Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Rossi, Melissa (2017) Realizzazione di un protocollo di coltura in vitro di tessuto endometriale equino e studio dell'espressione di geni correlati alla produzione di citochine infiammatorie dopo co-coltura dei campioni con due diverse dosi di cellule staminali mesenchimali. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Accepted Version
Thesis not accessible until 31 October 2020 for intellectual property related reasons.
Visibile to: nobody

3456Kb

Abstract (english)

Despite the presence of an intense research in the field of the equine reproduction over recent decades, there has been no significant increase in the population's fertility. To date, few therapeutic protocols are available for the treatment of equine reproductive disorders because of the peculiarities of species but also for the ethical, clinical and economical reasons adressed to the in vivo tests. An easily obtainable sample for performing reliable in vitro tests is the endometrial biopsy; however, the lack of studies regarding the maintenance of the vitality for this sample is still an obstacle. For this purpose, the first aim of the present work has been the creation of a protocol for the culture of equine endometrial biopsies; moreover, we assessed the survival of two different kind of biopsy (incisional and excisional) by the estimation of mitochondrial activity, DNA quantity and the histology of the samples at 3 and 7 days of in vitro culture at 37°C and 5% CO2. Results show that incisional biopsies maintain an adequate level of vitality up to 3 days, representing a valid sample to be used for in vitro testing. In addition, the method allows the evaluation of innovative therapies such as mesenchymal stem cells (MSCs). MSCs have been shown to support tissue regeneration and to modulate inflammatory processes. For these reasons, MSCs could be used in equine endometritis and/or endometrosis, inflammatory-based pathologies that represent one of the major reproductive diseases for horse because of reducing the fertility of the animal and increasing costs for breeders. However, further insights are needed to improve the knowledge about their mechanism of action and their practical use. On the light of that, the second aim of this project has been the evaluation of the expression of genes related to the production of inflammatory cytokines after co-culture for 3 days of incisional endometrial biopsies with two different doses of adipose derived stem cells (ADSCs) (1x10^5 and 3 x 10^5 cells). The preliminary results allow us to hypothesize that the presence of ADSCs modifies the expression of genes involved in the production of cytokines with an immunomodulatory effect and possible activation of anti-bacterial and anti-fibrotic mechanisms that could be the starting point for the restoration of damaged endometrium. In addition, for some cytokines this immunomodulatory effect seems to be dose-dependent and deserves further studies.

Abstract (italian)

Negli ultimi decenni, nonostante si sia registrata un'intensa attività di ricerca nell'ambito della riproduzione equina, non si è verificato un significativo aumento della fertilità della popolazione. A oggi, le terapie disponibili per il trattamento di patologie della sfera riproduttiva sono limitate a pochi protocolli sia per le peculiarità di specie ma soprattutto per le difficoltà etiche, cliniche ed economiche che si devono affrontare per la sperimentazione di nuovi trattamenti in vivo. Un campione facilmente reperibile per eseguire tests da utilizzare in ambito riproduttivo è la biopsia endometriale; tuttavia, la mancanza di studi riguardanti il mantenimento della vitalità di questo tipo di campione quando coltivato in vitro rappresenta ancora un ostacolo. A questo scopo, il presente lavoro si è posto come primo obiettivo l’ideazione di un protocollo di coltura di tessuto endometriale equino e la valutazione della sopravvivenza di due diversi tipi di biopsia endometriale (incisionale ed escissionale) mediante stima dell'attività mitocondriale, della quantità di DNA e dell'aspetto istologico del campione a 3 e 7 giorni di coltura in vitro a 37°C e 5% CO2. I risultati dimostrano che con il protocollo testato le biopsie incisionali mantengono un livello adeguato di vitalità fino ai 3 giorni rappresentando un campione valido da utilizzare per prove in vitro. Inoltre, la metodica consente la valutazione di innovativi fronti terapeutici come quello delle cellule staminali mesenchimali (MSCs). Tali cellule si sono dimostrate capaci di favorire la rigenerazione tissutale e modulare i processi infiammatori. In quest’ottica le MSCs potrebbero trovare impiego nella terapia di cavalle affette da endometrite e/o endometriosi, patologie su base infiammatoria che rappresentano uno dei principali problemi in ambito riproduttivo andando a ridurre la fertilità dell'animale e ad aumentare i costi per gli allevatori. Tuttavia, le conoscenze riguardanti il loro meccanismo d'azione e il loro impiego pratico richiede ulteriori approfondimenti. A tal scopo, la seconda parte di questo progetto ha valutato l'espressione di geni correlati alla produzione di citochine infiammatorie dopo co-coltura per 3 giorni di biopsie incisionali endometriali con due diverse dosi di cellule staminali equine di origine adiposa (ADSCs) (1x10^5 e 3 x 10^5 cellule). I risultati, seppur preliminari, permettono di ipotizzare che la presenza delle ADSCs modifichi l'espressione di geni coinvolti nella produzione di citochine con effetto finale immunomodulante e con possibile attivazione di meccanismi anti-batterici e anti-fibrotici che potrebbero essere alla base del ripristino della funzionalità endometriale. Inoltre, per alcune citochine questo effetto immunomodulatorio sembra essere dose-dipendente e merita ulteriori approfondimenti.

EPrint type:Ph.D. thesis
Tutor:Falomo, Maria Elena
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE VETERINARIE
Data di deposito della tesi:09 January 2018
Anno di Pubblicazione:23 October 2017
Key Words:Cellule staminali, Citochine, Coltura in vitro, Endometrio, Equino
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > VET/10 Clinica ostetrica e ginecologia veterinaria
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina Animale, Produzioni e Salute
Codice ID:10586
Depositato il:15 Nov 2018 12:52
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abd-Elnaeim, M.M.M., Leiser, R., Wilsher, S., Allen, W.R., 2006. Structural and Haemovascular Aspects of Placental Growth Throughout Gestation in Young and Aged Mares. Placenta 27, 1103–1113. doi:10.1016/j.placenta.2005.11.005 Cerca con Google

Aresu, L., Benali, S., Giannuzzi, D., Mantovani, R., Castagnaro, M., Falomo, M.E., 2012. The role of inflammation and matrix metalloproteinases in equine endometriosis. J. Vet. Sci. 13, 171–177. Cerca con Google

Arshad, M.I., Guihard, P., Danger, Y., Noel, G., Le Seyec, J., Boutet, M.-A., Richards, C.D., L’Helgoualc’h, A., Genet, V., Lucas-Clerc, C., Gascan, H., Blanchard, F., Piquet-Pellorce, C., Samson, M., 2015. Oncostatin M induces IL-33 expression in liver endothelial cells in mice and expands ST2+CD4+ lymphocytes. Am. J. Physiol. - Gastrointest. Liver Physiol. 309. doi:10.1152/ajpgi.00398.2014 Cerca con Google

Artlett, C.M., Sassi-Gaha, S., Rieger, J.L., Boesteanu, A.C., Feghali-Bostwick, C.A., Katsikis, P.D., 2011. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum. 63, 3563–3574. doi:10.1002/art.30568 Cerca con Google

Aupperle, H., Schoon, D., Schoon, H.-A., 2004. Physiological and pathological expression of intermediate filaments in the equine endometrium. Res. Vet. Sci. 76, 249–255. doi:http://dx.doi.org/10.1016/j.rvsc.2003.11.003 Vai! Cerca con Google

Barberini, D.J., Freitas, N.P.P., Magnoni, M.S., Maia, L., Listoni, A.J., Heckler, M.C., Sudano, M.J., Golim, M.A., da Cruz Landim-Alvarenga, F., Amorim, R.M., 2014. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res. Ther. 5, 25. doi:10.1186/scrt414 Cerca con Google

Booty, M.G., Barreira-Silva, P., Carpenter, S.M., Nunes-Alves, C., Jacques, M.K., Stowell, B.L., Jayaraman, P., Beamer, G., Behar, S.M., 2016. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection. Sci. Rep. 6, 36720. Cerca con Google

Braun, J., Hack, A., Weis-Klemm, M., Conrad, S., Treml, S., Kohler, K., Walliser, U., Skutella, T., Aicher, W.K., 2010. Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. Am. J. Vet. Res. 71, 1228–1236. doi:10.2460/ajvr.71.10.1228 Cerca con Google

Brizzi, M.F., Formato, L., Dentelli, P., Rosso, A., Pavan, M., Garbarino, G., Pegoraro, M., Camussi, G., Pegoraro, L., 2001. Interleukin-3 Stimulates Migration and Proliferation of Vascular Smooth Muscle Cells. Circulation 103, 549 LP-554. Cerca con Google

Broeckx, S.Y., Borena, B.M., Van Hecke, L., Chiers, K., Maes, S., Guest, D.J., Meyer, E., Duchateau, L., Martens, A., Spaas, J.H., 2015. Comparison of autologous versus allogeneic epithelial-like stem cell treatment in an in vivo equine skin wound model. Cytotherapy 17, 1434–46. doi:10.1016/j.jcyt.2015.06.004 Cerca con Google

Buczkowska, J., Kozdrowski, R., Nowak, M., Raś, A., Mrowiec, J., 2014. Endometrosis – significance for horse reproduction, pathogenesis, diagnosis, and proposed therapeutic methods. Pol. J. Vet. Sci. 17, 547–554. doi:10.2478/pjvs-2014-0083 Cerca con Google

Burk, J., Badylak, S.F., Kelly, J., Brehm, W., 2013. Equine cellular therapy—from stall to bench to bedside? Cytom. Part A 83A, 103–113. doi:10.1002/cyto.a.22216 Cerca con Google

Cadario, M.E., Losinno, L., Giguere, S., Aguilar, J., Jack, T.J., Macpherson, M., Fitzpatrick, C., Uhl, E.W., 2002. Uterine expression of fibrogenic cytokines in the mare. Theriogenology 58, 449–452. doi:10.1016/S0093-691X(02)00787-2 Cerca con Google

Campbell, A.L., Smith, N.C., Reilly, J.H., Kerr, S.C., Leach, W.J., Fazzi, U.G., Rooney, B.P., Murrell, G.A.C., Millar, N.L., 2014. IL-21 receptor expression in human tendinopathy. Mediators Inflamm. 2014. doi:10.1155/2014/481206 Cerca con Google

Card, C., 2005. Post-breeding inflammation and endometrial cytology in mares. Theriogenology 64, 580–8. doi:10.1016/j.theriogenology.2005.05.041 Cerca con Google

Carrade, D.D., Lame, M.W., Kent, M.S., Clark, K.C., Walker, N.J., Borjesson, D.L., 2012. Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells(). Cell Med. 4, 1–11. doi:10.3727/215517912X647217 Cerca con Google

Carter-Arnold, J.L., Neilsen, N.L., Amelse, L.L., Odoi, A., Dhar, M.S., 2014. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses. Equine Vet. J. 46, 589–595. doi:10.1111/evj.12142 Cerca con Google

Carvalho, A.M., Yamada, A.L.M., Golim, M.A., Álvarez, L.E.C., Jorge, L.L., Conceição, M.L., Deffune, E., Hussni, C.A., Alves, A.L.G., 2013. Characterization of mesenchymal stem cells derived from equine adipose tissue . Arq. Bras. Med. Veterinária e Zootec. . Cerca con Google

Christoffersen, M., Baagoe, C.D., Jacobsen, S., Bojesen, A.M., Petersen, M.R., Lehn-Jensen, H., 2010. Evaluation of the systemic acute phase response and endometrial gene expression of serum amyloid A and pro- and anti-inflammatory cytokines in mares with experimentally induced endometritis. Vet. Immunol. Immunopathol. 138, 95–105. doi:10.1016/j.vetimm.2010.07.011 Cerca con Google

Christoffersen, M., Woodward, E., Bojesen, A., Petersen, M., Squires, E., Lehn-Jensen, H., Troedsson, M., 2012. Effect of immunomodulatory therapy on the endometrial inflammatory response to induced infectious endometritis in susceptible mares. Theriogenology 78, 991–1004. doi:10.1016/j.theriogenology.2012.04.016 Cerca con Google

Christoffersen, M., Woodward, E., Bojesen, A.M., Jacobsen, S., Petersen, M.R., Troedsson, M.H., Lehn-Jensen, H., 2012. Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis. BMC Vet. Res. 8, 41. doi:10.1186/1746-6148-8-41 Cerca con Google

Corradetti, B., Correani, A., Romaldini, A., Marini, M.G., Bizzaro, D., Perrini, C., Cremonesi, F., Lange-Consiglio, A., 2014. Amniotic Membrane-Derived Mesenchymal Cells and Their Conditioned Media: Potential Candidates for Uterine Regenerative Therapy in the Horse. PLoS One 9, e111324. doi:10.1371/journal.pone.0111324 Cerca con Google

Davami, M.H., Baharlou, R., Ahmadi Vasmehjani, A., Ghanizadeh, A., Keshtkar, M., Dezhkam, I., Atashzar, M.R., 2016. Elevated IL-17 and TGF-β Serum Levels: A Positive Correlation between T-helper 17 Cell-Related Pro-Inflammatory Responses with Major Depressive Disorder. Basic Clin. Neurosci. 7, 137–142. doi:10.15412/J.BCN.03070207 Cerca con Google

De Mattos Carvalho, A., Alves, A.L.G., de Oliveira, P.G.G., Cisneros Álvarez, L.E., Amorim, R.L., Hussni, C.A., Deffune, E., 2011. Use of Adipose Tissue-Derived Mesenchymal Stem Cells for Experimental Tendinitis Therapy in Equines. J. Equine Vet. Sci. 31, 26–34. doi:10.1016/j.jevs.2010.11.014 Cerca con Google

De Schauwer, C., Meyer, E., Van de Walle, G.R., Van Soom, A., 2011. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 75, 1431–43. doi:10.1016/j.theriogenology.2010.11.008 Cerca con Google

De Schauwer, C., Piepers, S., Van de Walle, G.R., Demeyere, K., Hoogewijs, M.K., Govaere, J.L.J., Braeckmans, K., Van Soom, A., Meyer, E., 2012. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytom. Part A 81A, 312–323. doi:10.1002/cyto.a.22026 Cerca con Google

Denizot, F., Lang, R., 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271–277. Cerca con Google

Dey, G., Radhakrishnan, A., Syed, N., Thomas, J.K., Nadig, A., Srikumar, K., Mathur, P.P., Pandey, A., Lin, S.-K., Raju, R., Prasad, T.S.K., 2013. Signaling network of Oncostatin M pathway. J. Cell Commun. Signal. 7. doi:10.1007/s12079-012-0186-y Cerca con Google

Diel de Amorim, M., Gartley, C.J., Foster, R.A., Hill, A., Scholtz, E.L., Hayes, A., Chenier, T.S., 2016. Comparison of Clinical Signs, Endometrial Culture, Endometrial Cytology, Uterine Low-Volume Lavage, and Uterine Biopsy and Combinations in the Diagnosis of Equine Endometritis. J. Equine Vet. Sci. 44, 54–61. doi:10.1016/j.jevs.2015.10.012 Cerca con Google

Ealy, A.D., Eroh, M.L., Sharp, D.C. 3rd, 2010. Prostaglandin H synthase Type 2 is differentially expressed in endometrium based on pregnancy status in pony mares and responds to oxytocin and conceptus secretions in explant culture. Anim. Reprod. Sci. 117, 99–105. doi:10.1016/j.anireprosci.2009.03.014 Cerca con Google

Eirin, A., Riester, S.M., Zhu, X.-Y., Tang, H., Evans, J.M., O’Brien, D., van Wijnen, A.J., Lerman, L.O., 2014. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 551, 55–64. doi:10.1016/j.gene.2014.08.041 Cerca con Google

Estep, J.M., Baranova, A., Hossain, N., Elariny, H., Ankrah, K., Afendy, A., Chandhoke, V., Younossi, Z.M., 2009. Expression of Cytokine Signaling Genes in Morbidly Obese Patients with Non-Alcoholic Steatohepatitis and Hepatic Fibrosis. Obes. Surg. 19, 617–624. doi:10.1007/s11695-009-9814-x Cerca con Google

Falomo, M.E., Ferroni, L., Tocco, I., Gardin, C., Zavan, B., 2015. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis. Biomed Res. Int. 2015, Article ID:141485, 6 pages. doi:10.1155/2015/141485 Cerca con Google

Ferris, R.A., Frisbie, D.D., McCue, P.M., 2014. Use of mesenchymal stem cells or autologous conditioned serum to modulate the inflammatory response to spermatozoa in mares. Theriogenology 82, 36–42. doi:10.1016/j.theriogenology.2014.02.015 Cerca con Google

Fortier, L.A., Nixon, A.J., Williams, J., Cable, C.S., 1998. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am. J. Vet. Res. 59, 1182–1187. Cerca con Google

Fumuso, E.A., Aguilar, J., Giguère, S., Rivulgo, M., Wade, J., Rogan, D., 2007. Immune parameters in mares resistant and susceptible to persistent post-breeding endometritis: Effects of immunomodulation. Vet. Immunol. Immunopathol. 118, 30–39. doi:10.1016/j.vetimm.2007.04.009 Cerca con Google

Fumuso, E., Aguilar, J., Gigu, S., 2006. Interleukin-8 (IL-8) and 10 (IL-10) mRNA transcriptions in the endometrium of normal mares and mares susceptible to persistent post-breeding endometritis. Anim. Reprod. Sci. 94, 282–285. doi:10.1016/j.anireprosci.2006.04.006 Cerca con Google

Fumuso, E., Giguère, S., Wade, J., Rogan, D., Videla-Dorna, I., Bowden, R. a., 2003. Endometrial IL-1β, IL-6 and TNF-α, mRNA expression in mares resistant or susceptible to post-breeding endometritis: Effects of estrous cycle, artificial insemination and immunomodulation. Vet. Immunol. Immunopathol. 96, 31–41. doi:10.1016/S0165-2427(03)00137-5 Cerca con Google

Gabay, C., 2006. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8, S3. doi:10.1186/ar1917 Cerca con Google

Gerstenberg, C., Allen, W., Stewart, F., 1999. Factors controlling epidermal growth factor (EGF) gene expression in the endometrium of the mare. Mol. Reprod. Dev. 53, 255–265. Cerca con Google

Hansen, M.B., Nielsen, S.E., Berg, K., 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210. Cerca con Google

Hermanns, H.M., 2015. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 26. doi:10.1016/j.cytogfr.2015.07.006 Cerca con Google

Hirota, Y., Osuga, Y., Koga, K., Yoshino, O., Hirata, T., Morimoto, C., Harada, M., Takemura, Y., Nose, E., Yano, T., Tsutsumi, O., Taketani, Y., 2006. The expression and possible roles of chemokine CXCL11 and its receptor CXCR3 in the human endometrium. J. Immunol. 177, 8813–8821. Cerca con Google

Hoffmann, C., Bazer, F.W., Klug, J., Aupperle, H., Ellenberger, C., Schoon, H. a., 2009. Immunohistochemical and histochemical identification of proteins and carbohydrates in the equine endometrium. Expression patterns for mares suffering from endometrosis. Theriogenology 71, 264–274. doi:10.1016/j.theriogenology.2008.07.008 Cerca con Google

Hoffmann, C., Ellenberger, C., Mattos, R.C., Aupperle, H., Dhein, S., Stief, B., Schoon, H.A., 2009. The equine endometrosis: New insights into the pathogenesis. Anim. Reprod. Sci. 111, 261–278. doi:10.1016/j.anireprosci.2008.03.019 Cerca con Google

Horrillo, A., Fontela, T., Arias-Salgado, E.G., Llobat, D., Porras, G., Ayuso, M.S., González-Manchón, C., 2014. Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res. 23, 53–66. doi:10.1007/s11248-013-9743-2 Cerca con Google

Huaux, F., Liu, T., McGarry, B., Ullenbruch, M., Phan, S.H., 2003. Dual Roles of IL-4 in Lung Injury and Fibrosis. J. Immunol. 170, 2083 LP-2092. Cerca con Google

Iacono, E., Merlo, B., Romagnoli, N., Rossi, B., Ricci, F., Spadari, A., 2015. Equine Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: Cytofluorimetric Characterization, In Vitro Differentiation, and Clinical Application. J. Equine Vet. Sci. 35, 130–140. doi:10.1016/j.jevs.2014.12.010 Cerca con Google

Imakawa, K., Imai, M., Sakai, A., Suzuki, M., Nagaoka, K., Sakai, S., Lee, S.-R., Chang, K.-T., Echternkamp, S.E., Christenson, R.K., 2006. Regulation of conceptus adhesion by endometrial CXC chemokines during the implantation period in sheep. Mol. Reprod. Dev. 73, 850–858. doi:10.1002/mrd.20496 Cerca con Google

Johansen, C., Rittig, A.H., Mose, M., Bertelsen, T., Weimar, I., Nielsen, J., Andersen, T., Rasmussen, T.K., Deleuran, B., Iversen, L., 2017. STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PLoS One 12, e0176994. doi:10.1371/journal.pone.0176994 Cerca con Google

Johnstone, S., Barsova, J., Campos, I., Frampton, A.R., 2016. Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells. Vet. Microbiol. 192, 52–59. doi:10.1016/j.vetmic.2016.06.012 Cerca con Google

Kang, J.-G., Park, S.-B., Seo, M.-S., Kim, H.-S., Chae, J.-S., Kang, K.-S., 2013. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood. J Vet Sci 14, 367–371. Cerca con Google

Katila, T., 2012. Post-mating Inflammatory Responses of the Uterus. Reprod. Domest. Anim. 47, 31–41. doi:10.1111/j.1439-0531.2012.02120.x Cerca con Google

Keller, A., Neves, A.P., Aupperle, H., Steiger, K., Garbade, P., Schoon, H.A., Klug, E., Mattos, R.C., 2006. Repetitive experimental bacterial infections do not affect the degree of uterine degeneration in the mare. Anim. Reprod. Sci. 94, 276–279. Cerca con Google

Kitagawa, K., Wada, T., Furuichi, K., Hashimoto, H., Ishiwata, Y., Asano, M., Takeya, M., Kuziel, W.A., Matsushima, K., Mukaida, N., Yokoyama, H., 2004. Blockade of CCR2 Ameliorates Progressive Fibrosis in Kidney. Am. J. Pathol. 165, 237–246. doi:http://dx.doi.org/10.1016/S0002-9440(10)63292-0 Vai! Cerca con Google

Ko, H.S., Kang, H.K., Kim, H.S., Choi, S.K., Park, I.Y., Shin, J.C., 2012. The effects of oncostatin M on trophoblast cells: Influence on matrix metalloproteinases-2 and -9, and invasion activity. Placenta 33, 908–913. doi:10.1016/j.placenta.2012.07.014 Cerca con Google

Koch, T.G., Berg, L.C., Betts, D.H., 2008. Concepts for the clinical use of stem cells in equine medicine. Can. Vet. J. 49, 1009–1017. Cerca con Google

Koch, T.G., Heerkens, T., Thomsen, P.D., Betts, D.H., 2007. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 7, 26. doi:10.1186/1472-6750-7-26 Cerca con Google

Kol, A., Walker, N.J., Galuppo, L.D., Clark, K.C., Buerchler, S., Bernanke, A., Borjesson, D.L., 2013. Autologous point-of-care cellular therapies variably induce equine mesenchymal stem cell migration, proliferation and cytokine expression. Equine Vet. J. 45, 193–8. doi:10.1111/j.2042-3306.2012.00600.x Cerca con Google

Kovacs, E.J., DiPietro, L.A., 1994. Fibrogenic cytokines and connective tissue production. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 8, 854–861. Cerca con Google

Kroeger, K.M., Sullivan, B.M., Locksley, R.M., 2009. IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88- and p38α-dependent pathway. J. Leukoc. Biol. 86, 769–778. Cerca con Google

Kumar, R., Sharma, A., Pattnaik, A.K., Varadwaj, P.K., 2010. Stem cells: An overview with respect to cardiovascular and renal disease. J. Nat. Sci. Biol. Med. 1, 43–52. doi:10.4103/0976-9668.71674 Cerca con Google

Lange-Consiglio, A., Corradetti, B., Meucci, A., Perego, R., Bizzaro, D., Cremonesi, F., 2013. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine Vet. J. 45, 737–744. doi:10.1111/evj.12052 Cerca con Google

Lange-Consiglio, A., Rossi, D., Tassan, S., Perego, R., Cremonesi, F., Parolini, O., 2013. Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev. 22, 3015–3024. doi:10.1089/scd.2013.0214 Cerca con Google

Liu, S.A., Haque, M., Stanfield, B., Andrews, F.M., Roy, A.A., Kousoulas, K.G., 2017. A recombinant fusion protein consisting of West Nile virus envelope domain III fused in-frame with equine CD40 ligand induces antiviral immune responses in horses. Vet. Microbiol. 198, 51–58. doi:http://dx.doi.org/10.1016/j.vetmic.2016.12.008 Vai! Cerca con Google

Long, K.B., Gladney, W.L., Tooker, G.M., Graham, K., Fraietta, J.A., Beatty, G.L., 2016. IFN-gamma and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov. Cerca con Google

Lopez, M.J., Jarazo, J., 2015. State of the art: Stem cells in equine regenerative medicine. Equine Vet. J. 47, 145–154. doi:10.1111/evj.12311 Cerca con Google

MacDonald, T.T., Bell, I., Monteleone, G., 2011. The opposing roles of IL-21 and TGFβ1 in chronic inflammatory bowel disease. Biochem. Soc. Trans. 39, 1061 LP-1066. Cerca con Google

Mambelli, L.I., Mattos, R.C., Winter, G.H.Z., Madeiro, D.S., Morais, B.P., Malschitzky, E., Miglino, M.A., Kerkis, A., Kerkis, I., 2014. Changes in expression pattern of selected endometrial proteins following mesenchymal stem cells infusion in mares with endometrosis. PLoS One 9, e97889. doi:10.1371/journal.pone.0097889 Cerca con Google

Mambelli, L.I., Santos, E.J.C., Frazao, P.J.R., Chaparro, M.B., Kerkis, A., Zoppa, A.L. V, Kerkis, I., 2009. Characterization of equine adipose tissue-derived progenitor cells before and after cryopreservation. Tissue Eng. Part C. Methods 15, 87–94. doi:10.1089/ten.tec.2008.0186 Cerca con Google

Mambelli, L.I., Winter, G.H.Z., Kerkis, A., Malschitzky, E., Mattos, R.C., Kerkis, I., 2013. A novel strategy of mesenchymal stem cells delivery in the uterus of mares with endometrosis. Theriogenology 79, 744–750. doi:10.1016/j.theriogenology.2012.11.030 Cerca con Google

Markowitz, G.J., Yang, P., Fu, J., Michelotti, G.A., Chen, R., Sui, J., Yang, B., Qin, W.-H., Zhang, Z., Wang, F.-S., Diehl, A.M., Li, Q.-J., Wang, H., Wang, X.-F., 2016. Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes. Cancer Res. 76, 2394–2405. doi:10.1158/0008-5472.CAN-15-1548 Cerca con Google

Marth, C.D., Firestone, S.M., Glenton, L.Y., Browning, G.F., Young, N.D., Krekeler, N., 2016. Oestrous cycle-dependent equine uterine immune response to induced infectious endometritis. Vet. Res. 47, 110. doi:10.1186/s13567-016-0398-x Cerca con Google

Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–813. doi:10.1089/scd.2014.0407 Cerca con Google

McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., 2011. Equine Reproduction, second edi. ed. Cerca con Google

Mellor, A.L., Munn, D.H., 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774. doi:10.1038/nri1457 Cerca con Google

Menzies-Gow, A., Ying, S., Sabroe, I., Stubbs, V.L., Soler, D., Williams, T.J., Kay, A.B., 2002. Eotaxin (CCL11) and Eotaxin-2 (CCL24) Induce Recruitment of Eosinophils, Basophils, Neutrophils, and Macrophages As Well As Features of Early- and Late-Phase Allergic Reactions Following Cutaneous Injection in Human Atopic and Nonatopic Volunteers. J. Immunol. 169, 2712 LP-2718. Cerca con Google

Mercati, F., Pascucci, L., Curina, G., Scocco, P., Tardella, F.M., Dall’aglio, C., Marini, C., Ceccarelli, P., 2014. Evaluation of storage conditions on equine adipose tissue-derived multipotent mesenchymal stromal cells. Vet. J. 200, 339–42. doi:10.1016/j.tvjl.2014.02.018 Cerca con Google

Mitchell, C., Couton, D., Couty, J.-P., Anson, M., Crain, A.-M., Bizet, V., Rénia, L., Pol, S., Mallet, V., Gilgenkrantz, H., 2009. Dual Role of CCR2 in the Constitution and the Resolution of Liver Fibrosis in Mice. Am. J. Pathol. 174, 1766–1775. doi:http://dx.doi.org/10.2353/ajpath.2009.080632 Vai! Cerca con Google

Moafi, M., Rezvan, H., Sherkat, R., Taleban, R., Asilian, A., Hamid Zarkesh-Esfahani, S., Nilforoushzadeh, M.A., Jaffary, F., Mansourian, M., Sokhanvari, F., Ansari, N., 2017. Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis. Scand. J. Immunol. 85, 291–299. doi:10.1111/sji.12534 Cerca con Google

Moore, B.B., Kolodsick, J.E., Thannickal, V.J., Cooke, K., Moore, T.A., Hogaboam, C., Wilke, C.A., Toews, G.B., 2005. CCR2-Mediated Recruitment of Fibrocytes to the Alveolar Space after Fibrotic Injury. Am. J. Pathol. 166, 675–684. doi:http://dx.doi.org/10.1016/S0002-9440(10)62289-4 Vai! Cerca con Google

Moriyama, H., Kasashima, Y., Kuwano, A., Wada, S., 2014. Anatomical location and culture of equine corneal epithelial stem cells. Vet. Ophthalmol. 17, 106–112. doi:10.1111/vop.12050 Cerca con Google

Nagase, H., Visse, R., Murphy, G., 2006. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573. doi:10.1016/j.cardiores.2005.12.002 Cerca con Google

Najar, M., Raicevic, G., Fayyad-Kazan, H., Bron, D., Toungouz, M., Lagneaux, L., 2016. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy 18, 160–171. doi:10.1016/j.jcyt.2015.10.011 Cerca con Google

Nash, D., Lane, E., Herath, S., Sheldon, I.M., 2008. Endometrial explant culture for characterizing equine endometritis. Am. J. Reprod. Immunol. 59, 105–117. doi:10.1111/j.1600-0897.2007.00548.x Cerca con Google

Nash, D.M., Sheldon, I.M., Herath, S., Lane, E.A., 2010. Endometrial explant culture to study the response of equine endometrium to insemination. Reprod. Domest. Anim. 45, 670–676. doi:10.1111/j.1439-0531.2008.01328.x Cerca con Google

Nelis, H., D’Herde, K., Goossens, K., Vandenberghe, L., Leemans, B., Forier, K., Smits, K., Braeckmans, K., Peelman, L., Van Soom, A., 2014. Equine oviduct explant culture: a basic model to decipher embryo-maternal communication. Reprod. Fertil. Dev. 26, 954–966. doi:10.1071/RD13089 Cerca con Google

Pacini, S., Spinabella, S., Trombi, L., Fazzi, R., Galimberti, S., Dini, F., Carlucci, F., Petrini, M., 2007. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng. 13, 2949–2955. doi:10.1089/ten.2007.0108 Cerca con Google

Pan, C.-M., Wang, M.-L., Chiou, S.-H., Chen, H.-Y., Wu, C.-W., 2016. Oncostatin M suppresses metastasis of lung adenocarcinoma by inhibiting SLUG expression through coordination of STATs and PIASs signalings. Oncotarget 7. doi:10.18632/oncotarget.10939 Cerca con Google

Pascucci, L., Curina, G., Mercati, F., Marini, C., Dall’Aglio, C., Paternesi, B., Ceccarelli, P., 2011. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria. Vet. Immunol. Immunopathol. 144, 499–506. doi:10.1016/j.vetimm.2011.07.017 Cerca con Google

Penny, J., Harris, P., Shakesheff, K., Mobasheri, A., 2012. The biology of equine mesenchymal stem cells: phenotypic characterization, cell surface markers and multilineage differentiation. Front. Biosci. 17, 892–908. Cerca con Google

Penrod, L. V, Allen, R.E., Rhoads, M.L., Limesand, S.W., Arns, M.J., 2013a. Oxytocin stimulated release of PGF2alpha and its inhibition by a cyclooxygenase inhibitor and an oxytocin receptor antagonist from equine endometrial cultures. Anim. Reprod. Sci. 139, 69–75. doi:10.1016/j.anireprosci.2013.04.010 Cerca con Google

Penrod, L. V, Allen, R.E., Turner, J.L., Limesand, S.W., Arns, M.J., 2013b. Effects of oxytocin, lipopolysaccharide (LPS), and polyunsaturated fatty acids on prostaglandin secretion and gene expression in equine endometrial explant cultures. Domest. Anim. Endocrinol. 44, 46–55. doi:10.1016/j.domaniend.2012.09.002 Cerca con Google

Penton-Rol, G., Polentarutti, N., Luini, W., Borsatti, A., Mancinelli, R., Sica, A., Sozzani, S., Mantovani, A., 1998. Selective Inhibition of Expression of the Chemokine Receptor CCR2 in Human Monocytes by IFN-γ. J. Immunol. 160, 3869 LP-3873. Cerca con Google

Pigott, J.H., Ishihara, A., Wellman, M.L., Russell, D.S., Bertone, A.L., 2013. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet. Immunol. Immunopathol. 156, 99–106. doi:10.1016/j.vetimm.2013.09.003 Cerca con Google

Pöling, J., Gajawada, P., Richter, M., Lörchner, H., Polyakova, V., Kostin, S., Shin, J., Boettger, T., Walther, T., Rees, W., Wietelmann, A., Warnecke, H., Kubin, T., Braun, T., 2014. Therapeutic targeting of the oncostatin M receptor-β prevents inflammatory heart failure. Basic Res. Cardiol. 109. doi:10.1007/s00395-013-0396-3 Cerca con Google

Puthumana, J., Ariza, X., Belcher, J.M., Graupera, I., Gines, P., Parikh, C.R., 2017. Urine Interleukin 18 and Lipocalin 2 Are Biomarkers of Acute Tubular Necrosis in Patients With Cirrhosis: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 15, 1003–1013.e3. doi:10.1016/j.cgh.2016.11.035 Cerca con Google

Puxeddu, I., Bader, R., Piliponsky, A.M., Reich, R., Levi-Schaffer, F., Berkman, N., 2006. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts. J. Allergy Clin. Immunol. 117, 103–110. doi:http://dx.doi.org/10.1016/j.jaci.2005.08.057 Vai! Cerca con Google

Raabe, O., Shell, K., Wurtz, A., Reich, C.M., Wenisch, S., Arnhold, S., 2011. Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells. Vet. Res. Commun. 35, 355–365. doi:10.1007/s11259-011-9480-z Cerca con Google

Ranera, B., Ordovas, L., Lyahyai, J., Bernal, M.L., Fernandes, F., Remacha, A.R., Romero, A., Vazquez, F.J., Osta, R., Cons, C., Varona, L., Zaragoza, P., Martin-Burriel, I., Rodellar, C., 2012. Comparative study of equine bone marrow and adipose tissue-derived mesenchymal stromal cells. Equine Vet. J. 44, 33–42. doi:10.1111/j.2042-3306.2010.00353.x Cerca con Google

Rasmussen, C.D., Petersen, M.R., Bojesen, A.M., Pedersen, H.G., Lehn-Jensen, H., Christoffersen, M., 2015. Equine Infectious Endometritis—Clinical and Subclinical Cases. J. Equine Vet. Sci. 35, 95–104. doi:10.1016/j.jevs.2014.12.002 Cerca con Google

Renzi, S., Riccò, S., Dotti, S., Sesso, L., Grolli, S., Cornali, M., Carlin, S., Patruno, M., Cinotti, S., Ferrari, M., 2013. Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: a clinical report. Res. Vet. Sci. 95, 272–7. doi:10.1016/j.rvsc.2013.01.017 Cerca con Google

Richards, C.D., 2013. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflamm. 2013, 512103. doi:10.1155/2013/512103 Cerca con Google

Ryan, R.E., Martin, B., Mellor, L., Jacob, R.B., Tawara, K., McDougal, O.M., Oxford, J.T., Jorcyk, C.L., 2015. Oncostatin M binds to extracellular matrix in a bioactive conformation: Implications for inflammation and metastasis. Cytokine 72. doi:10.1016/j.cyto.2014.11.007 Cerca con Google

Schlafer, D.H., 2007. Equine endometrial biopsy: Enhancement of clinical value by more extensive histopathology and application of new diagnostic techniques? Theriogenology 68, 413–422. doi:10.1016/j.theriogenology.2007.04.040 Cerca con Google

Schnabel, L. V, Fortier, L.A., McIlwraith, C.W., Nobert, K.M., 2013. Therapeutic use of stem cells in horses: which type, how, and when? Vet. J. 197, 570–7. doi:10.1016/j.tvjl.2013.04.018 Cerca con Google

Schroder, K., Hertzog, P.J., Ravasi, T., Hume, D.A., 2004. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189. doi:10.1189/jlb.0603252 Cerca con Google

Schwarz, C., Leicht, U., Drosse, I., Ulrich, V., Luibl, V., Schieker, M., Röcken, M., 2011. Characterization of adipose-derived equine and canine mesenchymal stem cells after incubation in agarose-hydrogel. Vet. Res. Commun. 35, 487–99. doi:10.1007/s11259-011-9492-8 Cerca con Google

Schwarz, C., Leicht, U., Rothe, C., Drosse, I., Luibl, V., Röcken, M., Schieker, M., 2012. Effects of different media on proliferation and differentiation capacity of canine, equine and porcine adipose derived stem cells. Res. Vet. Sci. 93, 457–62. doi:10.1016/j.rvsc.2011.08.010 Cerca con Google

Seki, E., de Minicis, S., Inokuchi, S., Taura, K., Miyai, K., van Rooijen, N., Schwabe, R.F., Brenner, D.A., 2009. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197. doi:10.1002/hep.22952 Cerca con Google

Seo, M.-S., Park, S.-B., Kim, H.-S., Kang, J., Chae, J.-S., Kang, K.-S., 2013. Isolation and characterization of equine amniotic membrane-derived mesenchymal stem cells. J Vet Sci 14, 151–159. Cerca con Google

Shi, Y., Su, J., Roberts, A.I., Shou, P., Rabson, A.B., Ren, G., 2012. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 33, 136–43. doi:10.1016/j.it.2011.11.004 Cerca con Google

Sittampalam, G., Coussens, N., Nelson, H., 2004. Assay Guidance Manual. Cerca con Google

Slaets, H., Nelissen, S., Janssens, K., Vidal, P.M., Lemmens, E., Stinissen, P., Hendrix, S., Hellings, N., 2014. Oncostatin M Reduces Lesion Size and Promotes Functional Recovery and Neurite Outgrowth After Spinal Cord Injury. Mol. Neurobiol. 50. doi:10.1007/s12035-014-8795-5 Cerca con Google

Snider, T. a., Sepoy, C., Holyoak, G.R., 2011. Equine endometrial biopsy reviewed: Observation, interpretation, and application of histopathologic data. Theriogenology 75, 1567–1581. doi:10.1016/j.theriogenology.2010.12.013 Cerca con Google

Solberg, O.D., Jackson, K.A., Millon, L. V, Stott, J.L., Vandenplas, M.L., Moore, J.N., Watson, J.L., 2004. Genomic characterization of equine Interleukin-4 receptor α-chain (IL4R). Vet. Immunol. Immunopathol. 97, 187–194. doi:http://dx.doi.org/10.1016/j.vetimm.2003.09.004 Vai! Cerca con Google

Sun, D., Li, S., Wu, H., Zhang, M., Zhang, X., Wei, L., Qin, X., Gao, E., 2015. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity. J. Cell. Mol. Med. 19. doi:10.1111/jcmm.12501 Cerca con Google

Szóstek, a. Z., Siemieniuch, M.J., Lukasik, K., Galvão, a. M., Ferreira-Dias, G.M., Skarzynski, D.J., 2012. MRNA transcription of prostaglandin synthases and their products in the equine endometrium in the course of fibrosis. Theriogenology 78, 768–776. doi:10.1016/j.theriogenology.2012.03.024 Cerca con Google

Tada, H., Shiho, O., Kuroshima, K., Koyama, M., Tsukamoto, K., 1986. An improved colorimetric assay for interleukin 2. J. Immunol. Methods 93, 157–165. Cerca con Google

Takayama, G., Arima, K., Kanaji, T., Toda, S., Tanaka, H., Shoji, S., McKenzie, A.N.J., Nagai, H., Hotokebuchi, T., Izuhara, K., 2006. Periostin: A novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 118, 98–104. doi:http://dx.doi.org/10.1016/j.jaci.2006.02.046 Vai! Cerca con Google

Teruel, M., Simeon, C.P., Broen, J., Vonk, M.C., Carreira, P., Camps, M.T., García-Portales, R., Delgado-Frías, E., Gallego, M., Espinosa, G., Beretta, L., Airó, P., Lunardi, C., Riemekasten, G., Witte, T., Krieg, T., Kreuter, A., Distler, J.H.W., Hunzelmann, N., Koeleman, B.P., Voskuyl, A.E., Schuerwegh, A.J., González-Gay, M.Á., Radstake, T.R.D.J., Martin, J., 2012. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis. Arthritis Res. Ther. 14, R154. doi:10.1186/ar3890 Cerca con Google

Tetta, C., Consiglio, A.L., Bruno, S., Tetta, E., Gatti, E., Dobreva, M., Cremonesi, F., Camussi, G., 2012. The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair? Muscles. Ligaments Tendons J. 2, 212–221. Cerca con Google

Traub, B., Sun, L., Ma, Y., Xu, P., Lemke, J., Paschke, S., Henne-Bruns, D., Knippschild, U., Kornmann, M., 2017. Endogenously Expressed IL-4Ralpha Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo. Int. J. Mol. Sci. 18. doi:10.3390/ijms18040716 Cerca con Google

Troedsson, M.H., 1999. Uterine clearance and resistance to persistent endometritis in the mare. Theriogenology 52, 461–71. doi:10.1016/S0093-691X(99)00143-0 Cerca con Google

Troedsson, M.H.T., 2006. Breeding-Induced Endometritis in Mares. Vet. Clin. North Am. - Equine Pract. 22, 705–712. doi:10.1016/j.cveq.2006.07.003 Cerca con Google

Troedsson, M.H.T., Woodward, E.M., 2016. Our current understanding of the pathophysiology of equine endometritis with an emphasis on breeding-induced endometritis. Reprod. Biol. 16, 8–12. doi:10.1016/j.repbio.2016.01.003 Cerca con Google

Trujano, M., Wrathall, A.E., 1985. Observations on the survival in vitro of cultured explants of porcine endometrium. Br. Vet. J. 141, 372–377. doi:10.1016/0007-1935(85)90087-9 Cerca con Google

Vidal, M.A., Kilroy, G.E., Lopez, M.J., Johnson, J.R., Moore, R.M., Gimble, J.M., 2007. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet. Surg. 36, 613–622. doi:10.1111/j.1532-950X.2007.00313.x Cerca con Google

Walter, I., Handler, J., Reifinger, M., Aurich, C., 2001. Association of endometriosis in horses with differentiation of periglandular myofibroblasts and changes of extracellular matrix proteins. Reproduction 121, 581–586. doi:10.1530/reprod/121.4.581 Cerca con Google

Wang, Z.Y., Gaggero, A., Rubartelli, A., Rosso, O., Miotti, S., Mezzanzanica, D., Canevari, S., Ferrini, S., 2002. Expression of interleukin-18 in human ovarian carcinoma and normal ovarian epithelium: evidence for defective processing in tumor cells. Int. J. cancer 98, 873–878. Cerca con Google

Watson, E.D., 2000. Post-breeding endometritis in the mare. Anim. Reprod. Sci. 60–61, 221–232. doi:10.1016/S0378-4320(00)00110-X Cerca con Google

Watson, E.D., Sertich, P.L., 1989. Prostaglandin production by horse embryos and the effect of co-culture of embryos with endometrium from pregnant mares. J. Reprod. Fertil. 87, 331–336. Cerca con Google

Watts, A.E., 2014. Use of stem cells in equine musculoskeletal disorders. Equine Vet. Educ. 26, 492–498. doi:10.1111/eve.12200 Cerca con Google

Weber, G.F., Chousterman, B.G., He, S., Fenn, A.M., Nairz, M., Anzai, A., Brenner, T., Uhle, F., Iwamoto, Y., Robbins, C.S., Noiret, L., Maier, S.L., Zonnchen, T., Rahbari, N.N., Scholch, S., Klotzsche-von Ameln, A., Chavakis, T., Weitz, J., Hofer, S., Weigand, M.A., Nahrendorf, M., Weissleder, R., Swirski, F.K., 2015. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347, 1260–1265. doi:10.1126/science.aaa4268 Cerca con Google

Woodward, E.M., 2012. Breeding induced endmetritis in the mare: the local innate response. Cerca con Google

Wu, Y.-J., Cai, W.-M., Li, Q., Liu, Y., Shen, H., Mertens, P.R., Dooley, S., Weng, H.-L., 2011. Long-term antifibrotic action of interferon-gamma treatment in patients with chronic hepatitis B virus infection. Hepatobiliary Pancreat. Dis. Int 10, 151–157. Cerca con Google

Wynn, T.A., 2008. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210. doi:10.1002/path.2277 Cerca con Google

Yuan, J., Reed, A., Chen, F., Stewart, C.N., 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85. doi:10.1186/1471-2105-7-85 Cerca con Google

Zhang, M., Wang, C., Hu, J., Lin, J., Zhao, Z., Shen, M., Gao, H., Li, N., Liu, M., Zheng, P., Qiu, C., Gao, E., Wang, H., Sun, D., 2015. Notch3/Akt signaling contributes to OSM-induced protection against cardiac ischemia/reperfusion injury. Apoptosis 20. doi:10.1007/s10495-015-1148-7 Cerca con Google

Zhang, X., Zhu, D., Wei, L., Zhao, Z., Qi, X., Li, Z., Sun, D., 2015. OSM Enhances Angiogenesis and Improves Cardiac Function after Myocardial Infarction. Biomed Res. Int. 2015. doi:10.1155/2015/317905 Cerca con Google

Zhou, Y., Yang, Y., Warr, G., Bravo, R., 1999. LPS down-regulates the expression of chemokine receptor CCR2 in mice and abolishes macrophage infiltration in acute inflammation. J. Leukoc. Biol. 65, 265–269. Cerca con Google

Zweifel, M., Matozan, K., Dahinden, C., Schaffner, T., Mohacsi, P., 2010. Eotaxin/CCL11 Levels Correlate With Myocardial Fibrosis and Mast Cell Density in Native and Transplanted Rat Hearts. Transplant. Proc. 42, 2763–2766. doi:http://dx.doi.org/10.1016/j.transproceed.2010.05.152 Vai! Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record