Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Benvegnù, Agostino (2016) Trapping and Reliability Investigations in GaN-based HEMTs. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
10Mb

Abstract (english)

GaN-based high electron mobility transistors (HEMTs) are promising candidates for future microwave equipment, such as new solid state power amplifiers (SSPAs), thanks to their excellent performance. A first demonstration of GaN-MMIC transmitter has been developed and put on board the PROBA-V mission. But this technology still suffers from the trapping phenomena, principally due to lattice defects. Thus, the aim of this research is to investigate the trapping effects and the reliability aspects of the GH50 power transistors for C-band applications. A new trap investigation protocol to obtain a complete overview of trap behavior from DC to radio-frequency operation modes, based on combined pulsed I/V measurements, DC and RF drain current measurements, and low-frequency dispersion measurements, is proposed. Furthermore, a nonlinear electro-thermal AlGaN/GaN model with a new additive thermal-trap model including the dynamic behavior of these trap states and their associated temperature variations is presented, in order to correctly predict the RF performance during real RF operating conditions. Finally, an advanced time-domain methodology is presented in order to investigate the device’s reliability and to determine its safe operating area. This methodology is based on the continual monitoring of the RF waveforms and DC parameters under overdrive conditions in order to assess the degradation of the transistor characteristics in the RF power amplifier.

Abstract (italian)

I transistor ad effetto di campo ad alta mobilità elettronica (HEMTs) basati su nitruro di gallio (GaN) sono i più promettenti candidati, grazie alle loro eccellenti prestazioni per le future apparecchiature a microonde, per esempio gli amplificatori a stato solido (SSPA). Un primo dimostratore di circuito integrato monolitico a microonde (MMIC) in tecnologia GaN di un trasmettitore è stato sviluppato e messo a bordo della missione PROBA-V. Ma questa tecnologia soffre ancora dei fenomeni di intrappolamento, principalmente causati dai difetti presenti nel reticolo cristallino. Pertanto, lo scopo di questo dottorato è stato di investigare gli effetti di intrappolamento e gli aspetti di affidabilità dei transistor di potenza GH50 per le applicazioni a microonde in banda C. Viene proposto un nuovo protocollo di investigazione dei difetti per ottenere una panoramica completa del comportamento delle trappole dal funzionamento DC a quello radiofrequenza. Questo protocollo è basato sulle misure I / V impulsate, sulle misure del transiente della corrente di drain durante una eccitazione DC e RF e sulle misure della dispersione a bassa frequenza. Inoltre, viene presentato un modello elettro-termico non lineare del transistor GaN con un nuovo addizionale modello termico degli stati trappola. Questo ultimo include il comportamento dinamico e le loro relative variazioni in temperatura, al fine di prevedere correttamente le prestazioni RF durante le condizioni di funzionamento. Infine, viene presentata una metodologia avanzata nel dominio del tempo per indagare sull'affidabilità del dispositivo e per determinare la sua area operativa sicura. Questa metodologia si basa sul monitoraggio continuo delle forme d'onda RF e dei parametri DC in condizioni di overdrive, al fine di valutare la degradazione delle caratteristiche dei transistor nell'amplificatore di potenza RF.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Barataud, Denis and Quéré, Raymond and Zanoni, Enrico
Ph.D. course:Ciclo 28 > Scuole 28 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:29 November 2017
Anno di Pubblicazione:28 September 2016
Key Words:Gallium nitride, HEMTs, large-signal network analyzer (LSNA), microwave measurement, low-frequency dispersion, trapping effects, modeling, reliability.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:10533
Depositato il:09 Nov 2018 09:26
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] T. Reveyrand et al., “GaN transistor characterization and modeling activities performed within the frame of the KorriGaN project,” Int. J. Microw. Wirel. Technol., vol. 2, no. 01, p. 51, Mar. 2010. Cerca con Google

[2] A. R. Barnes and F. Vitobello, “ESA perspective on the industrialisation of European GaN technology for space application,” in European Microwave Integrated Circuit Conference (EuMIC), 2014 9th, 2014, pp. 233–236. Cerca con Google

[3] Takashi Mimura, Satoshi Hiyamizu, Toshio Fujii, and Kazuo Nanbu, “A New Field-Effect Transistor with Selectively Doped GaAs/n-Al x Ga 1- x As Heterojunctions,” vol. 19, no. 5, p. L225, 1980. Cerca con Google

[4] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett., no. 33, p. 665, 1978. Cerca con Google

[5] P. Nakkala, “pulsed I-V and RF characterization and modeling of AlGaN/GaN HEMTs and graphene FETs,” Université de Limoges, 2015. Cerca con Google

[6] D. W. Runton, B. Trabert, J. B. Shealy, and R. Vetury, “History of GaN: High-Power RF Gallium Nitride (GaN) from Infancy to Manufacturable Process and Beyond,” IEEE Microw. Mag., vol. 14, no. 3, pp. 82–93, 2013. Cerca con Google

[7] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs–An overview of device operation and applications,” Proc.-IEEE, vol. 90, no. 6, pp. 1022–1031, 2002. Cerca con Google

[8] O. Ambacher et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, p. 334, 2000. Cerca con Google

[9] R. Giofré et al., “A first step towards a 230 W SSPA for Galileo System exploiting European GaN technology,” in 2015 10th European Microwave Integrated Circuits Conference, pp. 317–320. Cerca con Google

[10] B. Lefebvre et al., “GaN For Space Applications: Ready for Commercial Use,” 8th Wide Bandgap Semiconductors and Components Workshop, ESA-ECSAT, Harwell, United Kingdom, 12 Sep. 2016. Cerca con Google

[11] J.-L. Muraro et al., “GaN for space application: Almost ready for flight,” Int. J. Microw. Wirel. Technol., vol. 2, no. 01, p. 121, Apr. 2010. Cerca con Google

[12] K. Hirche et al., “GaN Reliability Enhancement and Technology Transfer Initiative (GREAT2).” Cerca con Google

[13] W. Shockley and W. T. Read, Jr., “Statistics of the recombinations of holes and electrons,” Phys. Rev., vol. 87, no. 5, p. 835, 1952. Cerca con Google

[14] R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev., vol. 87, no. 2, p. 387, 1952. Cerca con Google

[15] H. Morkoc, Handbook of Nitride Semiconductors and Devices, vol. 1. Wiley-VCH, 2008. Cerca con Google

[16] S. D. Nsele, L. Escotte, J.-G. Tartarin, S. Piotrowicz, and S. L. Delage, “Broadband Frequency Dispersion Small-Signal Modeling of the Output Conductance and Transconductance in AlInN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 4, pp. 1372–1378, Apr. 2013. Cerca con Google

[17] M. Meneghini et al., “Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electrooptical method,” Electron Devices IEEE Trans. On, vol. 58, no. 9, pp. 2996–3003, 2011. Cerca con Google

[18] J. Joh and J. A. del Alamo, “A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors,” IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 132–140, Jan. 2011. Cerca con Google

[19] J. G. Tartarin, S. Karboyan, F. Olivie, G. Astre, L. Bary, and B. Lambert, “I-DLTS, electrical lag and low frequency noise measurements of trapping effects in AlGaN/GaN HEMT for reliability studies,” in 2011 European Microwave Integrated Circuits Conference, pp. 438–441. Cerca con Google

[20] D. Bisi et al., “Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3166–3175, Oct. 2013. Cerca con Google

[21] J. M. Golio, M. G. Miller, G. N. Maracas, and D. A. Johnson, “Frequency-dependent electrical characteristics of GaAs MESFETs,” IEEE Trans. Electron Devices, vol. 37, no. 5, pp. 1217–1227, May 1990. Cerca con Google

[22] G. A. Umana-Membreno et al., “Low-temperature shallow-trap related output-admittance frequency dispersion in AlGaN/GaN MODFETs,” in Proceedings of the 1998 Conference on Optoelectronic and Microelectronic Materials Devices., pp. 252–255. Cerca con Google

[23] P. B. Klein and S. C. Binari, “Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors,” J. Phys. Condens. Matter, vol. 15, no. 44, p. R1641, 2003. Cerca con Google

[24] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proc. IEEE, vol. 90, no. 6, pp. 1048–1058, 2002. Cerca con Google

[25] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” Electron Devices IEEE Trans. On, vol. 48, no. 3, pp. 560–566, 2001. Cerca con Google

[26] G. Meneghesso et al., “Reliability issues of Gallium Nitride High Electron Mobility Transistors,” Int. J. Microw. Wirel. Technol., vol. 2, no. 01, p. 39, Apr. 2010. Cerca con Google

[27] G. Meneghesso et al., “Trapping phenomena in AlGaN/GaN HEMTs: A study based on pulsed and transient measurements,” Semicond. Sci. Technol., vol. 28, no. 7, p. 074021, Jul. 2013. Cerca con Google

[28] O. Mitrofanov and M. Manfra, “Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors,” Superlattices Microstruct., vol. 34, nos. 1–2, pp. 33–53, Jul. 2003. Cerca con Google

[29] N. Ramanan, B. Lee, and V. Misra, “Device Modeling for Understanding AlGaN/GaN HEMT Gate-Lag,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2012–2018, Jun. 2014. Cerca con Google

[30] O. Jardel, “Contribution à la Modélisation des Transistors pour l’Amplification de Puissance aux Fréquences Microondes. Développement d’un nouveau Modèle Electrothermique de HEMT AlGaN/GaN incluant les Effets de Pièges,” Université de Limoges, 2008. Cerca con Google

[31] Pulsed IV Bilt AMCAD System datasheet, http://www.amcad-engineering.com/IMG/File/PIV%20Gate%20and%20Drain%20Probe%20Heads%20Specifications.pdf. Vai! Cerca con Google

[32] J. Joh, J. A. Del Alamo, U. Chowdhury, T.-M. Chou, H.-Q. Tserng, and J. L. Jimenez, “Measurement of channel temperature in GaN high-electron mobility transistors,” IEEE Trans. on Electron. Devices, vol. 56, no. 12, pp. 2895–2901, 2009. Cerca con Google

[33] G. Mouginot, R. Sommet, R. Quéré, Z. Ouarch, S. Heckmann, and M. Camiade, “Thermal and trapping phenomena assessment on AlGaN/GaN microwave power transistor,” in 2010 EuropeanMicrowave Integrated Circuits Conference, pp. 110–113. Cerca con Google

[34] A. Chini, F. Soci, M. Meneghini, G. Meneghesso, and E. Zanoni, “Deep Levels Characterization in GaN HEMTs—Part II: Experimental and Numerical Evaluation of Self-Heating Effects on the Extraction of Traps Activation Energy,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3176–3182, Oct. 2013. Cerca con Google

[35] M. Ťapajna, R. J. T. Simms, Yi Pei, U. K. Mishra, and M. Kuball, “Integrated Optical and Electrical Analysis: Identifying Location and Properties of Traps in AlGaN/GaN HEMTs During Electrical Stress,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 662–664, Jul. 2010. Cerca con Google

[36] T. Mizutani, T. Okino, K. Kawada, Y. Ohno, S. Kishimoto, and K. Maezawa, “Drain current DLTS of AlGaN/GaN HEMTs,” Phys. Status Solidi A, vol. 200, no. 1, pp. 195–198, Nov. 2003. Cerca con Google

[37] D. Bisi, “Characterization of Charge Trapping Phenomena in GaN-based HEMTs,” 2015. Cerca con Google

[38] H. K. Cho, C. S. Kim, and C.-H. Hong, “Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN,” J. Appl. Phys., vol. 94, no. 3, p. 1485, 2003. Cerca con Google

[39] D. Bisi et al., “Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate: Trapping mechanisms in GaN-based MIS-HEMTs,” Phys. Status Solidi A, vol. 212, no. 5, pp. 1122–1129, May 2015. Cerca con Google

[40] M. Meneghini et al., “Buffer Traps in Fe-Doped AlGaN/GaN HEMTs: Investigation of the Physical Properties Based on Pulsed and Transient Measurements,” IEEE Trans. Electron Devices, vol. 61, no. 12, pp. 4070–4077, Dec. 2014. Cerca con Google

[41] O. Jardel et al., “Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs,” in IEEE International Microwave Symposium, 2013. Cerca con Google

[42] R. Quéré et al., “Low frequency parasitic effects in RF transistors and their impact on power amplifier performances,” in Wireless and Microwave Technology Conference, 2012, pp. 1–5. Cerca con Google

[43] J. Delprato, D. Barataud, M. Campovecchio, G. Neveux, C. Tolant, and P. Eudeline, “Measured and Simulated Impact of Irregular Radar Pulse Trains on the Pulse-to-Pulse Stability of Microwave Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, pp. 3538–3548, Dec. 2014. Cerca con Google

[44] G. Avolio, G. Pailloncy, D. Schreurs, M. V. Bossche, and B. Nauwelaers, “On-Wafer LSNA measurements including dynamic-bias,” in 2009 European Microwave Conference, pp. 930–933. Cerca con Google

[45] J. Brinkhoff and A. Parker, “Charge trapping and intermodulation in HEMTs,” in IEEE MTT S International Microwave Symposium Digest, 2004, vol. 2, pp. 799–802. Cerca con Google

[46] O. Axelsson et al., “Application Relevant Evaluation of Trapping Effects in AlGaN/GaN HEMTs With Fe-Doped Buffer,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 326–332, Jan. 2016. Cerca con Google

[47] G. Meneghesso et al., “Surface-Related Drain Current Dispersion Effects in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 51, no. 10, pp. 1554–1561, Oct. 2004. Cerca con Google

[48] O. Mitrofanov, “Poole–Frenkel electron emission from the traps in AlGaN/GaN transistors,” J. Appl. Phys., vol. 95, no. 11, p. 6414, 2004. Cerca con Google

[49] A. El Rafei et al., “DC (10 Hz) to RF (40 GHz) output conduction by S-parameters measurements for in-depth characterization of AlInN/GaN HEMTS, focusing on low frequency dispersion effects,” in Microwave Integrated Circuits Conference (EuMIC), 2011 European, 2011, pp. 5–8. Cerca con Google

[50] E5061B ENA Series Network Analyzer Manual, http://cp.literature.agilent.com/litweb/pdf/E5061-90008.pdf. Vai! Cerca con Google

[51] D. A. Frickey, “Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 2, pp. 205–211, Feb. 1994. Cerca con Google

[52] S. S. Islam, A. F. M. Anwar, and R. T. Webster, “A physics-based frequency dispersion model of GaN MESFETs,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 846–853, Jun. 2004. Cerca con Google

[53] G. A. Umana-Membreno et al., “Co gamma-irradiation-induced defects in n-GaN,” Appl. Phys. Lett., vol. 80, no. 23, p. 4354, 2002. Cerca con Google

[54] Y. S. Park et al., “Deep level transient spectroscopy in plasma-assisted molecular beam epitaxy grown AlGaN/GaN interface and the rapid thermal annealing effect,” Appl. Phys. Lett., vol. 97, no. 11, p. 112110, 2010. Cerca con Google

[55] A. R. Arehart et al., “Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films,” Phys. Status Solidi C, vol. 5, no. 6, pp. 1750–1752, May 2008. Cerca con Google

[56] T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “Drain Current DLTS of AlGaN&amp 8211;GaN MIS-HEMTs,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 523–525, Aug. 2004. Cerca con Google

[57] G. Verzellesi, A. Mazzanti, C. Canali, G. Meneghesso, A. Chini, and E. Zanoni, “Study on the origin of dc-to-RF dispersion effects in GaAs-and GaN-based beterostructure FETs,” in Proceedings of the 2003 GaAs Reliability Workshop., pp. 155–156. Cerca con Google

[58] M. Caesar et al., “Generation of traps in AlGaN/GaN HEMTs during RF-and DC-stress test,” in 2012 IEEE International Reliability Physics Symposium, p. CD–6. Cerca con Google

[59] G. A. Umana-Membreno, G. Parish, N. Fichtenbaum, S. Keller, U. K. Mishra, and B. D. Nener, “Electrically Active Defects in GaN Layers Grown With and Without Fe-doped Buffers by Metal-organic Chemical Vapor Deposition,” J. Electron. Mater., vol. 37, no. 5, pp. 569–572, May 2008. Cerca con Google

[60] H. M. Chung et al., “Electrical characterization of isoelectronic In-doping effects in GaN films grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 76, no. 7, pp. 897–899, 2000. Cerca con Google

[61] P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, and K. Miyake, “Analysis of deep levels in type GaN by transient capacitance methods,” J. Appl. Phys., vol. 76, no. 1, pp. 304–309, Jul. 1994. Cerca con Google

[62] J. Osaka, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “Deep levels in n-type AlGaN grown by hydride vapor-phase epitaxy on sapphire characterized by deep-level transient spectroscopy,” Appl. Phys. Lett., vol. 87, no. 22, pp. 222112–222112–3, Nov. 2005. Cerca con Google

[63] D. Kindl et al., “Deep defects in GaN/AlGaN/SiC heterostructures,” J. Appl. Phys., vol. 105, no. 9, p. 093706, 2009. Cerca con Google

[64] D. W. Cardwell et al., “Spatially-resolved spectroscopic measurements of Ec − 0.57 eV traps in AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 102, no. 19, p. 193509, 2013. Cerca con Google

[65] C. D. Wang et al., “Deep level defects in n-type GaN grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 72, no. 10, 1998. Cerca con Google

[66] M. Silvestri, M. J. Uren, and M. Kuball, “Dynamic Transconductance Dispersion Characterization of Channel Hot-Carrier Stressed 0.25- AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1550–1552, Nov. 2012. Cerca con Google

[67] M. Asghar, P. Muret, B. Beaumont, and P. Gibart, “Field dependent transformation of electron traps in GaN p–n diodes grown by metal–organic chemical vapour deposition,” Mater. Sci. Eng. B, vol. 113, no. 3, pp. 248–252, Nov. 2004. Cerca con Google

[68] A. Stocco et al., “Proton induced trapping effect on space compatible GaN HEMTs,” Microelectron. Reliab., Aug. 2014. Cerca con Google

[69] Z.-Q. Fang et al., “Deep centers in a free-standing GaN layer,” Appl. Phys. Lett., vol. 78, no. 15, p. 2178, 2001. Cerca con Google

[70] F. D. Auret, S. A. Goodman, F. K. Koschnick, J.-M. Spaeth, B. Beaumont, and P. Gibart, “Electrical characterization of two deep electron traps introduced in epitaxially grown n-GaN during He-ion irradiation,” Appl. Phys. Lett., vol. 73, no. 25, p. 3745, 1998. Cerca con Google

[71] Z.-Q. Fang, D. C. Look, D. H. Kim, and I. Adesida, “Traps in AlGaN∕GaN∕SiC heterostructures studied by deep level transient spectroscopy,” Appl. Phys. Lett., vol. 87, no. 18, p. 182115, 2005. Cerca con Google

[72] A. R. Arehart, T. Homan, M. H. Wong, C. Poblenz, J. S. Speck, and S. A. Ringel, “Impact of N- and Ga-face polarity on the incorporation of deep levels in n-type GaN grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 96, no. 24, p. 242112, Jun. 2010. Cerca con Google

[73] A. R. Arehart, A. A. Allerman, and S. A. Ringel, “Electrical characterization of n-type Al0.30Ga0.70N Schottky diodes,” J. Appl. Phys., vol. 109, no. 11, p. 114506, 2011. Cerca con Google

[74] A. Sasikumar et al., “Access-Region Defect Spectroscopy of DC-Stressed N-Polar GaN MIS-HEMTs,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 658–660, May 2012. Cerca con Google

[75] N. M. Shmidt et al., “Effect of annealing on defects in as-grown and symbol (g)-ray irradiated n-GaN layers,” Phys. Status Solidi(B), vol. 216, no. 1, pp. 533–536, 1999. Cerca con Google

[76] A. Y. Polyakov et al., “Electrical properties and deep traps spectra of a-plane GaN films grown on r-plane sapphire,” Mater. Sci. Eng. B, vol. 166, no. 3, pp. 220–224, Feb. 2010. Cerca con Google

[77] G. Verzellesi et al., “False surface-trap signatures induced by buffer traps in AlGaN-GaN HEMTs,” in Reliability Physics Symposium, 2009 IEEE International, 2009, pp. 732–735. Cerca con Google

[78] S. DasGupta et al., “Slow Detrapping Transients due to Gate and Drain Bias Stress in High Breakdown Voltage AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2115–2122, Aug. 2012. Cerca con Google

[79] K. Tanaka, M. Ishida, T. Ueda, and T. Tanaka, “Effects of Deep Trapping States at High Temperatures on Transient Performance of AlGaN/GaN Heterostructure Field-Effect Transistors,” Jpn. J. Appl. Phys., vol. 52, no. 4S, p. 04CF07, Apr. 2013. Cerca con Google

[80] M. R. Hogsed, “Deep level defects in electron-irradiated aluminum gallium nitride grown by molecular beam epitaxy,” DTIC Document, 2005. Cerca con Google

[81] A. Armstrong, A. Chakraborty, J. S. Speck, S. P. DenBaars, U. K. Mishra, and S. A. Ringel, “Quantitative observation and discrimination of AlGaN- and GaN-related deep levels in AlGaN∕GaN heterostructures using capacitance deep level optical spectroscopy,” Appl. Phys. Lett., vol. 89, no. 26, p. 262116, 2006. Cerca con Google

[82] P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys., vol. 111, no. 11, p. 113105, 2012. Cerca con Google

[83] T. Brazzini et al., “Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation,” Appl. Phys. Lett., vol. 106, no. 21, p. 213502, May 2015. Cerca con Google

[84] S. Rochette et al., “A high efficiency 140W power amplifier based on a single GaN HEMT device for space applications in L-band,” in 2012 7th European Microwave Integrated Circuits Conference, pp. 127–130. Cerca con Google

[85] C. A. Liechti, “Microwave Field-Effect Transistors,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 6, pp. 279–300, Jun. 1976. Cerca con Google

[86] W. Demenitroux, C. Mazière, T. Gasseling, B. Gustavsen, M. Campovecchio, and R. Quéré, “A new multi-harmonic and bilateral behavioral model taking into account short term memory effect,” in 2010 European Microwave Conference, pp. 473–476. Cerca con Google

[87] I. Angelov and H. Zirath, “A New Empirical Nonlinear Model for HEMT and MESFET Devices,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, Dec. 1992. Cerca con Google

[88] P. Roblin, D. E. Root, J. Verspecht, Y. Ko, and J. P. Teyssier, “New Trends for the Nonlinear Measurement and Modeling of High-Power RF Transistors and Amplifiers With Memory Effects,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1964–1978, Jun. 2012. Cerca con Google

[89] J. Verspecht et al., “Extension of X-parameters to include long-term dynamic memory effects,” in Microwave Symposium Digest, 2009, pp. 741–744. Cerca con Google

[90] C. Charbonniaud, “Caractérisation et modélisation électrothermique non linéaire de transistors à effet de champ GaN pour l’amplification de puissance micro-onde,” Université de Limoges, France, 2005. Cerca con Google

[91] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp. 1151–1159, 1988. Cerca con Google

[92] H. S. Sodhi, “Measuring and Modeling Low Frequency in GaAs MESFET’s,” Massachusetts Institute of Technology, 1996. Cerca con Google

[93] Y. Tajima, B. Wrona, and K. Mishima, “GaAs FET large-signal model and its application to circuit designs,” Electron Devices IEEE Trans. On, vol. 28, no. 2, pp. 171–175, 1981. Cerca con Google

[94] O. Jardel et al., “An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2660–2669, Dec. 2007. Cerca con Google

[95] H. Reisinger, T. Grasser, W. Gustin, and C. Schlunder, “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC-and AC-stress,” in 2010 IEEE International Reliability Physics Symposium, pp. 7–15. Cerca con Google

[96] B. Lambert et al., “Reliability data’s of 0.5 μm AlGaN/GaN on SiC technology qualification,” Microelectron. Reliab., vol. 52, no.s 9–10, pp. 2200–2204, Sep. 2012. Cerca con Google

[97] M. Ohring, Reliability and Failure of Electronic Materials and Devices. Academic Press, 1988. Cerca con Google

[98] R. Trew, D. Green, and J. Shealy, “AlGaN/GaN HFET reliability,” IEEE Microw. Mag., vol. 10, no. 4, pp. 116–127, Jun. 2009. Cerca con Google

[99] L. John, Handbook of RF and Microwave Power Amplifiers. Cambridge University Press, 2012. Cerca con Google

[100]J. H. Leach and H. Morkoc, “Status of reliability of GaN-based heterojunction field effect transistors,” Proc. IEEE, vol. 98, no. 7, pp. 1127–1139, 2010. Cerca con Google

[101]M. Meneghini, A. Stocco, R. Silvestri, N. Ronchi, G. Meneghesso, and E. Zanoni, “Impact of hot electrons on the reliability of AlGaN/GaN high electron mobility transistors,” in 2012 IEEE International Reliability Physics Symposium, p. 2C–2. Cerca con Google

[102]J. Joh and J. A. Del Alamo, “RF power degradation of GaN high electron mobility transistors,” in 2010 IEEE International Electron. Devices Meeting, pp. 20–22. Cerca con Google

[103]W. McGenn, M. J. Uren, J. Benedikt, and P. J. Tasker, “Development of an RF IV waveform based stress test procedure for use on GaN HFETs,” Microelectron. Reliab., vol. 52, no. 12, pp. 2880–2883, Dec. 2012. Cerca con Google

[104]J. Verspecht, “Large-signal network analysis,” Microw. Mag. IEEE, vol. 6, no. 4, pp. 82–92, 2005. Cerca con Google

[105]J.-P. Teyssier and F. De Groote, “An embedded controller for the LSNA with pulsed measurement capabilities,” in Proceedings IEEE 2007 Instrumentation and Measurement Technology Conference, pp. 1–4. Cerca con Google

[106]F. De Groote, “Mesures de formes d’ondes temporelles en impulsions : application à la caractérisation de transistors micro-ondes de forte puissance,” Université de Limoges, 2007. Cerca con Google

[107]J. Faraj, “Développement et validation d’un banc de caractérisation de transistors de puissance en mode temporel impulsionnel,” Université de Limoges, 2010. Cerca con Google

[108]J. Verspecht, “Calibration of a Measurement System for High Frequency Nonlinear Devices,” Vrije Universiteit Brussel, 1995. Cerca con Google

[109]Keithley 4200 Semiconductor Characterization System Manual, http://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-bio-inspired-technology/7290999.PDF. Vai! Cerca con Google

[110]Rohde & Schwarz ZVA40 VNA Datasheet, http://www.testequipmenthq.com/datasheets/Rohde-Schwarz-ZVA40-Datasheet.pdf. Vai! Cerca con Google

[111]M. Dammann et al., “Reliability status of GaN transistors and MMICs in Europe,” in 2010 IEEE International Reliability Physics Symposium, pp. 129–133. Cerca con Google

[112]J. Joh and J. A. del Alamo, “Mechanisms for electrical degradation of GaN high-electron mobility transistors,” in International Electron Devices Meeting, 2006, pp. 1–4. Cerca con Google

[113]A. M. Conway, M. Chen, P. Hashimoto, P. J. Willadsen, and M. Micovic, “Failure mechanisms in GaN HFETs under accelerated RF stress,” in CS MANTECH Conference, 2007. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record