Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Hermanek, Petr (2017) Reference standards and methods for traceable X-ray computed tomography dimensional metrology. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
26Mb

Abstract (italian or english)

X-ray computed tomography (CT) is an imaging technique, which originally found its application in the medical field and over years of research extended its use to industry, mainly to nondestructive testing. In the last years, CT has been also used as a tool for dimensional metrology, and is considered the third generation of measuring techniques in coordinate metrology, after tactile and optical coordinate measuring systems. The main advantage of CT over other measuring instruments is the fact that both internal and external geometries of the measured workpiece can be visualized as a 3D model, and analyzed without destruction.
CT measurement chain is affected by numerous and often complex influence factors. Furthermore, due to the fact that it is still relatively new technique for coordinate metrology, and because of the lack of research and standardized procedures, CT has not yet reached maturity as a dimensional measurement technology. Sources of CT measurement uncertainty are still not completely understood in some cases and, as a result, achieving CT measurement traceability is difficult.
Traceability of measurements is an important property ensuring that the measurement results are traceable to the SI unit through unbroken chains of calibrations. Reference standards are a typical means to test metrological systems and investigate various factors that influence the measurement results. In this thesis, several standards dedicated to different mainstays towards the establishment of measurement traceability – namely metrological performance verification according to international standards, metrological performance verification of CT specific applications, calibration, and evaluation of measurement uncertainty – were developed. Furthermore, as an output of experience and findings gained during the project, a good practice guide for developing reference standards for CT dimensional metrology was compiled.
The first standard proposed in this Ph.D. work was developed for the evaluation of accuracy of CT porosity measurements and for establishing their metrological traceability. The design of the standard contains hemispherical features resembling artificial internal porosity and its dismountable configuration ensures calibration by different measuring instruments. It was proved that not only the accuracy of CT porosity measurements can be evaluated using this standard, but the accuracy can also be improved by using the artifact. Moreover, a procedure for establishing the traceability of CT porosity measurements obtained from industrial parts was proposed.
Calibration of CT instrument geometry was achieved by using a standard developed during this project, namely the CT calibration tube (CT2), in combination with the so-called “minimization procedure” used for estimating CT geometrical parameters, and a Monte Carlo method for evaluating the measurement uncertainty. Furthermore, based on results from experimental implementations of the developed standard and method, it was proven that it is possible to align the CT system to its nearly ideal geometry. Moreover, a comprehensive CT instrument geometry alignment method was proposed, which is based on the use of the CT2 standard, the minimization procedure, and a novel advanced reconstruction algorithm (the so called FlexCT, developed by KU Leuven).
Multi-material aspects of CT dimensional measurements were also addressed in this Ph.D. thesis. A series of reference standards were developed for evaluating the multi-material effects on gap measurements. Different behavior between results obtained on mono- and multi-material samples confirmed the existence of the multi-material influence. Furthermore, an alternative dual-energy CT scanning approach was applied to enhance the measurement results.

Abstract (a different language)

La tomografia computerizzata a raggi X (computed tomography, CT) è una tecnica diagnostica per immagini, che originalmente trovava la sua applicazione in campo medico e con anni di ricerca ha ampliato il suo uso per l’industria, principalmente per controlli non distruttivi. Negli ultimi anni, la CT è stata utilizzata anche come uno strumento per metrologia dimensionale, ed può essere considerata la terza generazione delle tecniche di misura a coordinate, dopo i sistemi di misura a contatto e quelli ottici. Il vantaggio principale della CT rispetto ad altre tecnologie di misura è che sia le geometrie interne sia quelle esterne del pezzo misurato possono essere visualizzate in un modello tridimensionale e analizzate in modo non distruttivo.
La catena di misura della CT è influenzata da numerosi e spesso complessi fattori. Inoltre, poiché la CT è ancora una tecnica relativamente nuova per la metrologia a coordinate che necessita di ulteriori investimenti in attività di ricerca e nello sviluppo di procedure standardizzate, non ha ancora raggiunto la piena maturità richiesta per gli strumenti di misura dimensionali. Le fonti di incertezza di misura non sono ancora completamente analizzate in alcuni casi e, di conseguenza, è difficile ottenere la riferibilità delle misure CT.
La riferibilità delle misure è una proprietà importante che garantisce che i risultati delle misure siano riferibili alle unità SI attraverso catene ininterrotte di tarature. I campioni di riferimento sono mezzi tipici per testare i sistemi metrologici ed investigare i vari fattori che influenzano i risultati delle misure. In questa tesi, sono stati sviluppati diversi campioni, dedicati ai diversi requisiti della riferibilità delle misure, e in particolare: la verifica delle prestazioni metrologiche secondo la normativa internazionale, la verifica delle prestazioni metrologiche in specifiche applicazioni CT, la taratura e la valutazione dell’incertezza delle misure. Inoltre, come risultato finale delle esperienze e delle conoscenze ottenute durante il progetto, è stata compilata una guida di buone pratiche per lo sviluppo dei campioni di riferimento per la metrologia dimensionale con CT.
Il primo campione proposto in questa tesi di dottorato è stato sviluppato per valutare l’accuratezza della CT utilizzata per misure di porosità e per stabilirne la riferibilità metrologica. La progettazione del campione è basata su geometrie emisferiche che riproducono una porosità interna artificiale. La configurazione disassemblabile del campione garantisce la possibilità di taratura mediante diversi strumenti di misura. É stato provato che, usando questo campione, l’accuratezza delle misure CT della porosità non solo può essere valutata, ma può anche essere migliorata. Inoltre, è stata proposta una procedura per stabilire la riferibilità delle misure CT di porosità ottenute da parti industriali.
La taratura della geometria dello strumento CT e stata studiata sviluppando un campione – denominato CT calibration tube (CT2) – utilizzato assieme alla cosiddetta “minimization procedure”, utile per stimare i parametri geometrici dello strumento CT, e ad un metodo Monte Carlo per valutare l’incertezza di misura. Inoltre, sulla base dei risultati sperimentali ottenuti usando il metodo e il campione sviluppato, è stato dimostrato come sia possibile l’allineamento del sistema CT alla sua geometria quasi ideale. In aggiunta, è stato proposto un metodo completo per l’allineamento del sistema CT. Tale metodo è basato sull’uso dello standard CT2, della minimization procedure e di un nuovo algoritmo avanzato di ricostruzione (denominato FlexCT e sviluppato da KU Leuven).
Una parte ulteriore di questo lavoro è stata dedicata allo studio degli aspetti multi-materiale delle misure dimensionali CT. Una serie di campioni di riferimento è stata sviluppata per valutare gli effetti della presenza di materiali multipli sulle misure di “gap”. Il comportamento diverso tra i risultati ottenuti su campioni mono- e multi-materiale ha confermato l’esistenza dell’influenza multi-materiale. Inoltre, un approccio alternativo delle scansioni CT basato sull’uso di diversi livelli di energia dei raggi X, il cosiddetto “dual-energy CT”, è estato applicato per migliorare i risultati delle misure.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Carmignato, Simone
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:29 December 2017
Anno di Pubblicazione:29 December 2017
Key Words:Computed tomography, dimensional metrology, traceability, calibration, measurement uncertainty, porosity, multi-material measurements
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/12 Misure meccaniche e termiche
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:10548
Depositato il:26 Oct 2018 09:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] VDI/VDE 2630-1.1 Computed tomography in dimensional measurement - Basics and definitions. VDI/VDE Society for Metrology and Automation Engineering, 2009. Cerca con Google

[2] Kruth J-P, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A. Computed tomography for dimensional metrology. CIRP Annals - Manufacturing Technology 2011;60:821–42. doi:10.1016/j.cirp.2011.05.006. Cerca con Google

[3] Hsieh J. Computed Tomography - Principles, Design, Artifacts, and Recent Advances. Second. Bellingham: SPIE; 2009. Cerca con Google

[4] De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A. Industrial applications of computed tomography. CIRP Annals - Manufacturing Technology 2014;63:655–77. doi:10.1016/j.cirp.2014.05.011. Cerca con Google

[5] European Commission’s 7th Framework Programme FP7-PEOPLE - Grant agreement No 607817. INTERAQCT 2013. https://www.interaqct.eu/ (accessed October 21, 2017). Vai! Cerca con Google

[6] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, et al. JCGM 200 International vocabulary of metrology — Basic and general concepts and associated terms (VIM). International Organization for Standardization, 2008. doi:10.1016/0263-2241(85)90006-5. Cerca con Google

[7] Carmignato S. Accuracy of industrial computed tomography measurements: Experimental results from an international comparison. CIRP Annals - Manufacturing Technology 2012;61:491–4. doi:10.1016/j.cirp.2012.03.021. Cerca con Google

[8] Bartscher M, Hilpert U, Goebbels J, Weidemann G. Enhancement and Proof of Accuracy of Industrial Computed Tomography (CT) Measurements. CIRP Annals - Manufacturing Technology 2007;56:495–8. doi:10.1016/j.cirp.2007.05.118. Cerca con Google

[9] Schmitt R, Niggemann C. Improving the Production using X- Ray Computed Tomography - Potentials and Challenges. National Conference on CT Scanning - Application of CT Scanning in Industry 2011. Cerca con Google

[10] Christoph R, Neumann HJ. X-ray Tomography in Industrial Metrology 2011. http://www.werth.de (accessed October 21, 2017). Vai! Cerca con Google

[11] Buzug TM. Computed Tomography - From Photon Statistics to Modern Cone-Beam CT. Berlin: Springer; 2008. doi:10.1007/978-3-540-39408-2. Cerca con Google

[12] Tan Y. Scanning and Post-Processing Parameter Optimization for CT Dimensional Metrology. KU Leuven, 2015. Cerca con Google

[13] Bioclinica. The Evolution of CT Scan Clinical Trials 2011. http://www.bioclinica.com/ (accessed June 26, 2017). Vai! Cerca con Google

[14] Tesla Memorial Society of New York 1979. http://www.teslasociety.com/pbust.htm (accessed June 26, 2017). Vai! Cerca con Google

[15] Carmignato S, Dewulf W, Leach R. Industrial X-Ray Computed Tomography. Springer; 2017. doi:10.1007/978-3-319-59573-3. Cerca con Google

[16] Poludniovski G, Evans P, DeBlois F, Landry G, Verhaegen F. SpekCalc 2009. http://spekcalc.weebly.com/ (accessed June 27, 2017). Vai! Cerca con Google

[17] Ciernak R. Technical Concepts of X-ray Computed Tomography Scanners. 2011. doi:10.1007/978-0-85729-027-4. Cerca con Google

[18] Stock SR. MicroComputed Tomography: Methodology and Applications. 2008. doi:doi:10.1201/9781420058772.fmatt. Cerca con Google

[19] Ferrucci M, Leach RK, Giusca CL, Carmignato S, Dewulf W. Towards geometrical calibration of X-ray computed tomography systems - A review. Measurement Science and Technology 2015;26. doi:10.1088/0957-0233/26/9/092003. Cerca con Google

[20] Feldkamp LA. Practical cone-beam algorithm. Optical Society of America 1984;1:612–9. Cerca con Google

[21] Radon J. On the determination of functions from their integral values along certain manifolds. IEEE Transactions on Medical Imaging 1986;5:170–6. doi:10.1109/TMI.1986.4307775. Cerca con Google

[22] Müller P. Coordinate metrology by traceable computed tomography. Technical University of Denmark, 2012. Cerca con Google

[23] VDI/VDE 2630-1.2 Computed tomography in dimensional measurement - Influencing variables on measurement results and recommendations for computed-tomography dimensional measurements. VDI/VDE Society for Metrology and Automation Engineering, 2010. Cerca con Google

[24] Carmignato S, Savio E. Traceable volume measurements using coordinate measuring systems. CIRP Annals - Manufacturing Technology 2011;60:519–22. doi:10.1016/j.cirp.2011.03.061. Cerca con Google

[25] Carmignato S, Aloisi V, Medeossi F, Zanini F, Savio E. Influence of surface roughness on computed tomography dimensional measurements. CIRP Annals - Manufacturing Technology 2017. doi:http://dx.doi.org/10.1016/j.cirp.2017.04.067. Vai! Cerca con Google

[26] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, et al. JCGM 100 Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, 2008. Cerca con Google

[27] VDI/VDE 2630-1.3 Computed tomography in dimensional measurement - Guideline for the application of DIN EN ISO 10360 for coordinate measuring machines with CT sensors. VDI/VDE Society for Metrology and Automation Engineering, 2011. Cerca con Google

[28] ISO 15530-3 Geometrical product specifications (GPS) - Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement - Use of calibrated workpieces or measurement standards. International Organization for Standardization, 2011. Cerca con Google

[29] VDI/VDE 2630-2.1 Computed tomography in dimensional measurement - Determination of the uncertainty of measurement and test process suitability of coordinate measurements systems with CT sensors. VDI/VDE Society for Metrology and Automation Engineering, 2015. Cerca con Google

[30] ISO/CD 10360-11 Geometrical Product Specifications (GPS) - Acceptance and reverification tests for coordinate measuring systems (CMS): CMMs using the principle of computed tomography (CT). International Organisation for Standardization, 2017. Cerca con Google

[31] VDI/VDE 2630-1.4 Computed tomography in dimensional metrology - Measurement procedure and comparability. VDI/VDE Society for Metrology and Automation Engineering, 2010. Cerca con Google

[32] ISO 15708-1 Non-destructive testing — Radiation methods — Computed tomography - Principles. International Organisation for Standardization, 2002. Cerca con Google

[33] ISO 15708-2 Non-destructive testing — Radiation methods — Computed tomography — Examination practices. International Organisation for Standardization, 2002. Cerca con Google

[34] EN 16016-1 - Non Destructive Testing - Radiation method - Computed tomography - Terminology. European Committee for Standardization, 2011. Cerca con Google

[35] EN 16016-2 - Non Destructive Testing - Radiation method - Computed tomography - Principle, equipment and samples. European Committee for Standardization, 2011. Cerca con Google

[36] EN 16016-3 - Non Destructive Testing - Radiation method - Computed tomography - Operation and interpretation. European Committee for Standardization, 2011. Cerca con Google

[37] EN 16016-4 - Non Destructive Testing - Radiation method - Computed tomography - Qualification. European Committee for Standardization, 2011. Cerca con Google

[38] ASTM E 1441 Standard Guide for Computed Tomography (CT) Imaging. ASTM International, 2011. Cerca con Google

[39] ASTM E 1695 Standard Test Method for Measurement of Computed Tomography (CT) System Performance. ASTM International, 1995. Cerca con Google

[40] ASTM E 1570 Standard Practice for Computed Tomographic (CT) Examination. ASTM International, 2011. Cerca con Google

[41] ASTM E 1672 Standard Guide for Computed Tomography (CT) System Selection. ASTM International, 2012. Cerca con Google

[42] ISO 10360-2 Geometrical Product Specifications (GPS) — Acceptance and reverification tests for coordinate measuring machines (CMM) — CMMs used for measuring size. International Organisation for Standardization, 2001. Cerca con Google

[43] Illemann J, Bartscher M, Jusko O, Härtig F, Neuschaefer-Rube U, Wendt K. Procedure and reference standard to determine the structural resolution in coordinate metrology. Measurement Science and Technology 2014;25. doi:10.1088/0957-0233/25/6/064015. Cerca con Google

[44] Zanini F, Carmignato S. Two-spheres method for evaluating the metrological structural resolution in dimensional computed tomography. Measurement Science and Technology 2017;28. doi:https://doi.org/10.1088/1361-6501/aa85b7. Vai! Cerca con Google

[45] ISO 10360-8 Geometrical product specifications (GPS) — Acceptance and reAcceptance and reverification tests for coordinate measuring systems (CMS) — CMMs with optical distance sensors. International Organisation for Standardization, 2013. Cerca con Google

[46] ISO 14253-1 Geometrical Product Specifications (GPS) - Inspection by measurement of workpieces and measuring equipment - Decision rules for proving conformance or non-conformance with specifications. International Organisation for Standardization, 1998. Cerca con Google

[47] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, et al. JCGM 101 Evaluation of measurement data — Supplement 1 to the “ Guide to the expression of uncertainty in measurement ” — Propagation of distributions using a Monte Carlo method. International Organisation for Standardization, 2008. Cerca con Google

[48] ISO/IEC GUIDE 98-3 Uncertainty of measurement. Guide to the expression of uncertainty in measurement. International Organisation for Standardization, 2008. Cerca con Google

[49] Lettenbauer H, Georgi B, Weiß D. Means to verify the accuracy of CT systems for metrology applications (in the absence of established international standards). International Symposium on Digital Industrial Radiology and Computed Tomography, Lyon, France: 2007. Cerca con Google

[50] Neuschaefer-Rube U, Bartscher M, Neukamm M, Härtig F, Ehrig K, Staude A, et al. Dimensional Measurements with Micro-CT - Test Procedures and Applications. “Microparts” Interest Group Workshop 2009. Cerca con Google

[51] Léonard F, Brown SB, Withers PJ, Mummery PM, McCarthy MB. A new method of performance verification for x-ray computed tomography measurements. Measurement Science and Technology 2014;25. doi:10.1088/0957-0233/25/6/065401. Cerca con Google

[52] Stolfi A, De Chiffre L. CT crown for on-machine scale calibration in computed tomography. euspen’s 16th International Conference & Exhibition, Nottingham, UK: 2016. Cerca con Google

[53] Stolfi A, De Chiffre L. 3D artefact for concurrent scale calibration in Computed Tomography. CIRP Annals - Manufacturing Technology 2016;65:499–502. doi:10.1016/j.cirp.2016.04.069. Cerca con Google

[54] Trapet E, Savio E, De Chiffre L. New advances in traceability of CMMs for almost the entire range of industrial dimensional metrology needs. CIRP Annals - Manufacturing Technology 2004;53:433–8. doi:10.1016/S0007-8506(07)60733-1. Cerca con Google

[55] Bartscher M, Sato O, Härtig F, Neuschaefer-Rube U. Current state of standardization in the field of dimensional computed tomography. Measurement Science and Technology 2014;25. doi:10.1088/0957-0233/25/6/064013. Cerca con Google

[56] Neuschaefer-Rube U, Neugebauer M, Ehrig W, Bartscher M, Hilpert U. Tactile and Optical Microsensors - Test Procedures and Standards. Measurement Science and Technology 2008;19. doi:10.1088/0957-0233/19/8/084010. Cerca con Google

[57] Bartscher M, Sato O, Illemann J, Neuschaefer-Rube U. Coordinate metrology using computed tomography systems ─ an overview of PTB’s activities with a focus to standardization. Industrial CT Scanning German-Austrian-Danish Workshop, Munich, Germany: 2013. Cerca con Google

[58] Kiekens K, Welkenhuyzen F, Tan Y, Bleys P, Voet A, Kruth J-P, et al. A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology. Measurement Science and Technology 2011;22. doi:10.1088/0957-0233/22/11/115502. Cerca con Google

[59] De Chiffre L, Carmignato S, Cantatore A, Jensen JD. Replica calibration artefacts for optical 3D scanning of micro parts. euspen International Conference, San Sebastian, Spain: 2009. Cerca con Google

[60] Borges de Oliveira F, Stolfi A, Bartscher M, De Chiffre L, Neuschaefer-Rube U. Experimental investigation of surface determination process on multi-material components for dimensional computed tomography. Case Studies in Nondestructive Testing and Evaluation 2016;1:1–11. doi:10.1016/j.csndt.2016.04.003. Cerca con Google

[61] Carmignato S, Dreossi D, Mancini L, Marinello F, Tromba G, Savio E. Testing of x-ray microtomography systems using a traceable geometrical standard. Measurement Science and Technology 2009;20. doi:10.1088/0957-0233/20/8/084021. Cerca con Google

[62] Heinzl C, Kastner J, Georgi B, Lettenbauer H. Comparison of surface detection methods to evaluate cone beam computed tomography data for three dimensional metrology. International Symposium on Digital industrial Radiology and Computed Tomography, Lyon, France: 2007. Cerca con Google

[63] Sun W, Brown S, Leach RK. An overview of industrial X-ray computed tomography. NPL REPORT ENG 32 2012. Cerca con Google

[64] Angel J, De Chiffre L. CIA-CT comparison - Inter laboratory comparison on Industrial Computed Tomography - Final report. Kgs. Lyngby, Denmark: 2013. Cerca con Google

[65] Stolfi A, De Chiffre L. InteraqCT Comparison on Assemblies - Final report. Kgs. Lyngby, Denmark: 2016. Cerca con Google

[66] Hermanek P, Borges De Oliveira F, Carmignato S, Bartscher M. Experimental investigation of new multi-material gap reference standard for testing computed tomography systems. 7th Conference on Industrial Computed Tomography, Leuven, Belgium: 2017. Cerca con Google

[67] Borges De Oliveira F, Stolfi A, Bartscher M, Neugebauer M. Creating a Multi-material Probing Error Test for the Acceptance Testing of Dimensional Computed Tomography Systems. 7th Conference on Industrial Computed Tomography, Leuven, Belgium: 2017. Cerca con Google

[68] Borges De Oliveira F, Bartscher M, Neuschaefer-Rube U, Tutsch R, Hiller J. Creating a Multi-Material Length Measurement Error Test for the Acceptance Testing of Dimensional Computed Tomography Systems. 7th Conference on Industrial Computed Tomography, Leuven, Belgium: 2017. Cerca con Google

[69] Hermanek P, Borges De Oliveira F, Carmignato S, Bartscher M, Savio E. Experimental investigation on multi-material gap measurements by computed tomography using a dedicated reference standard. euspen’s 17th International Conference & Exhibition, Hannover: 2017. Cerca con Google

[70] Carmignato S, Pierobon A, Rampazzo P, Parisatto M, Savio E. CT for Industrial Metrology – Accuracy and Structural Resolution of CT Dimensional Measurements. Conference on Industrial Computed Tomography (ICT), Wels, Austria: 2012. Cerca con Google

[71] Arenhart FA, Nardelli VC, Donatelli GD. Characterization of the Metrological Structural Resolution of CT Systems Using a Multi-Wave Standard. XXI IMEKO World Congress “Measurement in Research and Industry,” Prague, Czech Republic: 2015. Cerca con Google

[72] Fleßner M, Vujaklija N, Helmecke E, Hausotte T. Determination of metrological structural resolution of a CT system using the frequency response on surface structures. MacroScale 2014:1–10. doi:10.7795/810.20150223B. Cerca con Google

[73] Japan Inspection Instruments Manufacturers’ Association (JIMA) 2016. http://www.jima.jp/english/index.html (accessed July 7, 2017). Vai! Cerca con Google

[74] Staude A, Goebbels J. Determining the Spatial Resolution in Computed Tomography – Comparison of MTF and Line-Pair Structures. International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany: 2011. Cerca con Google

[75] Weiß D, Shi Q, Kuhn C. Measuring the 3D resolution of a micro-focus X-ray CT setup. 4th Conference on Industrial Computed Tomography (iCT), Wels, Austria: 2012. Cerca con Google

[76] Van de Casteele E. Model-based approach for Beam Hardening Correction and Resolution Measurements in Microtomography. Universiteit Antwerpen, 2004. Cerca con Google

[77] EN 60336 Methods for determining the characteristics of focal spots in diagnostic X-ray tube assemblies for medical use. International Organisation for Standardization, 1995. Cerca con Google

[78] Rong XJ, Krugh KT, Shepard SJ, Geiser WR. Measurement of focal spot size with slit camera using computed radiography and flat-panel based digital detectors. Medical Physics 2003;30. doi:10.1118/1.1579583. Cerca con Google

[79] Russo P, Mettivier G. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector. Medical Physics 2011;38. doi:10.1118/1.3567503. Cerca con Google

[80] Flay N, Sun W, Brown S, Leach RK, Blumensath T. Investigation of the Focal Spot Drift in Industrial Cone-beam X-ray Computed Tomography. Digital Industrial Radiology and Computed Tomography, Ghent, Belgium: 2015. Cerca con Google

[81] Hiller J, Maisl M, Reindl LM. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications. Measurement Science and Technology 2012;23. doi:10.1088/0957-0233/23/8/085404. Cerca con Google

[82] Weiss D, Deffner A, Kuhn C, Zeiss C, Messtechnik I. Einfluß der Quellbewegung auf Reproduzierbarkeit und Antastab- weichung im Röntgen-Computertomographen. 3rd Industrielle Computertomografie Tagung, Wels, Austria: 2010. Cerca con Google

[83] Vogeler F, Verheecke W, Voet A, Kruth J-P. Positional Stability of 2D X-ray Images for Computer Tomography. International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany: 2011. Cerca con Google

[84] Uhlman N, Salamon M, Burtzlaff S. Components and Methods for Highest Resolution Computed Tomography. International Symposium on NDT in Aerospace December, Furth, Germany: 2008. Cerca con Google

[85] Neuschaefer-Rube U, Bartscher M, Hilpert U. Application of multisensor measurements and sensor data fusion in coordinate metrology. NCSL International Workshop and Symposium, Orlando, FL, USA: 2008. Cerca con Google

[86] Konopczyński T, Rathore J, Kröger T, Zheng L, Garbe CS. Reference Setup for Quantitative Comparison of Segmentation Techniques for Short Glass Fiber CT Data. 7th Conference on Industrial Computed Tomography, Leuven, Belgium: 2017. Cerca con Google

[87] Sun Y, Hou Y, Zhao F, Hu J. A calibration method for misaligned scanner geometry in cone-beam computed tomography. NDT and E International 2006;39:499–513. doi:10.1016/j.ndteint.2006.03.002. Cerca con Google

[88] Noo F, Clackdoyle R, Mennessier C, White T a, Roney TJ. Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography. Physics in Medicine and Biology 2000;45:3489–508. doi:10.1088/0031-9155/45/11/327. Cerca con Google

[89] Gross D, Heil U, Schulze R, Schoemer E, Schwanecke U. Auto calibration of a cone-beam-CT. Medical Physics 2012;39:5959–70. doi:10.1118/1.4739247. Cerca con Google

[90] Cho Y, Moseley DJ, Siewerdsen JH, Jaffray DA. Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Medical Physics 2005;32:968–83. doi:10.1118/1.1869652. Cerca con Google

[91] Rougee A, Picard CL, Trousset YL, Ponchut C. Geometrical calibration for 3D x-ray imaging. Medical Imaging 1993: Image Capture, Formatting, and Display 1993. doi:10.1117/12.146963. Cerca con Google

[92] Claus BEH. Geometry calibration phantom design for 3D imaging. Physics of Medical Imaging, vol. 6142, San Diego, CA, USA: 2006. doi:10.1117/12.652342. Cerca con Google

[93] Probst G, Ametova E, Kruth J, Dewulf W. Radiograph based SDD and SRD calculations. 7th Conference on Industrial Computed Tomography, Leuven, Belgium: 2017. Cerca con Google

[94] Illemann J, Bartscher M, Neuschaefer-Rube U. An efficient procedure for traceable dimensional measurements and the characterization of industrial CT systems. Digital Industrial Radiology and Computed Tomography, Ghent, Belgium: 2015. Cerca con Google

[95] Müller P, Hiller J, Dai Y, Andreasen JL, Hansen HN, De Chiffre L. Estimation of measurement uncertainties in X-ray computed tomography metrology using the substitution method. CIRP Journal of Manufacturing Science and Technology 2014;7:222–32. doi:10.1016/j.cirpj.2014.04.002. Cerca con Google

[96] Bartscher M, Neukamm M, Koch M, Neuschaefer-rube U, Staude A, Goebbels J, et al. Performance assessment of geometry measurements with micro-CT using a dismountable work-piece-near reference standard. 10th European Conference on Non-Destructive testing, Moscow, Russia: 2010. Cerca con Google

[97] Staude A, Goebbels J, Ehrig K, Bartscher M, Koch M, Neuschaefer-Rube U. A new test piece for geometry and defect measurements with micro-CT. 10th European Conference on Non-Destructive testing, Moscow, Russia: 2010. Cerca con Google

[98] Kruth J-P, Levy G, Klocke F, Childs THC. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals - Manufacturing Technology 2007;56:730–59. doi:10.1016/j.cirp.2007.10.004. Cerca con Google

[99] Wits WW, Carmignato S, Zanini F, Vaneker THJ. Porosity testing methods for the quality assessment of selective laser melted parts. CIRP Annals - Manufacturing Technology 2016;65:201–4. doi:10.1016/j.cirp.2016.04.054. Cerca con Google

[100] Nicoletto G, Anzelotti G, Konečná R. X-ray computed tomography vs. metallography for pore sizing and fatigue of cast Al-alloys. Procedia Engineering 2010;2:547–54. doi:10.1016/j.proeng.2010.03.059. Cerca con Google

[101] Nikishkov Y, Guillaume S, Makeev A. Structural analysis of composites with porosity defects based on X-Ray Computed Tomography. Journal of Composite Materials 2013. doi:10.1177/0021998313494917. Cerca con Google

[102] Tang M, Pistorius PC. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. International Journal of Fatigue 2017;94:192–201. doi:10.1016/j.ijfatigue.2016.06.002. Cerca con Google

[103] Yadollahi A, Shamsaei N. Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities. International Journal of Fatigue 2017;98:Under review. doi:10.1016/j.ijfatigue.2017.01.001. Cerca con Google

[104] Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. Journal of Materials Processing Technology 2014;214:2497–504. doi:10.1016/j.jmatprotec.2014.05.002. Cerca con Google

[105] Kempen K, Yasa E, Thijs L, Kruth J-P, Van Humbeeck J. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Physics Procedia 2011;12:255–63. doi:10.1016/j.phpro.2011.03.033. Cerca con Google

[106] Tapia G, Elwany AH, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Additive Manufacturing 2016;12:282–90. doi:10.1016/j.addma.2016.05.009. Cerca con Google

[107] Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Materials Science and Engineering A 2016;667:139–46. doi:10.1016/j.msea.2016.04.092. Cerca con Google

[108] Dewulf W, Pavan M, Craeghs T, Kruth J-P. Using X-ray computed tomography to improve the porosity level of polyamide-12 laser sintered parts. CIRP Annals - Manufacturing Technology 2016;65:205–8. doi:10.1016/j.cirp.2016.04.056. Cerca con Google

[109] Zhu H, Wu B, Li D, Zhang D, Chen Y. Influence of Voids on the Tensile Performance of Carbon/epoxy Fabric Laminates. Journal of Materials Science and Technology 2011;27:69–73. doi:10.1016/S1005-0302(11)60028-5. Cerca con Google

[110] Yi JZ, Gao YX, Lee PD, Flower HM, Lindley TC. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys. Metallurgical and Materials Transactions A 2003;34:1879–90. doi:10.1007/s11661-003-0153-6. Cerca con Google

[111] Müller De Almeida SF, Neto ZDSN. Effect of void content on the strength of composite laminates. Composite Structures 1994;28:139–48. doi:10.1016/0263-8223(94)90044-2. Cerca con Google

[112] Lambert J, Chambers AR, Sinclair I, Spearing SM. 3D damage characterisation and the role of voids in the fatigue of wind turbine blade materials. Composites Science and Technology 2012;72:337–43. doi:10.1016/j.compscitech.2011.11.023. Cerca con Google

[113] VDG P 201 Volume Deficits of Non-Ferrous Metal Castings. Verein Deutscher Gießereifachleute, 2002. Cerca con Google

[114] VDG P 202 Volume Deficits of Castings Made from Aluminium , Magnesium , and Zinc Casting Alloys BDG-Reference Sheet. Verein Deutscher Gießereifachleute, 2010. Cerca con Google

[115] Slotwinski JA, Garboczi EJ, Hebenstreit KM. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control. Journal of Research of the National Institute of Standards and Technology 2014;119:494–528. doi:10.6028/jres.119.019. Cerca con Google

[116] Khademzadeh S, Carmignato S, Parvin N, Zanini F, Bariani PF. Micro porosity analysis in additive manufactured NiTi parts using micro computed tomography and electron microscopy. Materials and Design 2016;90:745–52. doi:10.1016/j.matdes.2015.10.161. Cerca con Google

[117] Kastner J, Plank B, Salaberger D, Sekelja J. Defect and Porosity Determination of Fibre Reinforced Polymers by X-ray Computed Tomography. NDT in Aerospace 2010 - We1A2 2010. Cerca con Google

[118] Birt EA, Smith RA. A review of NDE methods for porosity measurement in fibre-reinforced polymer composites. Insight - Non-Destructive Testing and Condition Monitoring 2004;46:681–6. Cerca con Google

[119] Suhot MA, Chambers AR. The effect of voids on the flexural fatigue properties of carbon/epoxy composites. 16th International Conference on Composite Materials, Kyoto, Japan: 2010. Cerca con Google

[120] Nikishkov Y, Airoldi L, Makeev A. Measurement of voids in composites by X-ray Computed Tomography. Composites Science and Technology 2013;89:89–97. doi:10.1016/j.compscitech.2013.09.019. Cerca con Google

[121] Jansson A, Zekavat AR, Pejryd L. Measurement of Internal Features in Additive Manufactured Components by the use of Computed Tomography. Digital Industrial Radiology and Computed Tomography (DIR 2015), Ghent, Belgium: 2015. Cerca con Google

[122] ISO 4287 Geometrical product specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters. International Organization for Standardization, 1997. Cerca con Google

[123] EA-4/02 M Evaluation of the Uncertainty of Measurement In Calibration. EA Laboratory Committee, 2013. Cerca con Google

[124] Dabankah EM, Hermanek P, Carmignato S, Kasperl S. Assessment of CT simulated data based on POD Numerical Model Approach. Digital Industrial Radiology and Computed Tomography (DIR 2015), Ghent, Belgium: 2015. Cerca con Google

[125] Hermanek P, Carmignato S. Reference object for evaluating the accuracy of porosity measurements by X-ray computed tomography. Case Studies in Nondestructive Testing and Evaluation 2016;1:1–6. doi:10.1016/j.csndt.2016.05.003. Cerca con Google

[126] Stoessel R, Kiefel D, Oster R, Diewel B, Llopard Prieto L. µ-Computed Tomography for 3D Porosity Evaluation in Carbon Fibre Reinforced Plastics (CFRP). International Symposium on Digital Radiology and Computed Tomography, Berlin, Germany: 2011. Cerca con Google

[127] D. Kiefel, Stoessel R, Plank B, Heinzl C, Kastner J. CFRP Porosity Characterisation Using μ-Computed Tomography with Optimized Test Parameters Supported by XCT-simulation. 5th Conference on Industrial Computed Tomography, Wels, Austria: 2014. Cerca con Google

[128] Gondrom-Linke S, Günther T. Physical and Technical Boundary Conditions for an Automated Industrial 3D-CT Inspection Dealing with Typical Production Cycle Times. 19th World Conference on Non-Destructive Testing 2016, Munich, Germany: 2016. Cerca con Google

[129] Dillencourt MB, Samet H, Tamminen M. A general approach to connected-component labeling for arbitrary image representations. Journal of the ACM 1992;39:253–80. doi:10.1145/128749.128750. Cerca con Google

[130] Tan Y, Kiekens K, Kruth J-P, Voet A, Dewulf W. Material Dependent Thresholding for Dimensional X-ray Computed Tomography. International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany: 2011. Cerca con Google

[131] Kiekens K, Tan Y, Kruth J, Voet A, Dewulf W. Parameter Dependent Thresholding for Dimensional X-ray Computed Tomography. International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany: 2011. Cerca con Google

[132] Hermanek P, Carmignato S. Establishment of metrological traceability in porosity measurements by X-ray computed tomography. SPIE Optical Engineering + Applications, San Diego, CA, USA: 2017. Cerca con Google

[133] Von Smekal L, Kachelriess M, Stepina E, Kalender WA. Geometric misalignment and calibration in cone-beam tomography. Medical Physics 2004;31:3242–66. doi:10.1118/1.1803792. Cerca con Google

[134] Ford JC, Zheng D, Williamson JF. Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: implications for isocenter localization accuracy. Medical Physics 2011;38:2829–40. doi:10.1118/1.3589130. Cerca con Google

[135] Xu J, Tsui BMW. An analytical geometric calibration method for circular cone-beam geometry. IEEE Transactions on Medical Imaging 2013;32:1731–44. doi:10.1109/TMI.2013.2266638. Cerca con Google

[136] Ferrucci M, Ametova E, Carmignato S, Dewulf W. Evaluating the effects of detector angular misalignments on simulated computed tomography data. Precision Engineering 2016;45:230–41. doi:10.1016/j.precisioneng.2016.03.001. Cerca con Google

[137] Parzen E. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics 1962;33:1065–76. doi:10.1214/aoms/1177704472. Cerca con Google

[138] Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics 1956;Volume 27:832–7. doi:10.1214/aoms/1177728190. Cerca con Google

[139] Chantler CT, Olsen K, Dragoset RA, Chang J, Kishore AR, Kotochigova SA, et al. X-Ray Form Factor, Attenuation and Scattering Tables (version 2.1) 2005. http://physics.nist.gov/ffast (accessed October 21, 2017). Vai! Cerca con Google

[140] ISO 3290-1 Rolling bearings - Balls - Steel balls. International Organization for Standardization, 2014. Cerca con Google

[141] Hüser D, Trapet E, Wäldele F, Wiegand U. Kalibrierung von Kugel- und Lochplatten als Normale für Koordinatenmeßgeräte. Anleitung für DKD-laboratorien 1993. Cerca con Google

[142] Kunzmann HI, Trapet E, Waldele F. Results of the International Comparison of Ball Plate Measurements in ClRP and WECC. CIRP Annals - Manufacturing Technology 1995;44:479–82. doi:10.1016/S0007-8506(07)62367-1. Cerca con Google

[143] Ferrucci M, Hermanek P, Ametova E, Chilingaryan S, Carmignato S, Dewulf W. Measurement of the X-ray computed tomography system geometry—part 2: minimization of reprojection errors. Submitted to Precision Engineering 2017. Cerca con Google

[144] Fila T, Vavrik D. A multi-axial apparatus for carrying out x-ray measurements, particularly computed tomography. European patent EP2835631, 2016. Cerca con Google

[145] Fila T, Krumpova I, Jandejsek I, Kloiber M, Turecek D, Vavrik D. Utilization of dual-source X-ray tomography for reduction of scanning time of wooden samples. 16th International Workshop on Radiation Imaging Detectors, Trieste, Italy: 2014. doi:10.1088/1748-0221/10/05/C05008. Cerca con Google

[146] Bartscher M, Illemann J, Neuschaefer-Rube U. ISO test survey on material influence in dimensional computed tomography. Case Studies in Nondestructive Testing and Evaluation 2016;1. doi:10.1016/j.csndt.2016.04.001. Cerca con Google

[147] Kiekens K, Tan Y, Kruth J-P, Voet A, Dewulf W. Parameter dependent thresholding for dimensional X-ray computed tomography. International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany: 2011. Cerca con Google

[148] Ontiveros S, Yagüe JA, Jiménez R, Brosed F. Computer tomography 3D edge detection comparative for metrology applications. Procedia Engineering 2013;63:710–9. doi:10.1016/j.proeng.2013.08.263. Cerca con Google

[149] Heinzl C, Kastner J, Groeller E. Surface extraction from multi-material components for metrology using dual energy CT. IEEE Transactions on Visualization and Computer Graphics 2007;13:1520–7. doi:10.1109/TVCG.2007.70598. Cerca con Google

[150] Haitham Shammaa M, Ohtake Y, Suzuki H. Segmentation of multi-material CT data of mechanical parts for extracting boundary surfaces. CAD Computer Aided Design 2010;42:118–28. doi:10.1016/j.cad.2009.08.003. Cerca con Google

[151] ISO 14253-5 Geometrical product specifications (GPS) - Inspection by measurement of workpieces and measuring equipment: Uncertainty in verification testing of indicating measuring instruments. International Organisation for Standardization, 2015. Cerca con Google

[152] Jansson A, Ekengren J, Zekavat A-R, Pejryd L. Effects of X-ray Penetration Depth on Multi Material Computed Tomography Measurements. 6th Conference on Industrial Computed Tomography, Wels, Austria: 2016. Cerca con Google

[153] Jansson A, Pejryd L. A dual-energy approach for improvement of the measurement consistency in computed tomography. Measurement Science and Technology 2016;27. doi:10.1088/0957-0233/27/11/115013. Cerca con Google

[154] Herderick E. Additive manufacturing of metals: A review. Materials Science and Technology Conference and Exhibition, Ohio, USA: 2011. Cerca con Google

[155] Granta Design. CES EduPack 2014 2014. Cerca con Google

[156] Zelený V, Linkeová I, Skalník P, Hynek J. Use of on-board metrology systems for area-scanning on machine tools. Czech Metrology Institute, 2016. Cerca con Google

[157] Zelený V, Linkeová I, Skalník P. Calibration of freeform standard. euspen’s 15th International Conference & Exhibition, Leuven, Belgium: 2015. Cerca con Google

[158] Aloisi V, Carmignato S. Influence of surface roughness on X-ray computed tomography dimensional measurements of additive manufactured parts. Case Studies in Nondestructive Testing and Evaluation 2016;6:104–10. doi:10.1016/j.csndt.2016.05.005. Cerca con Google

[159] Savio E, De Chiffre L. An artefact for traceable freeform measurements on coordinate measuring machines. Precision Engineering 2002;26:58–68. doi:10.1016/S0141-6359(01)00098-8. Cerca con Google

[160] Flack D. Good Practice Guide No. 130 Co-ordinate measuring machine task-specific measurement uncertainties. National Physical Laboratory, 2013. Cerca con Google

[161] Flack D. Good Practice Guide No. 41 CMM Measurement Strategies. National Physical Laboratory, 2011. Cerca con Google

[162] Flack D. Good Practice Guide No. 42 CMM Verification. National Physical Laboratory, 2011. Cerca con Google

[163] Flack D. Good Practice Guide No. 43 CMM Probing. National Physical Laboratory, 2014. Cerca con Google

[164] Carmignato S. Reference objects for Computed Tomography. 5thCIA-CT Conference and InteraqCT event ”Industrial Applications of Computed Tomography”, Lyngby, Denmark: 2015. Cerca con Google

[165] Evans CJ, Hocken RJ, Estler WT. Self-Calibration: Reversal, Redundancy, Error Separation, and “Absolute Testing.” CIRP Annals - Manufacturing Technology 1996;45:617–34. doi:10.1016/S0007-8506(07)60515-0. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record