Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Novello, Elisa (2018) Towards the development of design tools for fatigue life assessment of composite structures. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
12Mb

Abstract (english)

The threat of delaminations arising during in-service loading conditions is one of the key factors limiting the use of composite materials in large volume for main structures. Delamination occurrence is primarily caused by the interlaminar tension and shear stresses that develop due to different factors. These include geometric or materials discontinuities (e.g. edges, holes, dropped ply), but are also linked to internal mechanism failure, such as matrix cracks. The present thesis focuses on the investigation of the correlation existing between different damage mechanisms occurring in composite laminates.
The problem of delamination initiation from transverse cracks in cross-ply laminates under quasi-static loading is thoroughly studied in Chapter 2. An analytical solution is presented for the local mode I, II and III stress fields arising in the close neighbourhoods of a transverse crack, stresses being written as a function of Generalised Stress Intensity Factors (GSIFs). Moreover, a fracture criterion for the delamination onset in cross-ply laminates under tension, based on a critical value for the mode 1 GSIF, is proposed and validated taking advantage of the results from an experimental campaign.
The analytical solution describing the stress fields in the adjacencies of a transverse crack, found for cross-ply laminates, was then extended to be suitable to describe the stress fields for laminates with generic orientation (Chapter 3).
The results of the research activity focused on the investigation of delamination evolution for composite laminates subjected to cyclic loads are presented in the following chapters.
In particular, the outcomes of the experimental tests carried out on glass/epoxy cross ply laminates are presented in Chapter 4.

Numerical analyses were performed to characterize the evolution of delamination area during fatigue life. Energy release rates (ERR) associated with delamination growth was calculated by using the virtual crack closure technique (VCCT) and a Paris-like curve was derived (Chapter 5). Furthermore, the reduction of Young's modulus and Poisson's ratio were modelled. Theoretical predictions were found to be consistent with collected experimental data.
The process of delamination growth may be affected by different parameters. The presence of the friction sliding between the delaminated interfaces is one of these. The friction effects on ERR values are discussed in the Appendix. Different conditions of damage were numerically simulated, varying the value of the coefficient of friction and the length of delaminations. It was found that the presence of friction was not so influent for the purposes of delamination growth assessment.
Then, with the aim of investigating damage evolution for laminates characterized by different orientations, fatigue tests were carried out on [0/452/-452]s and [0/452]s laminates.
The different phases of the damage process were documented by collecting a detailed series of images, showing the accumulation of the observed failure modes. During the tests, the Young’s modulus and the Poisson’s ratio evolution were determined and their correlation with the damage evolution was investigated (Chapter 6).
Following the approach used for cross-ply laminates, a correlation between the growth rate of delamination and ERR was investigated. Furthermore, a series of numerical investigations in response to the free edge delamination problem was performed. In fact, delamination initiation and growth was observed to occur more extensively near the free edges, both for balanced and unbalanced configuration of laminates. The results of these FE analyses are presented in Chapter 7.
Finally, a model based on a probabilistic approach for the prediction of fibre failure of 0° laminae in cross ply laminates subjected to tensile-tensile fatigue loading will be described in Chapter 8.

Abstract (italian)

Il problema delle delaminazioni formatesi durante le condizioni di servizio, è uno dei fattori che maggiormente limitano l’utilizzo di materiali compositi nelle applicazioni strutturali. La formazione delle delaminazioni è causata principalmente dalle elevate tensioni interlaminari che si sviluppano in corrispondenza di discontinuità geometriche o dei materiali. Inoltre, queste possono essere indotte anche dalla presenza di altri meccanismi di danneggiamento, come la formazione di cricche. Obiettivo di questa tesi è studiare le relazioni esistenti tra i diversi meccanismi di danneggiamento che si manifestano nei laminati compositi, ponendo particolare attenzione alla formazione e allo sviluppo delle delaminazioni.
Il problema dell’innesco delle delaminazioni, indotte dalla formazione delle cricche trasversali nei laminati cross-ply soggetti a trazione, è presentato nel capitolo 2. Dapprima viene ricavata una soluzione analitica per descrivere i campi di tensione associati ai modi I, II e III di deformazione, espressi in funzione dei fattori di intensificazione di tensione. La soluzione trovata quindi è stata elaborata e generalizzata, al fine di poter essere applicata a laminati caratterizzati da una orientazione generica (capitolo 3).
I capitoli successivi sono invece dedicati allo studio dell’evoluzione delle delaminazioni in laminati soggetti a fatica.
In particolare, i risultati dei test sperimentali condotti su laminati cross-ply sono presentati nel capitolo 4. L’evoluzione dell’area di delaminazione è stata caratterizzata mediante apposite analisi numeriche; il tasso di rilascio dell’energia di deformazione (ERR) è stato calcolato con l’utilizzo della tecnica di chiusura virtuale (VCCT) e i valori sono stati correlati alla velocità di propagazione della cricca mediante curva di Paris (Capitolo 5). Un modello di previsione della perdita di rigidezza, causata dal processo di danneggiamento, è presentato nello stesso capitolo, validato mediante confronto con dati sperimentali.
La crescita delle delaminazioni risente dell’influenza di diversi fattori, tra cui la presenza di attrito in corrispondenza dell’interfaccia delaminata 0°/90°. L’influenza che questa esercita sui valori di ERR è argomento dell’Appendice. Diverse condizioni di danneggiamento sono state simulate, variando sia il coefficiente di attrito, sia la lunghezza di delaminazione, ma i risultati ottenuti hanno evidenziato una scarsa influenza dell’attrito ai fini della stima della crescita delle delaminazioni.
Successivamente, con l’obiettivo di investigare l’evoluzione del danneggiamento per laminati caratterizzati da una orientazione generica, dei test a fatica sono stati condotti su laminati [0/452]s e [0/452/-452]s. Le fasi caratterizzanti il progressivo processo di danneggiamento sono state determinate e documentate tramite una serie di immagini. Durante i test si è studiata l’evoluzione del modulo di rigidezza e del modulo di Poisson e si è correlato il loro andamento con la formazione dei meccanismi di danneggiamento. In analogia con quanto visto per i cross-ply, si è studiata l’applicabilità della curva di Paris per descrivere in maniera efficace la crescita delle delaminazioni. Successivamente, delle simulazioni numeriche sono state condotte per studiare il problema delle delaminazioni innescate dai bordi liberi, particolarmente sviluppate sia nel caso dei laminati con configurazione bilanciata e non bilanciata (Capitolo 7). In conclusione, un modello basato su un approccio probabilistico per la previsione della rottura delle fibre delle lamine orientate a 0° in laminati cross-ply viene presentato nel Capitolo 8.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Quaresimin, Marino
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:07 January 2018
Anno di Pubblicazione:January 2018
Key Words:Delamination, fatigue, composite materials, damage evolution
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:10563
Depositato il:16 Nov 2018 09:54
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

References of chapter 1 Cerca con Google

[1] Matthews, Frank L., and Rees D. Rawlings. Composite materials: engineering and science. Elsevier, 1999. Cerca con Google

[2] Kraus, T., Kuhnel M. (CCeV). Market report: “The global CRP market”, 2016. Cerca con Google

[3] Boller, K. "Fatigue fundamentals for composite materials." Composite Materials: Testing and Design. ASTM International, 1969. Cerca con Google

[4] Owen, M. Y. "Fatigue of carbon-fiber-reinforced plastics." Composite materials 5 (2016): 341-369. Cerca con Google

[5] Baker, A. A. "The fatigue of fibre-reinforced aluminium." Journal of Materials Science 3.4 (1968): 412-423. Cerca con Google

[6] Reifsnider, K. L., ed. Fatigue of composite materials. Vol. 4. Elsevier, 2012. Cerca con Google

[7] Talreja, R. Fatigue of composite materials. Technomic, 1987. Cerca con Google

[8] Carraro P.A., Quaresimin M.. "A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading", Compos Sci Technol 2014, 99, 154–163 Cerca con Google

[9] Carraro P.A., Quaresimin M.. "A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers". Int J Solids Struct 2015, 58, 34–51. Cerca con Google

[10] Sridharan, Srinivasan, ed. Delamination behaviour of composites. Elsevier, 2008. Cerca con Google

[11] Hayashi, T. "On the law of mixture of creep strength of fiber reinforced composite materials (Law of mixture governing creep strength of composite materials reinforced unidirectionally by continuous filaments, taking into account fibers and matrix viscoelastic properties)." japan society for aeronautical and space sciences, transactions 10.17 (1967): 54-58. Cerca con Google

[12] Puppo, A. H., and H. A. Evensen. "Interlaminar shear in laminated composites under generalized plane stress." Journal of composite materials 4.2 (1970): 204-220. Cerca con Google

[13] Pipes, R. Byron, and N. J. Pagano. "Interlaminar stresses in composite laminates under uniform axial extension." Journal of Composite Materials 4.4 (1970): 538-548. Cerca con Google

References of chapter 2 Cerca con Google

[1] Rodini BT Jr, Eisenman JR. An analytical and experimental investigation of edge delamination in composite laminates. In: Lenoe EM, Oplinger DW, Burke J, editors. Fibrous composites in structural design. New York:Plenum, 1980. p. 441-457 Cerca con Google

[2] Crossman FW, Warren WJ, Wang ASD, Law GE. Initiation and Growth of Transverse Cracks and Edge Delamination in Composite Laminates Part 2. Experimental Correlation. J Compos Mater 1980;14:88–108, 1980. Cerca con Google

[3] Wang ASD. Initiation and growth of transverse cracks and edge delamination in composite laminates. Part 1. An Energy Method. J Compos Mater 1980; 14: 71–87. Cerca con Google

[4] O'Brien TK. Characterization of delamination onset and growth in a composite laminate. In: Reifsnider KL, editor. Damage in composite materials, ASTM STP 775. Philadelphia: American Society for Testing and Materials: 1982, p.140-167. Cerca con Google

[5] Brewer JC, Lagace PA. Quadratic Stress Criterion for Initiation of Delamination. J Compos Mater 1988; 22:1141–1155. Cerca con Google

[6] Hojo M, Tanaka K, Gustafson CG, Hayashi R. Effect of stress ratio on near-threshold propagation of delamination fatigue cracks in unidirectional CFRP. Compos Sci Technol 1987;29(4):273-292. Cerca con Google

[7] Hojo M, Ochiai S, Gustafson CG, Tanaka K. Effect of matrix resin on delamination fatigue crack growth in cfrp laminates, Eng Fract Mech 1994;49(1):35-47. Cerca con Google

[8] Hojo M, Ando T, Tanaka M, Adachi T, Ochiai S, Endo Y. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int J Fatigue 2006;28:1154–1165. Cerca con Google

[9] Andersons J, Hojo M, Ochiai S. Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates, Int J Fatigue 2004;26:597–604. Cerca con Google

[10] Andersons J, Hojo M, Ochiai S. Model of delamination propagation in brittle-matrix composites under cyclic loading. J Reinf Plast Compos 2001;20(05):431-450. Cerca con Google

[11] Takeda N, Ogihara S. Initiation and growth of delamination from the tips of transverse cracks in cfrp cross-ply laminates. Compos Sci Technol 1994;52:309–318. Cerca con Google

[12] Takeda N, Ogihara S. In situ observation and probabilistic prediction of microscopic failure processes in cfrp cross-ply laminates. Compos Sci Technol 1994;94:183–195. Cerca con Google

[13] Zubillaga L, Turon A, Renart J, Costa J, Linde P. An experimental study on matrix crack induced delamination in composite laminates. Compos Struct 2015;127:10–17. Cerca con Google

[14] Akshantala NV, Talreja R. A mechanistic model for fatigue damage evolution in composite laminates. Mech. Mater. 1998,29:123–140. Cerca con Google

[15] Akshantala NV, Talreja R. A micromechanics based model for predicting fatigue life of composite laminates. Mater Sci Eng A 2000;285:303–313. Cerca con Google

[16] Allegri G and Wisnom MR. A non-linear damage evolution model for mode II fatigue delamination onset and growth. Int J Fatigue 2012;43:226–234. Cerca con Google

[17] Zhang J, Fan J, Herrmann KP. Delaminations induced by constrained transverse cracking in symmetric composite laminates. Int J Solids Struct 1999;36:813–846. Cerca con Google

[18] O’Brien TK. Analysis of local delamination and their influence on composite laminate behaviour. Delamination and Debonding of Materials, ASTM STP 876. Philadelphia: American Society for Testing and Materials, 1985, p. 282–297. Cerca con Google

[19] Pagano NJ, Schoeppner GA. Delamination of polymer matrix composites: problems and assessment. In: Kelly A, Zweben C, editors. Comprehensive composite materials, vol.2. Oxford: Elsevier Science Ltd, 2000 p.433-528. Cerca con Google

[20] Berthelot JM. Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading. Appl Mech Rev 2003. 56 (1):111–147. Cerca con Google

[21] Dharani LR, Tang H. Micromechanics characterization of sublaminate damage. Int J Fract 1990,46:123–140. Cerca con Google

[22] Kashtalyan M and Soutis C. Effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates. Compos Part A Appl Sci Manuf 2000;31:107–119. Cerca con Google

[23] Berthelot J, Le Corre J. A model for transverse cracking and delamination in cross-ply laminates 2000;60:1055–1066. Cerca con Google

[24] Nairn J, Hu S. The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int J Fract 1992;57:1–24. Cerca con Google

[25] Hashin Z. Analysis of cracked laminates: a variational approach. Mech Mater 1985;4 (2):121–136. Cerca con Google

[26] Rebière JL, Gamby D. A criterion for modelling initiation and propagation of matrix cracking and delamination in cross-ply laminates. Compos Sci Technol 2004;64: 2239–2250. Cerca con Google

[27] Zhang H, Minnetyan L. Variational analysis of transverse cracking and local delamination in [θm/90n]s laminates. Int J Solids Struct 2006;43:7061–7081. Cerca con Google

[28] Farrokhabadi A, Hosseini-Toudeshky H, Mohammadi B. A generalized micromechanical approach for the analysis of transverse crack and induced delamination in composite laminates. Compos Struct 2011;93: 443–455. Cerca con Google

[29] Johnson P, Chang FK. Characterization of Matrix Crack-Induced Laminate Failure - Part II: Analysis and Verifications. J Compos Mater 2001;35:2037–2074. Cerca con Google

[30] Zubillaga L, Turon A, Maimí P, Costa J, Mahdi S, Linde P. An energy based failure criterion for matrix crack induced delamination in laminated composite structures. Compos Struct 2014;112: 339–344. Cerca con Google

[31] Zou Z, Reid SR, Li S, Soden PD. Application of a delamination model to laminated composite structures. Compos Struct 2002;56:375–389. Cerca con Google

[32] Maimí P, Camanho PP, Mayugo JA, Turon A. Matrix cracking and delamination in laminated composites. Part I: Ply constitutive law, first ply failure and onset of delamination. Mech Mater 2011;43:169–185. Cerca con Google

[33] Camanho PP, C. G. Dávila, D. R. Ambur, Numerical Simulation of Delamination Growth in Composite Materials, NASA Technical publication, 2001. Cerca con Google

[34] Bui VQ, Iannucci L, Robinson P, Pinho ST. A coupled mixed-mode delamination model for laminated composites. J. Compos Materials 45(16):1717–1729 Cerca con Google

[35] Turon A, Camanho PP, Costa J, Dávila CG. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 2006;38:1072–1089. Cerca con Google

[36] Turon A, Costa J, Camanho PP, Dávila CG.Simulation of delamination in composites under high-cycle fatigue. Compos Part A Appl Sci Manuf 2007;38:2270–2282. Cerca con Google

[37] Jalalvand M, Hosseini-Toudeshky H, Mohammadi B. Numerical modeling of diffuse transverse cracks and induced delamination using cohesive elements. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013;227:1392–1405. Cerca con Google

[38] Liu PF, Islam MM. A nonlinear cohesive model for mixed-mode delamination of composite laminates. Compos Struct 2013;106:47–56. Cerca con Google

[39] Zhao L, Gong Y, Zhang J, Chen Y, Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 2014;116:509–522. Cerca con Google

[40] Chen BY, Tay TE, Pinho ST, Tan VBC. Modelling the tensile failure of composites with the floating node method. Comput. Methods Appl. Mech. Eng.2016;308:414–442 Cerca con Google

[41] Gross R, Mendelson A. Plane elastostatic analisys of V-notched plates. Int J Fract Mech 1972;8:267-276. Cerca con Google

[42] Nui LS, Chehimi C, Pluvinage G. Stress field near a large blunted tip V-notch and application of the concept of the critical notch stress intensity factor (NSIF) to the fracture toughness of very brittle materials. Engng Fract Mech 1994;49:325–35. Cerca con Google

[43] Dunn ML, Suwito W, Cunningham S. Fracture initiation at sharp notches: correlation using critical stress intensities. Int J Solids Struct 1997;34:3873-3883. Cerca con Google

[44] Dunn ML, Suwito W, Cunningham S and May CW. Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int J Fract 1997;84:367–381. Cerca con Google

[45] Gómez FJ, Elices M. Fracture of components with V-shaped notches. Eng Fract Mech 2003;70:1913-1927. Cerca con Google

[46] Gómez FJ and Elices M. A fracture criterion for sharp V-notched samples. Int J Fract 2003;123:163-175. Cerca con Google

[47] Boukharouba T, Tamine T, Nui L, Chehimi C and Pluvinage G. The use of notch stress intensity factor as a fatigue crack initiation parameter. Eng Fract Mech 1995;52:503-512. Cerca con Google

[48] Verreman Y, Nie B. Early development of fatigue cracking at manual fillet welds. Fatigue Fract Eng Mater Struct 1996;19:669–81. Cerca con Google

[49] Lazzarin P, Tovo R. A Notch Intensity Approach to the Stress Analysis of Welds. Fatigue Fract Eng Mater Struct 1998;21:1089-1104. Cerca con Google

[50] Lazzarin P, Livieri P. Notch Stress Intensity Factors and fatigue strength of aluminium and steel welded joints. Int J Fatigue 2001;23:225-232. Cerca con Google

[51] Gradin PA. A fracture criterion for edge-bonded bi-material bodies. J Compos Mater 1982;16:448–456. Cerca con Google

[52] Adams RD, Harris JA. The influence of local geometry on the strength of adhesive joints. Int J Adhes Adhes 1987;7:69–80. Cerca con Google

[53] Groth HL. Stress singularities and fracture at interface corners in bonded joints. Int J Adhes Adhes 1988;8:107–113. Cerca con Google

[54] Hattory T, Sakata S, Hatsuda T, Murakami G. A stress singularity parameter approach for evaluating adhesives strength. JSME Int J Series I, 1988;31:718–723 Cerca con Google

[55] Reedy Jr ED. Asymptotic interface-corner solutions for butt tensile joints. Int J Solids Struct 1993;30:767-777. Cerca con Google

[56] Reedy Jr ED, Guess TR. Comparison of butt tensile strength data with interface corner stress intensity factor prediction. Int J Solids Struct 1993;30:2929-2936. Cerca con Google

[57] Lefebvre DR, Dillard DA. A stress singularity approach for the prediction of fatigue crack initiation in adhesive bonds. Part I: theory. J Adhes 1999;70:119–138. Cerca con Google

[58] Quaresimin M, Ricotta M. Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Compos Sci Technol 2006;66:176-87 Cerca con Google

[59] Quaresimin M, Ricotta M. Stress intensity factors and strain energy release rates in single lap bonded joints in composite materials. Compos Sci Technol 2006;66:647–656. Cerca con Google

[60] Quaresimin M, Ricotta M. Life prediction of bonded joints in composite materials. Int J Fatigue 2006;28(10):1166-1176 Cerca con Google

[61] Garrett KW, Bailey JE. Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester. J of Mater Sci 1977;12:157-168. Cerca con Google

[62] Berthelot JM. Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading, Appl Mech Rev 2003;56(1):111-147. Cerca con Google

[63] Chen DH, Harada K. Stress Singularities for Crack Normal to and Terminating at Bimaterial Interface of Anisotropic Half-Planes. Int J Fract 1996;81(2):147-162. Cerca con Google

[64] Im S. Asymptotic stress field around a crack normal to the ply-interface of an anisotropic composite laminate. Int J Solids .Struct 1990;26(1):111-127. Cerca con Google

[65] Arin K. An orthotropic laminate composite containing a layer with a crack. Int J Eng Sci 1977;15:545-559. Cerca con Google

[66] Gupta GD. A layered composite with a broken laminate. Int J Solids Struct 1973;9:1141-1154. Cerca con Google

[67] Zappalorto M, Carraro PA. Stress fields at sharp angular corners in thick anisotropic composite plates. Compos Struct 2014;117:346-353 Cerca con Google

[68] Zappalorto M, Carraro PA, Quaresimin M. Analytical solution for the three-dimensional stress fields in anisotropic composite bimaterial corners. Compos Struct 2015;122:127-138. Cerca con Google

[69] Lekhnitskii SG. Theory of elasticity of an anisotropic body. Moskow: Mir Publishers; 1984. Cerca con Google

[70] Dunn ML, Suwito W and Cunningham S. Stress intensities at notch singularities. Eng Fract Mech 1997;57:417-430 Cerca con Google

[71] Zappalorto M., Lazzarin P., Berto F. (2009). Elastic Notch Stress Intensity Factors for sharply V-notched rounded bars under torsion. Engineering Fracture Mechanics, Vol. 76, pp. 439-453. Cerca con Google

[72] Cook J, Gordon JE. A mechanism for the control of crack propagation in all-brittle systems, Proc. R. Soc. A 1964;282:508-520. Cerca con Google

[73] Raab M, Shulz E, Sova M. The Cook-Gordon Mechanism in Polymeric Materials. Polymer Eng Sci 1993;33:1438-1443. Cerca con Google

[74] Blazquez A, Mantic V, Paris F, McCartney NL. BEM analysis of damage progress in 0/90 laminates. Eng Anal Bound Elem 2009;33:762–769. Cerca con Google

[75] París F, Blázquez A, McCartney L, Mantič V. Characterization and evolution of matrix and interface related damage in [0/90]s laminates under tension. Part I: numerical predictions. Compos Sci Technol 2010;70 (7):1168–1175. Cerca con Google

[76] París F, Blázquez A, McCartney L, Barroso A. Characterization and evolution of matrix and interface related damage in [0/90]s laminates under tension. Part II: experimental evidence. Compos. Sci. Technol 2010;70(7):1176–1183. Cerca con Google

[77] García IG, Mantic V, Blázquez A, París F. Transverse crack onset and growth in cross-ply [0/90]s laminates under tension. Application of a coupled stress and energy criterion. Int J Solids Struct 2014;51:3844–3856. Cerca con Google

References of chapter 3 Cerca con Google

[1] Reissner, Eric. "On the theory of bending of elastic plates." Studies in Applied Mathematics 23.1-4 (1944): 184-191. Cerca con Google

[2] Bogy, David B. "Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading." Journal of Applied Mechanics 35.3 (1968): 460-466. Cerca con Google

[3] Hein, V. L., and F. Erdogan. "Stress singularities in a two-material wedge." International Journal of Fracture Mechanics 7.3 (1971): 317-330. Cerca con Google

[4] Kuo, M. C., and D. B. Bogy. "Plane solutions for the displacement and traction-displacement problems for anisotropic elastic wedges." Journal of Applied Mechanics 41.1 (1974): 197-202 Cerca con Google

[5] Delale, F. "Stress singularities in bonded anisotropic materials." International journal of solids and structures 20.1 (1984): 31-40. Cerca con Google

[6] Lin, Y. Y., and J. C. Sung. "Stress singularities at the apex of a dissimilar anisotropic wedge." Journal of applied mechanics 65.2 (1998): 454-463. Cerca con Google

[7] Chen, Hua-Peng. "Stress singularities in anisotropic multi-material wedges and junctions." International Journal of Solids and Structures 35.11 (1998): 1057-1073. Cerca con Google

[8] Chue, Ching-Hwei, and Chuan-I. Liu. "Stress singularities in a bimaterial anisotropic wedge with arbitrary fiber orientation." Composite structures 58.1 (2002): 49-56. Cerca con Google

[9] Williams, M. L. "Stress singularities resulting from various boundary conditions in angular corners of plates in extension." Journal of applied mechanics 19.4 (1952): 526-528. Cerca con Google

[10] Creager, Matthew, and Paul C. Paris. "Elastic field equations for blunt cracks with reference to stress corrosion cracking." International Journal of Fracture 3.4 (1967): 247-252. Cerca con Google

[11] Glinka, Grzegorz. "Calculation of inelastic notch-tip strain-stress histories under cyclic loading." Engineering Fracture Mechanics 22.5 (1985): 839-854. Cerca con Google

[12] Lazzarin, P., and R. Tovo. "A notch intensity factor approach to the stress analysis of welds." Fatigue & fracture of engineering materials & structures 21.9 (1998): 1089-1103 Cerca con Google

[13] Zak, A. R., and Max L. Williams. "Crack point stress singularities at a bi-material interface." (1962). Cerca con Google

[14] Bogy, David. "On the plane elastostatic problem of a loaded crack terminating at a material interface." ASME, 1971. Cerca con Google

[15] Cook, T. S., and F. Erdogan. "Stresses in bonded materials with a crack perpendicular to the interface." International Journal of Engineering Science 10.8 (1972): 677-697. Cerca con Google

[16] Gupta, G. D. "A layered composite with a broken laminate." International Journal of Solids and Structures 9.10 (1973): 1141-1154. Cerca con Google

[17] Dai-Heng, Chen. "A crack normal to and terminating at a bimaterial interface." Engineering Fracture Mechanics 49.4 (1994): 517-532. Cerca con Google

[18] Ting, T. C. T., and P. H. Hoang. "Singularities at the tip of a crack normal to the interface of an anisotropic layered composite." International Journal of Solids and Structures 20.5 (1984): 439-454. Cerca con Google

[19] Delale, F., and F. Erdogan. "Bonded orthotropic strips with cracks." International Journal of Fracture 15.4 (1979): 343-364. Cerca con Google

[20] Delale, F. "Fracture of composite orthotropic plates for materials type 2." Technical Report NASA (1976). Cerca con Google

[21] Gupta, V., A. S. Argon, and Z. Suo. "Crack deflection at an interface between two orthotropic media." J. Appl. Mech 59.2S (1992): S79-S87. Cerca con Google

[22] Chen, Dai-Heng, and Kazunori Harada. "Stress singularities for crack normal to and terminating at bimaterial interface on orthotropic half-plates." International Journal of Fracture 81.2 (1996): 147-162. Cerca con Google

References of chapter 4 Cerca con Google

[1] Berthelot J-M. Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading. Appl Mech Rev 2003;56:111–47. Cerca con Google

[2] Lenoe EM, Oplinger DW, Burke JJ. Fibrous Composites in Structural Design. Cerca con Google

[3] Crossman FW, Warren WJ, Wang a. SD, Law GE. Initiation and Growth of Transverse Cracks and Edge Delamination in Composite Laminates Part 2. Experimental Correlation. J Compos Mater 1980;14:88–108. Cerca con Google

[4] Wang SD. Initiation and growth of transverse cracks and edge delamination in composite laminates. Part 1. An Energy Method. J Compos Mater 1980;14:71–87. Cerca con Google

[5] O’Brien TK. Characterization of delamination onset and growth in a composite laminate. Damage Compos Mater ASTM STP 755 1982:140–67. Cerca con Google

[6] O’Brien TK. Analysis of local delamination and their influence on composite laminate behaviour. In: Johnson W, editor. Delamination Debonding Mater., vol. ASTM STP 8, ASTM STP 876; 1985, p. 282–97. Cerca con Google

[7] Takeda N, Ogihara S. Initiation and growth of delamination from the tips of transverse cracks in cfrp cross-ply laminates 1994;52:309–18. Cerca con Google

[8] Takeda N, Ogihara S. in situ observation and probabilistic prediction of microscopic failure processes in cfrp cross-ply laminates 1994;3538:183–95. Cerca con Google

[9] Ogihara S, Takeda N. Interaction between transverse cracks and delamination during damage progress in CFRP cross-ply laminates. Compos Sci Technol 1995;54:395–404. Cerca con Google

[10] Quaresimin M, Carraro PA. Composites : Part B On the investigation of the biaxial fatigue behaviour of unidirectional composites. Compos Part B 2013;54:200–8. Cerca con Google

[11] Carraro PA, Quaresimin M. A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading. Compos Sci Technol 2014;99:154–63. Cerca con Google

[12] Quaresimin M, Carraro PA, Maragoni L. Early stage damage in off-axis plies under fatigue loading. Compos Sci Technol 2016;128:147–54. doi:10.1016/j.compscitech.2016.03.015. Cerca con Google

[13] Carraro PA, Quaresimin M. International Journal of Solids and Structures A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. Int J Solids Struct 2015;58:34–51. Cerca con Google

[14] Dharani LR, Tang H. Micromechanics characterization of sublaminate damage. Int J Fract 1990;46:123–40. Cerca con Google

[15] Kashtalyan M, Soutis C. Effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates. Compos Part A Appl Sci Manuf 2000;31:107–19. Cerca con Google

[16] Berthelot J, Corre J Le. A model for transverse cracking and delamination in cross-ply laminates 2000;60:1055–66. Cerca con Google

[17] Hashin Z. Analysis of cracked laminates: a variational approach. Mech Mater 1985;4:121–36. Cerca con Google

[18] Nairn J a., Hu S. The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int J Fract 1992;57:1–24. Cerca con Google

[19] Rebière JL, Gamby D. A criterion for modelling initiation and propagation of matrix cracking and delamination in cross-ply laminates. Compos Sci Technol 2004;64:2239–50. Cerca con Google

[20] Zhang H, Minnetyan L. Variational analysis of transverse cracking and local delamination in [??m/90n]s laminates. Int J Solids Struct 2006;43:7061–81. doi:10.1016/j.ijsolstr.2006.03.004. Cerca con Google

[21] Akshantala N V, Talreja R. A mechanistic model for fatigue damage evolution in composite laminates. Mech Mater 1998;29:123–40. Cerca con Google

[22] Akshantala N V, Talreja R. A micromechanics based model for predicting fatigue life of composite laminates. Mater Sci Eng A (Structural Mater Prop Microstruct Process 2000;285:303–13. Cerca con Google

[23] Armanios, Erian A., P. Sriram, and Ashraf M. Badir. "Fracture analysis of transverse crack-tip and free-edge delamination in laminated composites." Composite Materials: Fatigue and Fracture (Third Volume). ASTM International, 1991 Cerca con Google

[24] O’Brien TK. Towards a Delamination Fatigue Methodology for Composite Materials. 16th Int Conf Compos Mater 2007:1–5. Cerca con Google

[25] Andersons J, Hojo M, Ochiai S. Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates. Int J Fatigue 2004;26:597–604. doi:10.1016/j.ijfatigue.2003.10.016. Cerca con Google

[26] Allegri G, Wisnom MR. A non-linear damage evolution model for mode II fatigue delamination onset and growth. Int J Fatigue 2012;43:226–34. Cerca con Google

[27] Wang ASD, Kishore NN, Li CA. Crack development in graphite—epoxy cross-ply laminates under uniaxial tension. Compos Sci Technol 1985;24:1–31. Cerca con Google

[28] Fish J, Lee S. Three-Dimensional Analysis of Combined Free-Edge and Transverse-Crack-Tip Delamination. Compos. Mater. Test. Des. (Ninth Vol., 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International; n.d., p. 271–271 – 16. Cerca con Google

[29] Salpekar SA, O’Brien TK. Combined effect of matrix crackins and stress-free edge on delamination. NASA Tech Memo 1990;1. Cerca con Google

[30] Quaresimin M, Ricotta M. Stress intensity factors and strain energy release rates in single lap bonded joints in composite materials. Compos Sci Technol 2006;66:647–56. Cerca con Google

[31] Quaresimin M, Ricotta M. Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Compos Sci Technol 2006;66:176–87. Cerca con Google

[32] Quaresimin M, Ricotta M. Life prediction of bonded joints in composite materials. Int J Fatigue 2006;28:1166–76. Cerca con Google

[33] Carraro PA, Novello E, Quaresimin M, Zappalorto M. Delamination onset in symmetric cross-ply laminates under static loads : theory , numerics and experiments n.d.:1–38. Cerca con Google

[34] Gamstedt EK, Sjogren B a. An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates. Int J Fatigue 2002;24:437–46 Cerca con Google

References of chapter 5 Cerca con Google

[1] Degrieck, Joris, and Wim Van Paepegem. "Fatigue damage modeling of fibre-reinforced composite materials." Applied mechanics reviews 54.4 (2001): 279-300 Cerca con Google

[2] Pascoe, J. A., R. C. Alderliesten, and R. Benedictus. "Methods for the prediction of fatigue delamination growth in composites and adhesive bonds–a critical review." Engineering Fracture Mechanics 112 (2013): 72-96. Cerca con Google

[3] Ratwani M, Kan HP. Compression fatigue analysis of fiber composites. J Aircraft 1981;18(6):458–62. Cerca con Google

[4] Poursartip A, Chinatambi N. Fatigue damage development in notched (02/±45)s laminates. In: Lagace PA, editor. Composite materials: fatigue and fracture. ASTM STP 1012, vol. 2. Philadelphia: American Society for Testing and Materials; 1989. p. 45–65 Cerca con Google

[5] Paris P, Gomez M, Anderson W. A rational analytic theory of fatigue. Trend Engng 1961;13:9–14. Cerca con Google

[6] Paris P. The fracture mechanics approach to fatigue. In: 10th Sagamore army materials research conference. Syracuse University Press; 1964. p.107–32. Cerca con Google

[7] Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Engng 1963;85(4):528–33. Cerca con Google

[8] Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids 1960;8(2):100–4. Cerca con Google

[9] Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. In: Dryden H, Kármán Tv, Kuerti G, Dungen FHvd, Howarth L, editors. Cerca con Google

[10] Camanho P, Dávila C, Ambur D. Numerical simulation of delamination growth in composite materials. Tech Rep NASA/TP-2001-211041, NASA; 2001 Advances in applied mechanics. vol. 7. Elsevier; 1962. p. 55–129 Cerca con Google

[11] Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Engng Fract Mech 2002;69(7):813–33. Cerca con Google

[12] Huynh DBP, Belytschko T. The extended finite element method for fracture in composite materials. Int J Numer Methods Eng 2009;77(2):214–39. Cerca con Google

[13] Iarve E, Gurvich M, Mollenhauer D. Discrete modeling of arbitrary matrix cracking and delaminations in laminated composites. In: International conference on composite materials: ICCM-17. Cerca con Google

[14] Campilho RDSG, Banea MD, Chaves FJP, Silva LFM d. eXtended finite element method for fracture characterization of adhesive joints in pure mode I.Comput Mater Sci 2011;50(4):1543–9. Cerca con Google

[15] Salpekar, Satish Annaji, and T. Kevin O'Brien. "Combined effect of matrix cracking and free edge on delamination." Composite Materials: Fatigue and Fracture (Third Volume). ASTM International, 1991. Cerca con Google

[16] Varna, Janis, and Lars Berglund. "Multiple transverse cracking and stiffness reduction in cross-ply laminates." Journal of Composites, Technology and Research 13.2 (1991): 97-106. Cerca con Google

[17] Akshantala, Nagendra V., and Ramesh Talreja. "A micromechanics based model for predicting fatigue life of composite laminates." Materials Science and Engineering: A 285.1 (2000): 303-313. Cerca con Google

[18] Krueger, Ronald. "Virtual crack closure technique: history, approach, and applications." Applied Mechanics Reviews 57.2 (2004): 109-143. Cerca con Google

References of chapter 6 Cerca con Google

[1] Berthelot, Jean-Marie. "Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading." Applied Mechanics Reviews 56.1 (2003): 111-147. Cerca con Google

[2] Pagano, N. J., and G. A. Schoeppner. "Delamination of polymer matrix composites: problems and assessment." Comprehensive composite materials 2 (2000): 433-528. Cerca con Google

[3] Reifsnider, K. L., and A. Talug. "Analysis of fatigue damage in composite laminates." International Journal of Fatigue 2.1 (1980): 3-11. Cerca con Google

[4] Kress, Gerald R., and W. W. Stinchcomb. "Fatigue response of notched graphite/epoxy laminates." Recent Advances in Composites in the United States and Japan. ASTM International, 1985 Cerca con Google

[5] Murri, Gretchen B., Satish A. Salpekar, and T. Kevin O'Brien. "Fatigue delamination onset prediction in unidirectional tapered laminates." Composite Materials: Fatigue and Fracture (Third Volume). ASTM International, 1991. Cerca con Google

[6] Crossman, F. W. and Wang, A. S. D„ "The Dependence of Transverse Cracking and Delamination on Ply Thickness in Graphite/Epoxy Laminates," Damage in Composite Materials, ASTMSTP 775, K. L. Reifsnider, Ed., American Society for Testing and Materials, 1982, pp. 118-139. Cerca con Google

[7] O’Brien, T.K. and Hooper, S.J. “Local delamination in laminates with angle ply matrix cracks, part I: tension tests and stress analysis”, Composite Materials: fatigue and fracture, Fourth Volume, ASTM STP 1156, W.W. Stinchcomb and N.E. Ashbaugh, Eds., American Society for Testing and materials, Philadelphia, 1993, pp.491-506. Cerca con Google

[8] O’Brien, T.K., “Local delamination in laminates with angle ply matrix cracks, part II: Delamination Fracture analysis and fatigue characterization.”, Composite Materials: fatigue and fracture, Fourth Volume, ASTM STP 1156, W.W. Stinchcomb and N.E. Ashbaugh, Eds., American Society for Testing and materials, Philadelphia, 1993, pp.507-538. Cerca con Google

[9] Salpekar, Satish Annaji, and T. Kevin O'Brien. "Combined effect of matrix cracking and free edge on delamination." Composite Materials: Fatigue and Fracture (Third Volume). ASTM International, 1991. Cerca con Google

[10] Salpekar, Satish A., T. Kevin O'Brien, and K. N. Shivakumar. "Analysis of local delaminations caused by angle ply matrix cracks." Journal of Composite Materials 30.4 (1996): 418-440. Cerca con Google

[11] Johnson, Patrick, and Fu-Kuo Chang. "Characterization of matrix crack-induced laminate failure—Part I: Experiments." Journal of composite materials 35.22 (2001): 2009-2035. Cerca con Google

[12] Johnson, Patrick, and Fu-Kuo Chang. "Characterization of Matrix Crack-Induced Laminate Failure—Part II: Analysis and Verifications." Journal of composite materials 35.22 (2001): 2037-2074. Cerca con Google

[13] Hallett, Stephen R., et al. "Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens." Composites Science and Technology 68.1 (2008): 80-89. Cerca con Google

[14] Guillamet, G., et al. "Damage occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial loading." Composites Science and Technology 98 (2014): 44-50. Cerca con Google

[15] Zubillaga, L., et al. "An experimental study on matrix crack induced delamination in composite laminates." Composite Structures 127 (2015): 10-17. Cerca con Google

[16] Sun, Ch T., and C. J. Jih. "On strain energy release rates for interfacial cracks in bi-material media." Engineering Fracture Mechanics 28.1 (1987): 13-20. Cerca con Google

[17] Krueger, Ronald. "Virtual crack closure technique: history, approach, and applications." Applied Mechanics Reviews 57.2 (2004): 109-143. Cerca con Google

References of chapter 7 Cerca con Google

[1] Bjeletich, J. G., F. W. Crossman, and W. J. Warren. "The influence of stacking sequence on failure modes in quasi-isotropic graphite-epoxy laminates." Failure Modes in Composites–IV (1979). Cerca con Google

[2] Rodini Jr, B. T., and J. R. Eisenmann. "An analytical and experimental investigation of edge delamination in composite laminates." Fibrous Composites in Structural Design. Springer US, 1980. 441-457. Cerca con Google

[3] Crossman, F. W., and ASDd Wang. "The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates." Damage in Composite Materials: Basic Mechanisms, Accumulation, Tolerance, and Characterization. ASTM International, 1982. Cerca con Google

[4] Hayashi, Tsuyoshi. "Analytical study of interlaminar shear stresses in laminated composite plate." Space Technology and Science. 1968. Cerca con Google

[5] Puppo, A. H., and H. A. Evensen. "Interlaminar shear in laminated composites under generalized plane stress." Journal of composite materials 4.2 (1970): 204-220. Cerca con Google

[6] Pipes, R. Byron, and N. J. Pagano. "Interlaminar stresses in composite laminates under uniform axial extension." Journal of Composite Materials 4.4 (1970): 538-548. Cerca con Google

[7] Tang, S., and A. Levy. "A boundary layer theory-part II: extension of laminated finite strip." Journal of Composite Materials 9.1 (1975): 42-52. Cerca con Google

[8] Wang, A.S.D and Crossman, F.W., “Some New Results on Edge Effects in Symmetric Composite Laminates,” Journal of Composite Materials, Vol 11, 1977, pg. 92 Cerca con Google

[9] Rybicki, E.F., “Approximate Three-Dimensional Solutions for Symmetric Laminates Under In-plane Loading,” Journal of Composite Materials, Vol 5, 1971, pg. 354. Cerca con Google

[10] Stanton, E.L., Crain, L.M.and Neu, T.F., “A Parametric Cubic Modeling for General Solids of Composite Materials,” Int. Journal. Num. Meth. Eng, Vol 11, 1977, pg. 653. Cerca con Google

[11] Hwang, W.C. and Sun, C.T., “Analysis of Interlaminar Stresses Near Curved Free Edges of Laminated Composites using Iterative Finite Element Method,” Computers and Structures, Vol 28, 1988, pg. 461. Cerca con Google

[12] Murphy, P.L.N. and Chamis, C.C., “Free Edge Delamination:Laminate width and loading conditions effects,” Journal of Composites Tech & Research, Vol 11, 1989, pg. 15. Cerca con Google

[13] Yang, H. and He, C.C., “Three Dimensional Finite Element Analysis of the Free Edge Stresses of Composite Laminates,” Journal of Composite Materials, Vol 28, 1994, pg. 1394. Cerca con Google

[14] Salpekar, S A and O'Brien, T K, "Combined Effect of Matrix Cracking and Free Edge on Delamination," Compostte Matertals Fattgue and Fracture (Thtrd Volume), ASTM STP 1110, T K O'Bnen, Ed, Amencan Society for Testing and Matenals, Phfladelphm, 1991, pp 287-311 Cerca con Google

[15] Fish, J. C., and T. K. O'Brien. "Three-Dimensional Finite Element Analysis of Delamination from Matrix Cracks in Glass-Epoxy Laminates." Composite Materials: Testing and Design. 10th Volume, ASTM STP 1120 (1992). Cerca con Google

[16] O’Brien, T.K., 1982. Characterization of delamination onset and growth in a composite laminate. In: Reifsnider, K.L. (Ed.), Damage in Composite Materials, ASTM STP 775. ASTM, Philadelphia, PA. Cerca con Google

[17] Kashtalyan, Maria, and Costas Soutis. "Analysis of local delaminations in composite laminates with angle-ply matrix cracks." International Journal of Solids and Structures 39.6 (2002): 1515-1537. Cerca con Google

[18] Sun, Ch T., and C. J. Jih. "On strain energy release rates for interfacial cracks in bi-material media." Engineering Fracture Mechanics 28.1 (1987): 13-20. Cerca con Google

[19] Krueger, Ronald. "Virtual crack closure technique: history, approach, and applications." Applied Mechanics Reviews 57.2 (2004): 109-143. Cerca con Google

References of chapter 8 Cerca con Google

[1] Rosen, B. Walter. "Tensile failure of fibrous composites." AIAA j 2.11 (1964): 1985-1991. Cerca con Google

[2] Zweben, Carl. "Tensile failure of fiber composites." AIAA J 6.12 (1968): 2325-2331. Cerca con Google

[3] Zweben, C., and B. Walter Rosen. "A statistical theory of material strength with application to composite materials." Journal of the Mechanics and Physics of Solids 18.3 (1970): 189-206. Cerca con Google

[4] Wisnom, Michael R., and David Green. "Tensile failure due to interaction between fibre breaks." Composites 26.7 (1995): 499-508. Cerca con Google

[5] Pimenta, Soraia, and Silvestre T. Pinho. "Hierarchical scaling law for the strength of composite fibre bundles." Journal of the Mechanics and Physics of Solids 61.6 (2013): 1337-1356. Cerca con Google

[6] Subramanian, S., K. L. Reifsnider, and W. W. Stinchcomb. "A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase." International Journal of Fatigue 17.5 (1995): 343-351 Cerca con Google

[7] Reifsnider, K,L. and Stinchcomb, W.W. in 'Composite Materials: Fatigue and Fracture' (Ed. H,T. Hahn), ASTM STP 907, American Society for Testing and Materials, Philadelphia, 1986, pp. 298-303. Cerca con Google

[8] Shokrieh, Mahmood M., and Larry B. Lessard. "Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—I. Modelling." International Journal of Fatigue 19.3 (1997): 201-207. Cerca con Google

[9] Shokrieh, Mahmood M., and Larry B. Lessard. "Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation." International journal of fatigue 19.3 (1997): 209-217. Cerca con Google

[10] Lee, L. J., K. E. Fu, and J. N. Yang. "Prediction of fatigue damage and life for composite laminates under service loading spectra." Composites science and technology 56.6 (1996): 635-648. Cerca con Google

[11] Lee, C. H., and M. H. R. Jen. "Fatigue response and modelling of variable stress amplitude and frequency in AS-4/PEEK composite laminates, Part 1: Experiments." Journal of Composite Materials 34.11 (2000): 906-929. Cerca con Google

[12] Gamstedt, E. Kristofer, and B. A. Sjögren. "An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates." International Journal of Fatigue 24.2 (2002): 437-446. Cerca con Google

[13] Paepegem, W. Van, and Joris Degrieck. "Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites." Mechanics of Advanced Materials and Structures 9.1 (2002): 19-35. Cerca con Google

[14] Li, Chingshen, F. Ellyin, and A. Wharmby. "A damage meso-mechanical approach to fatigue failure prediction of cross-ply laminate composites." International journal of fatigue 24.2 (2002): 429-435. Cerca con Google

[15] Varvani-Farahani, A., H. Haftchenari, and M. Panbechi. "A fatigue damage parameter for life assessment of off-axis unidirectional GRP composites." Journal of composite materials 40.18 (2006): 1659-1670. Cerca con Google

[16] Kassapoglou, Christos. "Fatigue life prediction of composite structures under constant amplitude loading." Journal of Composite Materials 41.22 (2007): 2737-2754. Cerca con Google

[17] Passipoularidis, V. A., and T. P. Philippidis. "A study of factors affecting life prediction of composites under spectrum loading." International Journal of Fatigue 31.3 (2009): 408-417. Cerca con Google

[18] Chen, Hsing‐Sung, and Shun‐Fa Hwang. "A fatigue damage model for composite materials." Polymer Composites 30.3 (2009): 301-308. Cerca con Google

[19] Wagner, H. Daniel. "Statistical concepts in the study of fracture properties of fibres and composites." Application of Fracture Mechanics to Composite Materials 6 (1989): 39-67. Cerca con Google

[20] Lee, J-W., and I. M. Daniel. "Progressive transverse cracking of crossply composite laminates." Journal of Composite Materials 24.11 (1990): 1225-1243. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record