Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Sitzia, Tommaso - Dainese, Matteo - Krüsi, Bertil O. - McCollin, Duncan (2017) Landscape metrics as functional traits in plants: perspectives from a glacier foreland. [Articolo di periodico (a stampa)]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione pubblicata
Available under License Creative Commons Attribution.

4Mb

Abstract (inglese)

Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait- spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Articolo di periodico (a stampa)
Anno di Pubblicazione:2017
Parole chiave (italiano / inglese):Ecologicalprocess,Plantcomposition,Life-historytrait,Pioneerplant,Landscape pattern, Spatial self-organisation, Spatial pattern, Landscape heterogeneity, Patch size, Patch shape
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/05 Assestamento forestale e selvicoltura
Area 05 - Scienze biologiche > BIO/03 Botanica ambientale e applicata
Area 05 - Scienze biologiche > BIO/07 Ecologia
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:10510
Depositato il:25 Ago 2017 10:43
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Bernhardt-Römermann M, Römermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J. 2008. On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533-1541 Cerca con Google

Bolliger J, Sprott JC, Mladenoff DJ. 2003. Self-organization and complexity in historical landscape patterns. Oikos 100:541-553 Cerca con Google

Burga CA, Krusi B, Egli M, Wernli M, Elsener S, Ziefle M, Fischer T, Mavris C. 2010. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora 205:561-576 Cerca con Google

Caccianiga M, Andreis C. 2004. Pioneer herbaceous vegetation on glacier forelands in the Italian Alps. Phytocoenologia 34:55-89 Cerca con Google

Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B. 2006. The functional basis of a primary succession resolved by CSR classification. Oikos 112:10-20 Cerca con Google

Carbognani M. 2011. Ecologia di due fitocenosi di valletta nivale: caratteristiche strutturali e funzionali ed effetti del riscaldamento climatico. Tesi di Dottorato di ricerca in Biologia Vegetale. Università degli Studi di Parma, Parma Cerca con Google

Cerabolini B, Brusa G, Ceriani RM, De Andreis R, Luzzaro A, Pierce S. 2010. Can CSR classification be generally applied outside Britain? Plant Ecology 210:253-261 Cerca con Google

Chapin FSI, Walker LR, Fastie CL, Sharman LC. 1994. Mechanisms of primary successions following deglaciation at Glacier Bay, Alaska. Ecological Monographs 64:149-175 Cerca con Google

Cornelissen JHC, Lavorel S, Garnier E, Az S, Buchmann N, Gurvich DE, Reich PB, Steege HT,, Morgan HD, Heij den MGAvd+2 more. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335-380 Cerca con Google

Deckers B, Verheyen K, Hermy M, Muys B. 2004. Differential environmental response of plant functional types in hedgerow habitats. Basic and Applied Ecology 5:551-566 Cerca con Google

Dolédec S, Chessel D, Ter Braak CJF, Champely S. 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3:143-166 Cerca con Google

Dray S, Chessel D, Thioulouse J. 2003. Co-inertia anaylsis and the linking of ecological data tables. Ecology 84:3078-3089 Cerca con Google

Dray S, Choler P, Doledec S, Peres-Neto PR, Thuiller W, Pavoine S, Ter Braak CJF. 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95:14-21 Cerca con Google

Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22:1-20 Cerca con Google

Dray S, Legendre P. 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400-3412 Cerca con Google

Duflot R, Georges R, Ernoult A, Aviron S, Burel F. 2014. Landscape heterogeneity as an ecological filter of species traits. Acta Oecologica-International Journal of Ecology 56:19-26 Cerca con Google

Erschbamer B, Kneringer E, Schlag RN. 2001. Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the Central Alps. Flora 196:304-312 Cerca con Google

Erschbamer B, Mayer R. 2011. Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the Central Alps. Plant Ecology & Diversity 4:341-351 Cerca con Google

Erschbamer B, Niederfriniger Schalg R, Eckart W. 2008. Colonization processes on a central Alpine glacier foreland. Journal of Vegetation Science 19:855-862 Cerca con Google

Forman RTT, Godron M. 1981. Patches and structural components for a landscape ecology. BioScience 31:733-740 Cerca con Google

Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, De Jong H, Simons NK, Klein A-M, Krauss J, Maier G+9 more. 2015. Landscape simplification filters species traits and drives biotic homogenization. Nature Communications 6 Article 8568 Cerca con Google

Greig-Smith P. 1979. Pattern in vegetation. Journal of Ecology 67:755-779 Cerca con Google

Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111:1169-1194 Cerca con Google

Groenendael JMV, Klimes L, Klimesova J, Hendriks RJJ. 1996. Comparative ecology of clonal plants. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 351:1331-1339 Cerca con Google

Gross N, Suding KN, Lavorel S. 2007. Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. Journal of Vegetation Science 18:289-300 Cerca con Google

Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K. 1999. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282-294 Cerca con Google

Jiang J, DeAngelis D, Smith III T, Teh S, Koh H-L. 2012. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: a model study. Landscape Ecology 27:109-119 Cerca con Google

Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ+125 more. 2011. TRY—a global database of plant traits. Global Change Biology 17:2905-2935 Cerca con Google

Keddy PA. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157-164 Cerca con Google

Knevel IC, Bekker RM, Bakker JP, Kleyer M. 2003. Life-history traits of the Northwest European flora: the LEDA database. Journal of Vegetation Science 14:611-614 Cerca con Google

Körner C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems (2nd edition). Berlin Heidelberg: Springer-Verlag. Cerca con Google

Krebs CJ. 1999. Ecological methodology (2nd edition). Menlo park: Addison Weseley Longman. Cerca con Google

Legendre P, Galzin R, HarmelinVivien ML. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547-562 Cerca con Google

Macfadyen WA. 1950. Vegetation patterns in the semi-desert plains of British Somaliland. The Geographical Journal 116:199-211 Cerca con Google

Marcante S, Winkler E, Erschbamer B. 2009. Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Annals of Botany 103:1129-1143 Cerca con Google

Matthews JA. 1999. Disturbance regimes and ecosystem response on recently-deglaciated substrates. Ecosystems of disturbed ground 1:7-37 Cerca con Google

Matthews JA, Whittaker RJ. 1987. Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arctic and Alpine Research 19:385-395 Cerca con Google

McGarigal K, Marks BJ. 1994. Spatial pattern analysis program for quantifying landscape structure. Washington, D.C.: USDA Forest Service. Cerca con Google

McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21:178-185 Cerca con Google

Nascimbene J, Mayrhofer H, Dainese M, Bilovitz PO. 2017. Assembly patterns of soil-dwelling lichens after glacier retreat in the European Alps. Journal of Biogeography 44:1393-1404 Cerca con Google

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2011. Vegan: community ecology package. R package version 2.0-2 (accessed 7 July 2017) software Cerca con Google

Patton DR. 1975. A diversity index for quantifying habitat “edge”. Wildlife Society Bulletin 3:171-173 Cerca con Google

Pierce S, Brusa G, Vagge I, Cerabolini B. 2013. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology 27:1002-1010 Cerca con Google

Pierce S, Luzzaro A, Caccianiga M, Ceriani RM, Cerabolini B. 2007. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95:698-706 Cerca con Google

Poschlod P, Kleyer M, Jackel A-K, Dannemann A, Tackenberg O. 2003. BIOPOP—A database of plant traits and internet application for nature conservation. Folia Geobotanica 38:263-271 Cerca con Google

R Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. (accessed 01 August 2015) software Cerca con Google

Raffl C, Mallaun M, Mayer R, Erschbamer B. 2006. Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arctic Antarctic and Alpine Research 38:421-428 Cerca con Google

Reiners WA, Worley IA, Lawrence DB. 1971. Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecology 52:55-69 Cerca con Google

Rempel RS, Kaukinen D, Carr AP. 2012. Patch analyst and patch grid. centre for northern forest ecosystem research. Thunder Bay: Ontario Ministry of Natural Resources. Cerca con Google

Rietkerk M, Van de Koppel J. 2008. Regular pattern formation in real ecosystems. Trends in Ecology & Evolution 23:169-175 Cerca con Google

Rydgren K, Halvorsen R, Töpper JP, Njøs JM. 2014. Glacier foreland succession and the fading effect of terrain age. Journal of Vegetation Science 25:1367-1380 Cerca con Google

SAT. 2007. Ghiacciaio Occidentale di Nardis. Comitato Glaciologico Trentino, Società degli Alpinisti Tridentini, Trento Available at http:// www.sat.tn.it/sns/17/640_0.htm (accessed on 07 July 2017) Vai! Cerca con Google

Schleicher A, Peppler-Lisbach C, Kleyer M. 2011. Functional traits during succession: is plant community assembly trait-driven? Preslia 83:347-370 Cerca con Google

Schwienbacher E, Navarro-Cano JA, Neuner G, Erschbamer B. 2012. Correspondence of seed traits with niche position in glacier foreland succession. Plant Ecology 213:371-382 Cerca con Google

Sitzia T, Dainese M, Clementi T, Mattedi S. 2014a. Capturing cross-scalar variation of habitat selection with grid sampling: an example with hazel grouse (Tetrastes bonasia L.) European Journal of Wildlife Research 60:177-186 Cerca con Google

Sitzia T, Rizzi A, Cattaneo D, Semenzato P. 2014b. Designing recreational trails in a forest dune habitat using least-cost path analysis at the resolution of visitor sight distance. Urban Forestry & Urban Greening 13:861-868 Cerca con Google

Sole RV, Bascompte J. 2006. Self-organization in complex ecosystems. Princeton: Princeton University Press. Cerca con Google

Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14:1125-1140 Cerca con Google

Teixido N, Garrabou J, Gutt J, Arntz WE. 2007. Iceberg disturbance and successional spatial patterns: The case of the shelf Antarctic benthic communities. Ecosystems 10:142-157 Cerca con Google

Ter Braak CJF, Cormont A, Dray S. 2012. Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology 93:1525-1526 Cerca con Google

Těšitel J, Těšitelová T, Bernardová A, Janková Drdová E, Lučanová M, Klimešová J. 2014. Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard. Polar Research 3 Article 20797 Cerca con Google

Turner MG, Gardner RH, O’Neill RV. 2001. Landscape ecology in theory and practice. New York: Springer. Cerca con Google

Van de Koppel J, Bouma TJ, Herman PMJ. 2012. The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems. The Journal of Experimental Biology 215:962-967 Cerca con Google

Vetaas OR. 1994. Primary succession of plant assemblages on a glacier foreland-Bødalsbreen, southern Norway. Journal of Biogeography 21:297-308 Cerca con Google

Vetaas OR. 1997. Relationships between floristic gradients in a primary succession. Journal of Vegetation Science 8:665-676 Cerca con Google

Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116:882-892 Cerca con Google

Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30:377-392 Cerca con Google

Wesuls D, Oldeland J, Dray S. 2012. Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. Journal of Vegetation Science 23:98-113 Cerca con Google

Wilson PJ, Thompson K, Hodgson JG. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist 143:155-162 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record