berger, and D. Schultze, Studies on the Carbothermal Preparation of Titanium Carbide from Different Gel Precursors. journal of the European Ceramic Society, 1999. 19: p. 195-206. Cerca con Google

28. Shin, Y., et al., Synthesis of Hierarchical Titanium Carbide from Titania-Coated Cellulose Paper. Advanced Material, 2004. 16(14): p. 1212-1215. Cerca con Google

29. B. Sun, T.F., D. Zhang, Porous TiC Ceramics Derived from Wood Template. Journal of Porous Materials, 2002. 9: p. 275-277. Cerca con Google

30. Jiang, B., et al., Thermodynamic Study of Titanium Oxycarbide. Metallurgical and Materials Transactions A, 2012. 43(10): p. 3510-3514. Cerca con Google

31. Flaherty, D.W., et al., Low Temperature Synthesis and Characterization of Nanocrystalline Titanium Carbide with Tunable Porous Architectures. Chemistry of Materials, 2010. 22(2): p. 319-329. Cerca con Google

32. Borchardt, L., et al., Preparation and application of cellular and nanoporous carbides. Chem Soc Rev, 2012. 41(15): p. 5053-67. Cerca con Google

33. Preiss, H., E. Schierhorn, and K.W. Brzezinka, Synthesis of polymeric titanium and zirconium precursors and preparation of carbide fibres and films. Journal of Materials Science, 1998. 33: p. 4697-4706. Cerca con Google

34. Shimada, S. and M. Kozeki, Oxydation of TiC at low temperatures. Journal of Materials Science, 1992. 27: p. 1869-1875. Cerca con Google

35. Shimada, S., A thermoanalytical study of oxidation of TiC by simultaneous TGA-DTA-MS analysis. Journal of Materials Science, 1996. 31: p. 673-677. Cerca con Google

36. Chappé, J.M., et al., Analysis of multifunctional titanium oxycarbide films as a function of oxygen addition. Surface and Coatings Technology, 2011. 206: p. 2525-2534. Cerca con Google

37. Popovska, N., et al., Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration and reaction (CVI-R). Journal of the European Ceramic Society, 2005. 25(6): p. 829-836. Cerca con Google

38. Zhang, G. and O. Ostrovski, Reduction of titania by methane-hydrogen-argon gas mixture. Metallurgical and Materials Transactions B, 2000. 31B: p. 129-139. Cerca con Google

39. Zhang, G. and O. Ostrovski, Kinetic modeling of titania reduction by a methane-hydrogen-argon gas mixture. Metallurgical and Materials Transactions B, 2001. 32B: p. 465-473. Cerca con Google

40. Calvillo, L., et al., Carbothermal Transformation of TiO2 into TiOxCy in UHV: Tracking Intrinsic Chemical Stabilities. The Journal of Physical Chemistry C, 2014. 118(39): p. 22601-22610. Cerca con Google

41. Wang, Y., et al., Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chemistry of Materials, 2000. 12(6): p. 1622-1627. Cerca con Google

42. Zhu, M., G. Sun, and Q. Xin, Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochimica Acta, 2009. 54: p. 1511-1518. Cerca con Google

43. Zhaolin, L., et al., Microwave heated polyol synthesis of carbom-supported PtSn nanoparticles for methanol electrooxidation. Electrochemistry Communication, 2006. 8: p. 83-90. Cerca con Google

44. Brinker, C.J. and G.W. Scherer, CHAPTER 2 - Hydrolysis and Condensation I: Nonsilicates, in Sol-Gel Science1990, Academic Press: San Diego. p. 20-95. Cerca con Google

45. Gao, X., et al., Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica. The Journal of Physical Chemistry B, 1998. 102(29): p. 5653-5666. Cerca con Google

46. Brantley, L.R. and A.O. Beckman, The High Temperature Equilibrium of Titanium Dioxide and Carbon with Titanium Carbide and Carbon Monoxide. Journal of the American Chemical Society, 1930. 52(10): p. 3956-3962. Cerca con Google

47. Fernandes, A.C., et al., The effect of bombarding conditions on the properties of multifunctional Ti–C–O thin films grown by magnetron sputtering. Surface and Coatings Technology, 2007. 202(4–7): p. 946-951. Cerca con Google

48. Zhang, L. and R.V. Koka, A study on the oxidation and carbon diffusion of TiC in alumina–titanium carbide ceramics using XPS and Raman spectroscopy. Materials Chemistry and Physics, 1998. 57(1): p. 23-32. Cerca con Google

49. Yoshitake, H. and D. Abe, Raman spectroscopic study of the framework structure of amorphous mesoporous titania. Microporous and Mesoporous Materials, 2009. 119(1–3): p. 267-275. Cerca con Google

50. Ymeris. Carbon-based solutions for catalysts - Product portfolio. 2015; Available from: http://www.imerys-graphite-and-carbon.com/wordpress/wp-app/uploads/2015/09/IMERYS_leaflets_Catalysts.pdf. Vai! Cerca con Google

51. A. Maitre, D.T., P. Lefort, Role of some technological parameters during carburizing titanium dioxide. Journal of the European Ceramic Society, 2000. 20: p. 15-22. Cerca con Google

52. Krabbes, G. and D.V. Hoanh, Heterogene Gleichgewichte und chemische Transportreaktionen im System Ti-O-C-Cl. Zeitschrift für anorganische und allgemeine Chemie, 1988. 562(1): p. 62-72. Cerca con Google

53. Patterson, A.L., The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 1939. 56(10): p. 978-982. Cerca con Google

54. Song, S., et al., Direct ethanol PEM fuel cells: The case of platinum based anodes. International Journal of Hydrogen Energy, 2005. 30(9): p. 995-1001. Cerca con Google

55. Borbáth, I., et al., Controlled Synthesis of Pt3Sn/C Electrocatalysts with Exclusive Sn–Pt Interaction Designed for Use in Direct Methanol Fuel Cells. Topics in Catalysis, 2013. 56(11): p. 1033-1046. Cerca con Google

56. Cantane, D.A. and E.R. Gonzalez, Chemical Selectivity during the Electro-Oxidation of Ethanol on Unsupported Pt Nanoparticles. Journal of the Electrochemical Society, 2012. 159(3): p. B355-B359. Cerca con Google

57. Jiang, L., et al., Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochimica Acta, 2005. 50(27): p. 5384-5389. Cerca con Google

58. Jiang, L., et al., Effects of Treatment in Different Atmosphere on Pt3Sn-C Electrocatalysts for Ethanol Electro-oxidation. Energy & Fuels, 2004. 18: p. 866-871. Cerca con Google

59. Kim, J.H., et al., Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: Synthesis, characterization, and electrocatalytic activity. Applied Catalysis B: Environmental, 2008. 82(1-2): p. 89-102. Cerca con Google

60. Léger, J.M., et al., How bimetallic electrocatalysts does work for reactions involved in fuel cells? Electrochimica Acta, 2005. 50(25-26): p. 5118-5125. Cerca con Google

61. Lim, D.-H., et al., A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Applied Catalysis B: Environmental, 2009. 89(3-4): p. 484-493. Cerca con Google

62. Liu, B., et al., A General Protocol for the Synthesis of Pt-Sn/C Catalysts for the Ethanol Electrooxidation Reaction. Fuel Cells, 2012. 12(4): p. 670-676. Cerca con Google

63. Liu, Z., et al., Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochemistry Communications, 2006. 8(1): p. 83-90. Cerca con Google

64. Rodrigues da Silva, M. and A.C.D. Ângelo, Synthesis and Characterization of Ordered Intermetallic Nanostructured PtSn/C and PtSb/C and Evaluation as Electrodes for Alcohol Oxidation. Electrocatalysis, 2010. 1(2-3): p. 95-103. Cerca con Google

65. Shen, S.Y., T.S. Zhao, and J.B. Xu, Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. International Journal of Hydrogen Energy, 2010. 35(23): p. 12911-12917. Cerca con Google

66. Wang, Y., et al., Understanding the electrocatalytic activity of PtxSny in direct ethanol fuel cells. Journal of Power Sources, 2011. 196(11): p. 4980-4986. Cerca con Google

67. Zhou, W., et al., Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2003. 46(2): p. 273-285. Cerca con Google

68. Zhou, W.J., et al., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. Journal of Power Sources, 2005. 140(1): p. 50-58. Cerca con Google

69. Zhu, M., G. Sun, and Q. Xin, Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochimica Acta, 2009. 54(5): p. 1511-1518. Cerca con Google

70. Sun, B., et al., The synthesis and microstructure of morph-genetic TiC/C ceramics. Carbon, 2004. 42(1): p. 177-182. Cerca con Google

71. H. Preiss, L.M.B.a.D.S., Studies on the Carbothermal Preparation of Titanium Carbide from Different Gel Precursors. Journal of the European Ceramic Society, 1999. 19: p. 195-206. Cerca con Google

72. Preiss, H., Synthesis of polymeric titanium and zirconium precursors and preparation of carbide fibres and films. Journal of Materials Science, 1998. 33: p. 4697-4706. Cerca con Google

73. Rimdusit, S., et al., Biodegradability and property characterizations of Methyl Cellulose: Effect of nanocompositing and chemical crosslinking. Carbohydrate Polymers, 2008. 72(3): p. 444-455. Cerca con Google

74. Zohuriaan, M.J. and F. Shokrolahi, Thermal studies on natural and modified gums. Polymer Testing, 2004. 23(5): p. 575-579. Cerca con Google

75. Bostwick, C.O., Water Soluble Group IV-A Metal Esters of Amino Alcohols and Their Preparation, in 18/02/19581958: United States of America. p. 3. Cerca con Google

76. A. E. Schweizer, G.T.K., Thermal Decomposition of Hexachloroplatinic Acid. Inorganic Chemistry, 2326-2327. 17(8): p. 2326. Cerca con Google

77. Barsoum, M.; Available from: http://max.materials.drexel.edu/research-areas/max-phases/. Vai! Cerca con Google

78. Radovic, M. and M.W. Barsoum, MAX phases: Bridging the gap between metals and ceramics. American Ceramic Society Bulletin, 2013. 92(3): p. 20-27. Cerca con Google

79. Sun, Z.M., Progress in research and development on MAX phases: a family of layered ternary compounds. International Materials Reviews, 2013. 56(3): p. 143-166. Cerca con Google

80. Högberg, H., et al., Growth and characterization of MAX-phase thin films. Surface and Coatings Technology, 2005. 193(1–3): p. 6-10. Cerca con Google

81. Zhou, Y.C., et al., Electronic and structural properties of the layered ternary carbide Ti3AlC2. Journal of Materials Chemistry, 2001. 11(9): p. 2335-2339. Cerca con Google

82. Suganuma, K., G. Sasaki, and T. Fujita, Mechanical properties and microstructures of machinable silicon carbide. Journal of Materials Science, 1993. 28: p. 1175-1181. Cerca con Google

83. Koc, R., Kinetics and Phase Evolution During Carbothermal Synthesis of Titanium Carbide from Carbon-Coated Titania Powder. Journal of the European Ceramic Society, 1997. 17: p. 1309-1315. Cerca con Google

84. Kanthal. Maxthal Ceramic Engineering Material. Available from: http://www.kanthal.com/en/products/furnace-products-and-heating-systems/refractory-material/. Vai! Cerca con Google

85. Hashimoto, S., et al., Pressureless sintering and mechanical properties of titanium aluminum carbide. Materials Letters, 2008. 62(10-11): p. 1480-1483. Cerca con Google

86. Lu, X. and Y. Zhou, Pressureless Sintering and Properties of Ti3AlC2. International Journal of Applied Ceramic Technology, 2010. 7(6): p. 744-751. Cerca con Google

87. Barsoum, M.W. and T. El-Raghy, Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. Journal of American Ceramic Society, 1996. 79(7): p. 1953-1956. Cerca con Google

88. Barsoum, M.W., The M(N+1)AX(N) Phases: A New Class of Solids. Progress in Solid State Chemistry, 2000. 28: p. 201-281. Cerca con Google

89. Yin, X.H., et al., Diffusion bonding of Ti3AlC2 ceramic via a Si interlayer. Journal of Materials Science, 2007. 42(17): p. 7081-7085. Cerca con Google

90. Zhang, Z.F., et al., Application of pulse discharge sintering (PDS) technique to rapid syntesis of Ti3SiC2 from Ti Si C powders. Journal of European Ceramic Society, 2002. 22: p. 2957-2961. Cerca con Google

91. Sun, Z., et al., Synthesis of the MAX Phases by Pulse Discharge Sintering. International Journal of Applied Ceramic Technology, 2010. 7(6): p. 704-718. Cerca con Google

92. Zhang, Z.F., et al., Effects of sintering temperature and Si content on the purity of Ti3SiC2 synthesized from Ti/Si/TiC powders. Journal of Alloys and Compounds, 2003. 352(1-2): p. 283-289. Cerca con Google

93. Palmquist, J.P., et al., Mn+1AXn phases in theTi−Si−C system studied by thin-film synthesis and ab initio calculations. Physical Review B, 2004. 70(16). Cerca con Google

94. Wilhelmsson, O., Synthesis and Characterization of Ternary Carbide Thin Films, in Faculty of Science and Technology2007, Uppsala Universitet. Cerca con Google

95. Istomin, P., A. Nadutkin, and V. Grass, Combustion synthesis of Ti3SiC2-based ceramic matrix composites using non-powder reactant solids. High Temperature Ceramic Matrix Composites 8, 2014. 248: p. 515-521. Cerca con Google

96. Ma, Y., et al., Fabrication of MAX-phase-based ceramics by three-dimensional printing. Journal of Ceramic Science and Technology, 2015. 06(02): p. 87-94. Cerca con Google

97. Ma, Y., et al., Near-Net-Shape Fabrication of Ti3SiC2-based Ceramics by Three-Dimensional Printing. International Journal of Applied Ceramic Technology, 2015. 12(1): p. 71-80. Cerca con Google

98. Yin, X., N. Travitzky, and P. Greil, Three-Dimensional Printing of Nanolaminated Ti3AlC2 Toughened TiAl3-Al2O3 Composites. Journal of the American Ceramic Society, 2007. 90(7): p. 2128-2134. Cerca con Google

99. Sun, Z. and Y. Zhou, Fluctuation synthesis and characterization of Ti3SiC2 powders. Materials Research Innovations, 1999. 2: p. 227-231. Cerca con Google

100. Hendaoui, A., et al., Synthesis of high-purity polycrystalline MAX phases in Ti–Al–C system through Mechanically Activated Self-propagating High-temperature Synthesis. Journal of the European Ceramic Society, 2010. 30(4): p. 1049-1057. Cerca con Google

101. Racault, C., F. Langlais, and R. Naslain, Solid-state synthesis and characterization of the ternary phase Ti3SiC2. Journal of Materials Science, 1994. 29: p. 3384-3392. Cerca con Google

102. Hwang, S.S., et al., Synthesis of Ti3SiC2 by infiltration of molten Si. Journal of Alloys and Compounds, 2011. 509(35): p. L336-L339. Cerca con Google

103. Liu, X., et al., Characterization and application of porous Ti3SiC2 ceramic prepared through reactive synthesis. Materials & Design, 2015. 79: p. 94-98. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record