Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bedon, Andrea (2018) Advanced materials for Solid Oxide Fuel Cells innovation: reversible and single chamber Solid Oxide Fuel Cells, frontiers in sustainable energy. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
Available under License Creative Commons Attribution No Derivatives.

10Mb

Abstract (english)

The energy transition is changing the way we use, convert and store energy for all our purposes. It is a process driven by an increased acknowledgement of the relevant consequences of the current heavy use of fossil energy sources, and it is not clear where it will lead. Several technologies have been proposed as the best choice for the future of energy. Among them, Solid Oxide Fuel Cells (SOFCs) deserve a considerable attention. They are high temperature devices able to convert a variety of fuels (hydrogen, methanol, hydrocarbons, etc.) into electrical energy, with efficiencies that reach 90% when coupled with a heat recovery system. They can also be operated reversibly as Solid Oxide Electrolysis Cells (SOECs) and store electrical energy as fuels, so they can easily absorb the fluctuations of renewable energy production and save the energy until it is needed. Because of the high temperature of operation, they do not require noble metals. The SOFC technology is not mature yet for a large scale diffusion, but there is an intensive research towards this target. One of the main drawbacks of SOFCs is the short device life compared to the high costs, due to premature degradation of some cell components. This work of thesis is an attempt to increase economic convenience of SOFCs, by researching more stable materials and by decreasing the device costs. Particular attention has been devoted to find materials that are suitable for operation in reversible cells and Single Chamber cells (SC-SOFCs), two highly innovative variants of the basic SOFCs. A particular approach for the design of new materials has been proposed, consisting in coupling a Mixed Ionic Electronic Conductive (MIEC) substrate with an active phase, specifically chosen to obtain the properties desired for the respective application. The LSGF perovskite (La0.6Sr0.4Ga0.3Fe0.7O3) has been synthesized and fully characterized as the MIEC substrate. Then, it has been impregnated with cheap manganese and iron oxide, and the two different nanocomposites were studied in depth. Their activity as fuel cell electrodes has been tested, and very interesting performance of the iron composite as cathode and the manganese composite as anode has been recorded. A fuel cell based on LSGM electrolyte, with LSGF composite electrodes has been fabricated and successfully tested. The high homogeneity of this cell, that features very similar materials both as electrode and electrolyte, should prevent the formation of any insulating phase, and the nickel-free anode avoids problems related to nickel coarsening, so a higher durability of the device is guaranteed. LSGF has been tested as an electrode material for symmetric reversible cells, and promising results were obtained. A fully selective cathode material has been designed from Ca2FeAl0.95Mg0.05O5 brownmillerite, that has been impregnated with iron oxide. Decent performances were obtained, in spite of the relevant cheapness of the used elements. Preliminary results indicate that such a material could be used to operate SC-SOFCs without the extensive fuel losses that current state-of-the-art material cause.

Abstract (italian)

La transizione energetica sta cambiando il modo in cui usiamo, convertiamo e immagazziniamo l’energia per tutti i nostri scopi. Si tratta di un processo spinto dal crescente riconoscimento delle rilevanti conseguenze che l’attuale uso intensivo di fonti energetiche fossili comporta, e non è ancora chiaro esattamente a che situazione porterà. Sono molte le tecnologie che di volta in volta si trovano proposte come la soluzione principe per il futuro dell’energia. Tra di esse, le celle a combustibile a ossido solido (SOFC) meritano particolare attenzione. Sono dispositivi ad alta temperatura, in grado di convertire diverse tipologie di combustibili (idrogeno, metanolo, idrocarburi…) in energia elettrica, con efficienze che possono raggiungere il 90% se accoppiate con sistemi di recupero del calore. Queste celle a combustibile si possono operare anche reversibilmente come elettrolizzatori allo stato solido. Possono perciò immagazzinare energia elettrica come combustibile in modo da assorbire le fluttuazioni a cui è sottoposta la produzione di elettricità da fonti rinnovabili, fino al momento in cui c’è bisogno. Per via della alta temperatura operativa, non richiedono metalli nobili. La tecnologia delle SOFC non è ancora matura per una diffusione in larga scala, ma la ricerca in questo senso è intensa. Uno dei difetti principali di questi dispositivi è la ristretta vita operativa paragonata agli alti costi, a causa della degradazione prematura di alcuni componenti. Questo lavoro di tesi è un tentativo verso il miglioramento della sostenibilità economica delle SOFC, attraverso la ricerca di materiali più stabili e che permettano soluzioni più economiche. Particolare attenzione è stata riservata allo sviluppo di materiali adatti a operare in celle reversibili e a camera singola (SC-SOFC), due varianti innovative della SOFC di base. È stato proposto l’utilizzo di un approccio mirato per la progettazione dei nuovi materiali, consistente nell’accoppiamento di una fase conduttrice mista ionica ed elettronica (MIEC) che funge da substrato per una fase attiva, specificamente scelta per ottenere le proprietà ricercate per la rispettiva applicazione. La perovskite LSGF (La0.6Sr0.4Ga0.3Fe0.7O3) è stata sintetizzata e completamente caratterizzata come substrato a conduttività mista. Successivamente, è stata impregnata con ossidi di manganese e ferro, in virtù anche della loro economicità, e i due differenti nanocompositi così ottenuti sono stati studiati in dettaglio. La loro attività come elettrodi per celle a combustibile è stata testata, e si sono registrate prestazioni interessanti del nanocomposito con ferro come catodo e del nanocomposito con manganese come anodo. Una cella a combustibile basata su elettrolita LSGM e con elettrodi compositi a base LSGF è stata preparata e testata con successo. L’altissima omogeneità strutturale di questa cella, che sfrutta materiali molto simili sia come elettrolita che come elettrodi, sarebbe in grado di prevenire la formazione di qualsiasi fase isolante. Gli anodi privi di nichel evitano ogni problema legato all’accrescimento delle particelle di metallo, assicurando al dispositivo una migliore durabilità. LSGF è stato testato come materiale elettrodico per celle simmetriche reversibili, ottenendo risultati promettenti. Un materiale catodico interamente selettivo è stato sviluppato a partire dalla brownmillerite Ca2FeAl0.95Mg0.05O5, impregnata a sua volta con ossido di ferro. Con questo materiale si sono ottenute prestazioni discrete, nonostante l’economicità evidente degli elementi utilizzati. I risultati preliminari indicano che tali materiali potrebbero essere utilizzati per celle a camera singola evitando le ampie perdite di combustibile, inevitabili con l’uso dei catodi dell’attuale stato dell’arte.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Glisenti, Antonella
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZA E INGEGNERIA DEI MATERIALI E DELLE NANOSTRUTTURE
Data di deposito della tesi:09 January 2018
Anno di Pubblicazione:07 January 2018
Key Words:SOFC, energia, perovskiti, brownmilleriti, nanocompositi, celle reversibili, celle a camera singola
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/03 Chimica generale e inorganica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10588
Depositato il:08 Nov 2018 11:10
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, Nov. 2001. Cerca con Google

[2] British Petroleum, “BP Statistical Review of World Energy 2017,” 2017. Cerca con Google

[3] K. Bleich and R. D. Guimaraes, “Renewable Infrastructure Investment Handbook: A Guide for Institutional Investors,” 2016. Cerca con Google

[4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954. Cerca con Google

[5] M. L. McKinney and R. M. Schoch, Environmental Science: Systems and Solutions. Jones & Bartlett Learning, 2003. Cerca con Google

[6] V. Smil, “World History and Energy,” in Encyclopedia of Energy, vol. 6, Elsevier, 2004, pp. 549–561. Cerca con Google

[7] P. Brimblecombe, “Attitudes and Responses Towards Air Pollution in Medieval England,” J. Air Pollut. Control Assoc., vol. 26, no. 10, pp. 941–945, Oct. 1976. Cerca con Google

[8] C. Uglietti, P. Gabrielli, C. A. Cooke, P. Vallelonga, and L. G. Thompson, “Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y,” Proc. Natl. Acad. Sci., vol. 112, no. 8, pp. 2349–2354, Feb. 2015. Cerca con Google

[9] S. Hong, J.-P. Candelone, C. C. Patterson, and C. F. Boutron, “Greenland Ice Evidence of Hemispheric Lead Pollution Two Millennia Ago by Greek and Roman Civilizations,” Science (80-. )., vol. 265, no. 5180, pp. 1841–1843, Sep. 1994. Cerca con Google

[10] U.S. Energy Information Administration, “International Energy Outlook 2017 Overview,” Int. Energy Outlook, vol. IEO2017, no. September 14, 2017. Cerca con Google

[11] F. Barbir, T. N. Veziroǧlu, and H. J. Plass, “Environmental damage due to fossil fuels use,” Int. J. Hydrogen Energy, vol. 15, no. 10, pp. 739–749, 1990. Cerca con Google

[12] C. Olson and F. Lenzmann, “The social and economic consequences of the fossil fuel supply chain,” MRS Energy Sustain., vol. 3, p. E6, 2016. Cerca con Google

[13] B. Pandey, M. Agrawal, and S. Singh, “Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis,” Atmos. Pollut. Res., vol. 5, no. 1, pp. 79–86, 2014. Cerca con Google

[14] V. K. Mishra, A. R. Upadhyaya, S. K. Pandey, and B. D. Tripathi, “Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes,” Bioresour. Technol., vol. 99, no. 5, pp. 930–936, 2008. Cerca con Google

[15] R. B. Finkelman, “Potential health impacts of burning coal beds and waste banks,” Int. J. Coal Geol., vol. 59, no. 1–2, pp. 19–24, 2004. Cerca con Google

[16] P. R. Epstein, J. J. Buonocore, K. Eckerle, M. Hendryx, B. M. Stout III, R. Heinberg, R. W. Clapp, B. May, N. L. Reinhart, M. M. Ahern, S. K. Doshi, and L. Glustrom, “Full cost accounting for the life cycle of coal,” Ann. N. Y. Acad. Sci., vol. 1219, no. 1, pp. 73–98, Feb. 2011. Cerca con Google

[17] R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change, vol. 106, no. 4, pp. 679–690, 2011. Cerca con Google

[18] D. Hughes, Will natural gas fuel America in the 21st Century? 2011. Cerca con Google

[19] T. Bakke, J. Klungsøyr, and S. Sanni, “Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry,” Mar. Environ. Res., vol. 92, pp. 154–169, Dec. 2013. Cerca con Google

[20] C. Corden, R. Whiting, D. Luscombe, O. Power, A. Ma, J. Price, Mi. Sharman, and J. Shorthose, “Study on the assessment and management of environmental impacts and risks resulting from the exploration and production of hydrocarbons Final Report,” 2016. Cerca con Google

[21] N. Butt, H. L. Beyer, J. R. Bennett, D. Biggs, R. Maggini, M. Mills, A. R. Renwick, L. M. Seabrook, and H. P. Possingham, “Biodiversity Risks from Fossil Fuel Extraction,” Science., vol. 342, no. 6157, pp. 425–426, 2013. Cerca con Google

[22] Oao “Taneco,” “Environmental and Social Impact Assesssment (ESIA) for the Oil Refinery (Stage 1) of the TANECO Oil Refining and Petrochemical Complex, Nizhnekamsk, Republic of Tatarstan, Russian Federation,” 2009. Cerca con Google

[23] M. R. Narimisa and N. E. A. Basri, “A case study for environmental impact assessment of oil refinery in Iran with emphasis of Environmental and Social Action Plan ( ESAP ),” 2nd Int. Conf. Environ. Sci. Technol., vol. 6, pp. 334–337, 2011. Cerca con Google

[24] H. Wake, “Oil refineries: a review of their ecological impacts on the aquatic environment,” Estuar. Coast. Shelf Sci., vol. 62, no. 1–2, pp. 131–140, Jan. 2005. Cerca con Google

[25] J. S. Alshammari, F. K. Gad, A. a M. Elgibaly, A. R. Khan, and R. Engineering, “Solid Waste Management in Petroleum Refineries 1,” Am. J. Environ. Sci., vol. 4, no. 4, pp. 353–361, 2008. Cerca con Google

[26] R. A. Alvarez, S. W. Pacala, J. J. Winebrake, W. L. Chameides, and S. P. Hamburg, “Greater focus needed on methane leakage from natural gas infrastructure,” Proc. Natl. Acad. Sci., vol. 109, no. 17, pp. 6435–6440, 2012. Cerca con Google

[27] J. Tollefson, “Methane leaks erode green credentials of natural gas.,” Nature, vol. 493, p. 12, 2013. Cerca con Google

[28] EPA, “Methane and Nitrous Oxide Emissions from Natural Sources, a review.” 2010. Cerca con Google

[29] Greenpeace, “Silent Killers: Why Europe must replace coal power with green energy,” no. June, p. 56, 2013. Cerca con Google

[30] J. L. Mumford, X. Z. He, R. S. Chapman, S. R. Cao, D. B. Harris, X. M. Li, Y. L. Xian, W. Z. Jiang, C. W. Xu, and J. C. Chuang, “Lung cancer and indoor air pollution in Xuan Wei, China.,” Science, vol. 235, no. 4785, pp. 217–220, 1987. Cerca con Google

[31] M. Ando, M. Tadano, S. Asanuma, K. Tamura, S. Matsushima, T. Watanabe, T. Kondo, S. Sakurai, R. Ji, C. Liang, and S. Cao, “Health effects of indoor fluoride pollution from coal burning in China,” Environ. Health Perspect., vol. 106, no. 5, pp. 239–244, 1998. Cerca con Google

[32] R. Chandrappa and U. Chandra Kulshrestha, Sustainable Air Pollution Management. Cham: Springer International Publishing, 2016. Cerca con Google

[33] M. Kampa and E. Castanas, “Human health effects of air pollution,” Environ. Pollut., vol. 151, no. 2, pp. 362–367, 2008. Cerca con Google

[34] C. A. Pope and D. W. Dockery, “Health effects of fine particulate air pollution: Lines that connect,” J. Air Waste Manag. Assoc., vol. 56, no. 6, pp. 709–742, 2006. Cerca con Google

[35] S. Solomon, G.-K. Plattner, R. Knutti, and P. Friedlingstein, “Irreversible climate change due to carbon dioxide emissions.,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 6, pp. 1704–9, 2009. Cerca con Google

[36] S. Arrhenius, “On theInfluence of Carbonic Acid in the Air upon the Temperature of the Ground,” Philos. Mag. J. Sci., vol. 41, no. 251, pp. 237–279, 1896. Cerca con Google

[37] N. Ekholm, “on the Variations of the Climate of the Geological and Historical Past and Their Causes,” Q. J. R. Meteorol. Soc., vol. 27, no. 117, pp. 1–62, 1901. Cerca con Google

[38] M. C. MacCracken and F. M. Luther, “Projecting the climatic effects of increasing carbon dioxide,” 1985. Cerca con Google

[39] V. Ramanathan and Y. Feng, “Air pollution, greenhouse gases and climate change: Global and regional perspectives,” Atmos. Environ., vol. 43, no. 1, pp. 37–50, 2009. Cerca con Google

[40] P. M. Cox, R. a Betts, C. D. Jones, S. a Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.,” Nature, vol. 408, no. 6809, pp. 184–187, 2000. Cerca con Google

[41] B. J. Soden, A. J. Broccoli, and R. S. Hemler, “On the use of cloud forcing to estimate cloud feedback,” J. Clim., vol. 17, no. 19, pp. 3661–3665, 2004. Cerca con Google

[42] A. C. Clement, R. Burgman, and J. R. Norris, “Observational and Model Evidence for Positive Low-Level Cloud Feedback,” Science (80-. )., vol. 325, no. 5939, pp. 460–464, Jul. 2009. Cerca con Google

[43] R. D. Cess, M. H. Zhang, W. J. Ingram, G. L. Potter, V. Alekseev, H. W. Barker, E. Cohen-Solal, R. a Colman, D. a Dazlich, a D. DelGenio, M. R. Dix, V. Dymnikov, M. Esch, L. D. Fowler, J. R. Fraser, V. Galin, W. L. Gates, J. J. Hack, J. T. Kiehl, and H. LeTreut, “Cloud Feedback in Atmospheric General Circulation Models: An Update,” J. Geophys. Res., vol. 101, no. D8, pp. 12791–12794, 1996. Cerca con Google

[44] J. Hansen, A. Lacis, D. Rind, G. Russel, P. Stone, I. Fung, R. Ruedy, and J. Lerner, “Climate Sensitivity: Analysis of Feedback Mechanisms,” Clim. Process. Clim. Sensit., vol. 29, pp. 130–163, 1984. Cerca con Google

[45] I. M. Held and B. J. Soden, “Water Vapor Feedback and Global Warming,” Annu. Rev. Energy Environ., vol. 25, no. 1, pp. 441–475, Nov. 2000. Cerca con Google

[46] J. a. Curry, J. L. Schramm, and E. E. Ebert, “Sea Ice-Albedo Climate Feedback Mechanism,” J. Clim., vol. 8, no. 2, pp. 240–247, Feb. 1995. Cerca con Google

[47] D. K. Perovich, B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, “Increasing solar heating of the Arctic Ocean and adjacent seas, 1979-2005: Attribution and role in the ice-albedo feedback,” Geophys. Res. Lett., vol. 34, no. 19, pp. 1–5, 2007. Cerca con Google

[48] M. Winton, “Sea Ice-Albedo Feedback and Nonlinear Arctic Climate Change,” in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, 2013, pp. 111–131. Cerca con Google

[49] J. A. Screen and I. Simmonds, “The central role of diminishing sea ice in recent Arctic temperature amplification,” Nature, vol. 464, no. 7293, pp. 1334–1337, 2010. Cerca con Google

[50] S. Vijayavenkataraman, S. Iniyan, and R. Goic, “A review of climate change, mitigation and adaptation,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 878–897, 2012. Cerca con Google

[51] M. McNutt, “Climate Change Impacts,” Science (80-. )., vol. 341, no. 6145, pp. 435–435, 2013. Cerca con Google

[52] N. Oreskes, “BEYOND THE IVORY TOWER: The Scientific Consensus on Climate Change,” Science (80-. )., vol. 306, no. 5702, pp. 1686–1686, Dec. 2004. Cerca con Google

[53] W. R. L. Anderegg, J. W. P. Prall, J. Harold, and S. H. Schneider, “Expert credibility in climate change,” Pacific Conserv. Biol., vol. 17, no. 3, pp. 166–167, 2011. Cerca con Google

[54] S. L. D. Van Linden, A. A. Leiserowitz, G. D. Feinberg, and E. W. Maibach, “The scientific consensus on climate change as a gateway belief: Experimental evidence,” PLoS One, vol. 10, no. 2, pp. 2–9, 2015. Cerca con Google

[55] S. C. Moser, “Communicating climate change: history, challenges, processes and future directions,” WIREs Clim. Chang., vol. 1, pp. 31–53, 2010. Cerca con Google

[56] J. Besley and A. Dudo, “Scientists’ Views about Public Engagement and Science Communication in the Context of Climate Change,” vol. 1, no. October, pp. 1–19, 2017. Cerca con Google

[57] “Average Operating Heat Rate for Selected Energy Sources.” [Online]. Available: https://www.eia.gov/electricity/annual/html/epa_08_01.html. [Accessed: 05-Oct-2017]. Vai! Cerca con Google

[58] “Mazda Announces Long-Term Vision for Technology Development, ‘Sustainable Zoom-Zoom 2030.’” [Online]. Available: http://www2.mazda.com/en/publicity/release/2017/201708/170808a.html. [Accessed: 05-Oct-2017]. Vai! Cerca con Google

[59] L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel Cells - Fundamentals and Applications,” Fuel Cells, vol. 1, no. 1, pp. 5–39, 2001. Cerca con Google

[60] “Alkaline Fuel Cells (AFC),” in Electrochemical Power Sources, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015, pp. 229–237. Cerca con Google

[61] E. Baur and H. Preis, “Uber brennstoff-ketten mit festleitern.,” Berichte der Bunsengesellschaft für Phys. Chemie, vol. 43, no. 9, pp. 727–732, 1937. Cerca con Google

[62] G. McLean, “An assessment of alkaline fuel cell technology,” Int. J. Hydrogen Energy, vol. 27, no. 5, pp. 507–526, May 2002. Cerca con Google

[63] M. Cifrain and K. Kordesch, “Hydrogen/oxygen (air) fuel cells with alkaline electrolytes,” in Handbook of Fuel Cells, vol. 1, no. December 2010, Chichester, UK: John Wiley & Sons, Ltd, 2010, pp. 267–280. Cerca con Google

[64] M. Warshay and P. R. Prokopius, “The fuel cell in space: yesterday, today and tomorrow,” J. Power Sources, vol. 29, no. 1–2, pp. 193–200, 1990. Cerca con Google

[65] W. T. Grubb, “Batteries with Solid Ion Exchange Electrolytes .1. Secondary Cells Employing Metal Electrodes,” J. Electrochem. Soc., vol. 106, no. 4, pp. 275–278, 1959. Cerca con Google

[66] W. T. Grubb and L. W. Niedrach, “Batteries with Solid Ion-Exchange Membrane Electrolytes,” J. Electrochem. Soc., vol. 107, no. 2, p. 131, 1960. Cerca con Google

[67] E. B. Yeager, “4. Solid polymer electrolyte fuel cells (SPEFCs),” Energy, vol. 11, no. 1–2, pp. 137–152, 1986. Cerca con Google

[68] J. Weissbart and R. Ruka, “A Solid Electrolyte Fuel Cell,” J. Electrochem. Soc., vol. 109, no. 8, p. 723, 1962. Cerca con Google

[69] J. M. Andújar and F. Segura, “Fuel cells: History and updating. A walk along two centuries,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2309–2322, 2009. Cerca con Google

[70] M. Ji and Z. Wei, “A review of water management in polymer electrolyte membrane fuel cells,” Energies, vol. 2, no. 4, pp. 1057–1106, 2009. Cerca con Google

[71] V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” J. Power Sources, vol. 114, no. 1, pp. 32–53, Feb. 2003. Cerca con Google

[72] J. J. Baschuk and X. Li, “Carbon monoxide poisoning of proton exchange membrane fuel cells,” Int. J. Energy Res., vol. 25, no. 8, pp. 695–713, 2001. Cerca con Google

[73] M. Ni, D. Y. C. Leung, M. K. H. Leung, and K. Sumathy, “An overview of hydrogen production from biomass,” Fuel Process. Technol., vol. 87, no. 5, pp. 461–472, 2006. Cerca con Google

[74] C. Sealy, “The problem with platinum,” Mater. Today, vol. 11, no. 12, pp. 65–68, 2008. Cerca con Google

[75] E. Antolini, S. C. Zignani, S. F. Santos, and E. R. Gonzalez, “Palladium-based electrodes: A way to reduce platinum content in polymer electrolyte membrane fuel cells,” Electrochim. Acta, vol. 56, no. 5, pp. 2299–2305, 2011. Cerca con Google

[76] O. T. Holton and J. W. Stevenson, “The Role of Platinum in Proton Exchange Membrane Fuel Cells,” Platin. Met. Rev., vol. 57, no. 4, pp. 259–271, Oct. 2013. Cerca con Google

[77] E. Gulzow and E. Giilzow, “Alkaline fuel cells: A critical view,” J. Power Sources, vol. 61, no. 1–2, pp. 99–104, 1996. Cerca con Google

[78] A. L. Dicks, “Molten carbonate fuel cells,” Curr. Opin. Solid State Mater. Sci., vol. 8, no. 5, pp. 379–383, 2004. Cerca con Google

[79] I. Rexed, Applications for Molten Carbonate Fuel Cells. 2014. Cerca con Google

[80] M. Andersson and B. Sundèn, “Technology Review - Solid Oxide Fuel Cells,” Jul. 2017. Cerca con Google

[81] Y. Tanaka, T. Terayama, A. Momma, and T. Kato, “Numerical Simulation of SOFC System Performance at 90% Fuel Utilization with or without Anode Off-Gas Recycle for Enhancing Efficiency,” ECS Trans., vol. 68, no. 1, pp. 293–300, Jul. 2015. Cerca con Google

[82] A. Evans, A. Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. Ryll, B. Scherrer, R. Tölke, and L. J. Gauckler, “Micro-solid oxide fuel cells: status, challenges, and chances,” Monatshefte für Chemie - Chem. Mon., vol. 140, no. 9, pp. 975–983, Sep. 2009. Cerca con Google

[83] A. Evans, A. Bieberle-hütter, J. L. M. Rupp, and L. J. Gauckler, “Review on microfabricated micro-solid oxide fuel cell membranes,” vol. 194, pp. 119–129, 2009. Cerca con Google

[84] M.-F. Han, H.-Y. Yin, W.-T. Miao, and S. Zhou, “Fabrication and properties of anode-supported solid oxide fuel cell,” Solid State Ionics, vol. 179, no. 27–32, pp. 1545–1548, 2008. Cerca con Google

[85] H. Huang, C. H. Hsieh, N. Kim, J. Stebbins, and F. Prinz, “Structure, local environment, and ionic conduction in scandia stabilized zirconia,” Solid State Ionics, vol. 179, no. 27–32, pp. 1442–1445, 2008. Cerca con Google

[86] T. Ishihara, N. M. Sammes, and O. Yamamoto, “Electrolytes,” in High Temperature and Solid Oxide Fuel Cells, Elsevier, 2003, pp. 83–117. Cerca con Google

[87] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells,” Chem. Soc. Rev., vol. 37, no. 8, p. 1568, 2008. Cerca con Google

[88] K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, and H. Yokokawa, “Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere,” Solid State Ionics, vol. 121, no. 1, pp. 217–224, 1999. Cerca con Google

[89] J. Y. Yi and G. M. Choi, “The effect of reduction atmosphere on the LaGaO3-based solid oxide fuel cell,” J. Eur. Ceram. Soc., vol. 25, no. 12 SPEC. ISS., pp. 2655–2659, 2005. Cerca con Google

[90] N. P. Brandon and D. Thompsett, Fuel Cells Compendium. Elsevier, 2005. Cerca con Google

[91] J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells. CRC Press, 2016. Cerca con Google

[92] F. C. Nix and D. MacNair, “The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron,” Phys. Rev., vol. 60, no. 8, pp. 597–605, Oct. 2004. Cerca con Google

[93] H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, and M. Mori, “Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents,” Solid State Ionics, vol. 176, no. 5–6, pp. 613–619, 2005. Cerca con Google

[94] A. Faes, A. Hessler-Wyser, A. Zryd, and J. Van Herle, “A review of RedOx cycling of solid oxide fuel cells anode,” Membranes (Basel)., vol. 2, no. 3, pp. 585–664, 2012. Cerca con Google

[95] S. B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes,” Chem. Rev. Rev., vol. 104, no. 10, pp. 4791–4843, 2004. Cerca con Google

[96] S. Jung-Hoon, M. G. Jung, H. W. Park, and H.-T. Lim, “The Effect of Fabrication Conditions for GDC Buffer Layer on Electrochemical Performance of Solid Oxide Fuel Cells,” Nano-Micro Lett., vol. 5, no. 3, pp. 151–158, 2013. Cerca con Google

[97] M. Yano, A. Tomita, M. Sano, and T. Hibino, “Recent advances in single-chamber solid oxide fuel cells : A review,” vol. 177, pp. 3351–3359, 2007. Cerca con Google

[98] M. Kuhn and T. W. Napporn, “Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art,” Energies, vol. 3, no. 1, pp. 57–134, Jan. 2010. Cerca con Google

[99] I. Riess, “On the single chamber solid oxide fuel cells,” J. Power Sources, vol. 175, no. 1, pp. 325–337, 2008. Cerca con Google

[100] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, “Materials design for perovskite SOFC cathodes,” Monatshefte für Chemie - Chem. Mon., vol. 140, no. 9, pp. 985–999, Sep. 2009. Cerca con Google

[101] K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Wang, and S. Liu, “Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production,” RSC Adv., vol. 1, no. 9, p. 1661, 2011. Cerca con Google

[102] M. a. Peña and J. L. G. Fierro, “Chemical structures and performance of perovskite oxides,” Chem. Rev., vol. 101, no. 7, pp. 1981–2017, 2001. Cerca con Google

[103] “Mitsubishi Electric Delivers High-capacity Energy-storage System to Kyushu Electric Power’s Buzen Substation.” [Online]. Available: http://www.mitsubishielectric.com/news/2016/0303-b.html. [Accessed: 04-Oct-2017]. Vai! Cerca con Google

[104] “Tesla Powerpack to Enable Large Scale Sustainable Energy to South Australia.” [Online]. Available: https://www.tesla.com/it_IT/blog/tesla-powerpack-enable-large-scale-sustainable-energy-south-australia?redirect=no. [Accessed: 04-Oct-2017]. Vai! Cerca con Google

[105] L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, and E. Standen, “Study on development of water electrolysis in the EU,” Fuel Cells Hydrog. Jt. Undert., no. February, pp. 1–160, 2014. Cerca con Google

[106] B. Kruse, S. Grinna, and C. Buch, Hydrogen: Status and Possibilities, no. 6. 2002. Cerca con Google

[107] J. Schefold, A. Brisse, and M. Zahid, “Electronic Conduction of Yttria-Stabilized Zirconia Electrolyte in Solid Oxide Cells Operated in High Temperature Water Electrolysis,” J. Electrochem. Soc., vol. 156, no. 8, p. B897, 2009. Cerca con Google

[108] A. Brisse, J. Schefold, and M. Zahid, “High temperature water electrolysis in solid oxide cells,” Int. J. Hydrogen Energy, vol. 33, no. 20, pp. 5375–5382, 2008. Cerca con Google

[109] Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, and J. Zhang, “A review of high temperature co-electrolysis of H 2 O and CO 2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology,” Chem. Soc. Rev., vol. 46, no. 5, pp. 1427–1463, 2017. Cerca con Google

[110] A. Serrano-Lotina, A. J. Martin, M. A. Folgado, and L. Daza, “Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 12342–12350, 2012. Cerca con Google

[111] D. Pakhare and J. Spivey, “A review of dry (CO 2 ) reforming of methane over noble metal catalysts,” Chem. Soc. Rev., vol. 43, no. 22, pp. 7813–7837, 2014. Cerca con Google

[112] S. Arora and R. Prasad, “An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts,” RSC Adv., vol. 6, no. 110, pp. 108668–108688, 2016. Cerca con Google

[113] J.-M. Lavoie, “Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation,” Front. Chem., vol. 2, no. November, pp. 1–17, 2014. Cerca con Google

[114] J. W. Han, C. Kim, J. S. Park, and H. Lee, “Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane,” ChemSusChem, vol. 7, no. 2, pp. 451–456, 2014. Cerca con Google

[115] O. Boucher and G. A. Folberth, “New Directions: Atmospheric methane removal as a way to mitigate climate change?,” Atmos. Environ., vol. 44, no. 27, pp. 3343–3345, 2010. Cerca con Google

[116] M. E. Dry, “Practical and theoretical aspects of the catalytic Fischer-Tropsch process,” Appl. Catal. A Gen., vol. 138, no. 2, pp. 319–344, 1996. Cerca con Google

[117] M. E. Dry, “The Fischer-Tropsch process: 1950-2000,” Catal. Today, vol. 71, no. 3–4, pp. 227–241, 2002. Cerca con Google

[118] I. Helms, Solar Driven Chemistry. A vision for a sustainable chemistry production. Euchems, 2016. Cerca con Google

[119] C. Bessou, F. Ferchaud, B. Gabrielle, and B. Mary, “Biofuels, greenhouse gases and climate change. A review,” Agron. Sustain. Dev., vol. 31, no. 1, pp. 1–79, 2011. Cerca con Google

[120] Q. Li, Y. Zheng, W. Guan, L. Jin, C. Xu, and W. G. Wang, “Achieving high-efficiency hydrogen production using planar solid-oxide electrolysis stacks,” Int. J. Hydrogen Energy, vol. 39, no. 21, pp. 10833–10842, 2014. Cerca con Google

[121] M. A. Laguna-Bercero, R. Campana, A. Larrea, J. A. Kilner, and V. M. Orera, “Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation,” J. Power Sources, vol. 196, no. 21, pp. 8942–8947, 2011. Cerca con Google

[122] P. Di Giorgio and U. Desideri, “Potential of reversible solid oxide cells as electricity storage system,” Energies, vol. 9, no. 8, 2016. Cerca con Google

[123] C. Graves, S. D. Ebbesen, S. H. Jensen, S. B. Simonsen, and M. B. Mogensen, “Eliminating degradation in solid oxide electrochemical cells by reversible operation,” Nat. Mater., vol. 14, no. 2, pp. 239–244, 2014. Cerca con Google

[124] Q. Cai, D. J. L. Brett, D. Browning, and N. P. Brandon, “A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle,” J. Power Sources, vol. 195, no. 19, pp. 6559–6569, Oct. 2010. Cerca con Google

[125] W. C. Chueh and S. M. Haile, “Electrochemistry of Mixed Oxygen Ion and Electron Conducting Electrodes in Solid Electrolyte Cells,” Annu. Rev. Chem. Biomol. Eng., vol. 3, no. 1, pp. 313–341, Jul. 2012. Cerca con Google

[126] A. Manthiram, J.-H. Kim, Y. N. Kim, and K.-T. Lee, “Crystal chemistry and properties of mixed ionic-electronic conductors,” J. Electroceramics, vol. 27, no. 2, pp. 93–107, Oct. 2011. Cerca con Google

[127] J. B. Goodenough and Y.-H. Huang, “Alternative anode materials for solid oxide fuel cells,” J. Power Sources, vol. 173, no. 1, pp. 1–10, 2007. Cerca con Google

[128] T. Carraro, J. Joos, B. Rüger, A. Weber, and E. Ivers-Tiffée, “3D finite element model for reconstructed mixed-conducting cathodes: I. Performance quantification,” Electrochim. Acta, vol. 77, pp. 315–323, Aug. 2012. Cerca con Google

[129] S. Giddey, A. Kulkarni, C. Munnings, and S. P. S. Badwal, “Composite anodes for improved performance of a direct carbon fuel cell,” J. Power Sources, vol. 284, pp. 122–129, Jun. 2015. Cerca con Google

[130] W. H. Kan and V. Thangadurai, “Challenges and prospects of anodes for solid oxide fuel cells (SOFCs),” Ionics (Kiel)., vol. 21, no. 2, pp. 301–318, Feb. 2015. Cerca con Google

[131] J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin, and J. C. Diniz da Costa, “Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation,” J. Memb. Sci., vol. 320, no. 1–2, pp. 13–41, Jul. 2008. Cerca con Google

[132] W. Li, X. Zhu, Z. Cao, W. Wang, and W. Yang, “Mixed ionic-electronic conducting (MIEC) membranes for hydrogen production from water splitting,” Int. J. Hydrogen Energy, vol. 40, no. 8, pp. 3452–3461, Mar. 2015. Cerca con Google

[133] S. Engels, T. Markus, M. Modigell, and L. Singheiser, “Oxygen permeation and stability investigations on MIEC membrane materials under operating conditions for power plant processes,” J. Memb. Sci., vol. 370, no. 1–2, pp. 58–69, 2011. Cerca con Google

[134] H. Bouwmeester, H. Kruidhof, and A. Burggraaf, “Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides,” Solid State Ionics, vol. 72, pp. 185–194, Sep. 1994. Cerca con Google

[135] L. Heyne, Solid Electrolytes. Springer, 1977. Cerca con Google

[136] C. Wagner, “Equations for transport in solid oxides and sulfides of transition metals,” Prog. Solid State Chem., vol. 10, pp. 3–16, 1975. Cerca con Google

[137] A. V. Virkar, “Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes,” J. Power Sources, vol. 147, no. 1–2, pp. 8–31, Sep. 2005. Cerca con Google

[138] I. Riess, “Mixed ionic–electronic conductors—material properties and applications,” Solid State Ionics, vol. 157, no. 1–4, pp. 1–17, 2003. Cerca con Google

[139] P.-M. Geffroy, J. Fouletier, N. Richet, and T. Chartier, “Rational selection of MIEC materials in energy production processes,” Chem. Eng. Sci., vol. 87, pp. 408–433, Jan. 2013. Cerca con Google

[140] V. V. Kharton, F. M. B. Marques, and a. Atkinson, “Transport properties of solid oxide electrolyte ceramics: A brief review,” Solid State Ionics, vol. 174, no. 1–4, pp. 135–149, 2004. Cerca con Google

[141] M. Johnsson and P. Lemmens, “Crystallography and Chemistry of Perovskites,” in Handbook of Magnetism and Advanced Magnetic Materials, Chichester, UK: John Wiley & Sons, Ltd, 2007, p. 11. Cerca con Google

[142] B. Saparov and D. B. Mitzi, “Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design,” Chem. Rev., vol. 116, no. 7, pp. 4558–4596, Apr. 2016. Cerca con Google

[143] K. Uchino, “Glory of piezoelectric perovskites,” Sci. Technol. Adv. Mater., vol. 16, no. 4, p. 46001, Jul. 2015. Cerca con Google

[144] H. Kozuka, K. Ohbayashi, and K. Koumoto, “Electronic conduction in La-based perovskite-type oxides,” Sci. Technol. Adv. Mater., vol. 16, no. 2, p. 26001, Apr. 2015. Cerca con Google

[145] A. Jun, J. Kim, J. Shin, and G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid-Oxide Fuel Cell Technology,” ChemElectroChem, vol. 3, no. 4, pp. 511–530, Apr. 2016. Cerca con Google

[146] N. Labhasetwar, G. Saravanan, S. Kumar Megarajan, N. Manwar, R. Khobragade, P. Doggali, and F. Grasset, “Perovskite-type catalytic materials for environmental applications,” Sci. Technol. Adv. Mater., vol. 16, no. 3, p. 36002, Jun. 2015. Cerca con Google

[147] C. Niedrig, S. F. Wagner, W. Menesklou, and E. Ivers-Tiffée, “Characterization of oxygen-dependent stability of selected mixed-conducting perovskite oxides,” Solid State Ionics, vol. 273, pp. 41–45, May 2015. Cerca con Google

[148] S. P. Jiang, “Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review,” J. Mater. Sci., vol. 43, no. 21, pp. 6799–6833, Nov. 2008. Cerca con Google

[149] C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review,” J. Solid State Electrochem., vol. 14, no. 7, pp. 1125–1144, Jul. 2010. Cerca con Google

[150] E. Juste, A. Julian, G. Etchegoyen, P. Geffroy, T. Chartier, N. Richet, and P. Delgallo, “Oxygen permeation, thermal and chemical expansion of (La, Sr)(Fe, Ga)O3−δ perovskite membranes,” J. Memb. Sci., vol. 319, no. 1–2, pp. 185–191, Jul. 2008. Cerca con Google

[151] a. Vivet, P. M. Geffroy, T. Chartier, P. Del Gallo, and N. Richet, “La(1−x)SrxFe(1−y)GayO3−δ perovskite membrane: Oxygen semi-permeation, thermal expansion coefficient and chemical stability under reducing conditions,” J. Memb. Sci., vol. 372, no. 1–2, pp. 373–379, Apr. 2011. Cerca con Google

[152] G. Etchegoyen, T. Chartier, A. Julian, and P. Del-Gallo, “Microstructure and oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3−δ membrane containing magnesia as dispersed second phase particles,” J. Memb. Sci., vol. 268, no. 1, pp. 86–95, Jan. 2006. Cerca con Google

[153] A. C. Bose, Inorganic Membranes for Energy and Environmental Applications. New York: Springer Science & Business Media, 2008. Cerca con Google

[154] M. P. Pechini, “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,” US 3330697 A, 1967. Cerca con Google

[155] C. Marcilly, P. Courty, and B. Delmon, “Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors,” J. Am. Ceram. Soc., vol. 53, no. 1, pp. 56–57, Jan. 1970. Cerca con Google

[156] M. S. G. Baythoun and F. R. Sale, “Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process,” J. Mater. Sci., vol. 17, no. 9, pp. 2757–2769, Sep. 1982. Cerca con Google

[157] Q. Xu, “Citrate method synthesis, characterization and mixed electronic–ionic conduction properties of La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type complex oxides,” Scr. Mater., vol. 50, no. 1, pp. 165–170, Jan. 2004. Cerca con Google

[158] F. Deganello, G. Marcì, and G. Deganello, “Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 439–450, Feb. 2009. Cerca con Google

[159] K. Kammer Hansen and M. Mogensen, “Evaluation of LSF based SOFC Cathodes using Cone-shaped Electrodes,” in ECS Transactions, 2008, pp. 153–160. Cerca con Google

[160] S. Tantayanon, J. Yeyongchaiwat, J. Lou, and Y. Ma, “Synthesis and characterization of Sr and Fe substituted LaGaO 3 perovskites and membranes,” Sep. Purif. Technol., vol. 32, pp. 319–326, 2003. Cerca con Google

[161] D. A. Shirley, “High-resolution x-ray photoemission spectrum of the valence bands of gold,” Phys. Rev. B, vol. 5, no. 12, pp. 4709–4714, 1972. Cerca con Google

[162] D. Briggs, “Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E.Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195,” Surf. Interface Anal., vol. 3, no. 4, pp. v–v, Aug. 1981. Cerca con Google

[163] D. Briggs and J. C. Riviere, Practical Surface Analysis. New York: John Wiley & Sons, Inc., 1983. Cerca con Google

[164] H. R. Wenk, S. Matthies, and L. Lutterotti, “Texture Analysis from Diffraction Spectra,” Mater. Sci. Forum, vol. 157–162, pp. 473–480, 1994. Cerca con Google

[165] M. Ferrari and L. Lutterotti, “Method for the simultaneous determination of anisotropic residual stresses and texture by x-ray diffraction,” J. Appl. Phys., vol. 76, no. 11, pp. 7246–7255, 1994. Cerca con Google

[166] “Inorganic Crystal Structure Database, version 2007, Fachinformationszentrum, Karlsruhe, Germany.” . Cerca con Google

[167] F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry 3rd ed. New York: Interscience Publishers, 1972. Cerca con Google

[168] H. Wang, W. Yang, Y. Cong, X. Zhu, and Y. Lin, “Structure and oxygen permeability of a dual-phase membrane,” J. Memb. Sci., vol. 224, no. 1–2, pp. 107–115, 2003. Cerca con Google

[169] P. Datta, P. Majewski, and F. Aldinger, “LaGaO3-based cermet for solid oxide fuel cell cathodes,” J. Eur. Ceram. Soc., vol. 29, no. 8, pp. 1469–1476, 2009. Cerca con Google

[170] L. A. Isupova, I. S. Yakovleva, G. M. Alikina, V. A. Rogov, and V. A. Sadykov, “Reactivity of La1 − x Sr x FeO3 − y (x = 0–1) Perovskites in Oxidation Reactions,” Kinet. Catal., vol. 46, no. 5, pp. 729–735, Sep. 2005. Cerca con Google

[171] M. M. Natile, A. Ponzoni, I. Concina, A. Glisenti, F. Marzolo, S. Chimiche, U. Padova, and F. Marzolo, “Chemical Tuning versus Microstructure Features in Solid-State Gas Sensors: LaFe 1 ‑,” 2014. Cerca con Google

[172] S. Furfori, S. Bensaid, N. Russo, and D. Fino, “Towards practical application of lanthanum ferrite catalysts for NO reduction with H 2,” vol. 154, pp. 348–354, 2009. Cerca con Google

[173] A. Galenda, M. M. Natile, and A. Glisenti, “La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ and Fe 2 O 3 /La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ Powders: XPS Characterization,” Surf. Sci. Spectra, vol. 13, no. 1, pp. 31–47, Dec. 2006. Cerca con Google

[174] A. Galenda, M. M. Natile, L. Nodari, and A. Glisenti, “La0.8Sr0.2Ga0.8Fe0.2O3−δ: Influence of the preparation procedure on reactivity toward methanol and ethanol,” Appl. Catal. B Environ., vol. 97, no. 3–4, pp. 307–322, Jun. 2010. Cerca con Google

[175] J. Yuenyongchaiwat, S. Tantayanon, J. Lou, and Y. H. Ma, “Synthesis of Sr- and Fe-doped LaGaO 3 perovskites by the modified citrate method,” J. Mater. Sci., vol. 39, no. 23, pp. 7067–7074, Dec. 2004. Cerca con Google

[176] E. Echeverri and O. Arnache, “Structural and impedance analysis of Co-doped SrTiO3 perovskite,” J. Phys. Conf. Ser., vol. 687, p. 12040, Feb. 2016. Cerca con Google

[177] A. Aguadero, D. Pérez-Coll, J. A. Alonso, S. J. Skinner, and J. Kilner, “A New Family of Mo-Doped SrCoO 3−δ Perovskites for Application in Reversible Solid State Electrochemical Cells,” Chem. Mater., vol. 24, no. 14, pp. 2655–2663, Jul. 2012. Cerca con Google

[178] P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, and S. Liu, “Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis,” J. Alloys Compd., vol. 455, no. 1–2, pp. 465–470, May 2008. Cerca con Google

[179] T. Tian, M. Zhan, W. Wang, and C. Chen, “Surface properties and catalytic performance in methane combustion of La0.7Sr0.3Fe1−yGayO3−δ perovskite-type oxides,” Catal. Commun., vol. 10, no. 5, pp. 513–517, Jan. 2009. Cerca con Google

[180] H. Falcón, J. A. Barbero, J. A. Alonso, M. J. Martínez-Lope, and J. L. G. Fierro, “SrFeO 3 - δ Perovskite Oxides: Chemical Features and Performance for Methane Combustion,” Chem. Mater., vol. 14, no. 5, pp. 2325–2333, May 2002. Cerca con Google

[181] Q. Ming, “Combustion synthesis and characterization of Sr and Ga doped LaFeO3,” Solid State Ionics, vol. 122, no. 1–4, pp. 113–121, Jul. 1999. Cerca con Google

[182] Q. Fu, X. Xu, D. Peng, X. Liu, and G. Meng, “Preparation and electrochemical characterization of Sr- and Mn-doped LaGaO3 as anode materials for LSGM-based SOFCs,” J. Mater. Sci., vol. 38, no. 13, pp. 2901–2906, 2003. Cerca con Google

[183] S. Koutcheiko, P. Whitfield, and I. Davidson, “Electrical and thermal properties of La0.7Sr0.3Ga0.6Fe0.4O3 ceramics,” Ceram. Int., vol. 32, no. 3, pp. 339–344, 2006. Cerca con Google

[184] S. N. Shkerin, A. V. Kyz’min, O. I. Gyrdasova, A. Y. Stroeva, and A. V. Nikonov, “Electrical conductivity and thermal expansion of La1 – x Sr x Fe1 – y Ga y O3 – δ (x = 0.2–0.5; y = 0–0.4),” Russ. J. Electrochem., vol. 53, no. 2, pp. 154–160, 2017. Cerca con Google

[185] J. A. Schwarz, C. Contescu, and A. Contescu, “Methods for Preparation of Catalytic Materials,” Chem. Rev., vol. 95, no. 3, pp. 477–510, 1995. Cerca con Google

[186] M. Shelef and R. . McCabe, “Twenty-five years after introduction of automotive catalysts: what next?,” Catal. Today, vol. 62, no. 1, pp. 35–50, Sep. 2000. Cerca con Google

[187] H. S. Gandhi, G. W. Graham, and R. W. McCabe, “Automotive exhaust catalysis,” J. Catal., vol. 216, no. 1–2, pp. 433–442, May 2003. Cerca con Google

[188] A. Glisenti, M. Pacella, M. Guiotto, M. M. Natile, and P. Canu, “Largely Cu-doped LaCo 1−x Cu x O 3 perovskites for TWC: Toward new PGM-free catalysts,” Appl. Catal. B Environ., vol. 180, pp. 94–105, Jan. 2016. Cerca con Google

[189] S. Keav, S. Matam, D. Ferri, and A. Weidenkaff, “Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review,” Catalysts, vol. 4, no. 3, pp. 226–255, Jul. 2014. Cerca con Google

[190] P. Munnik, P. E. De Jongh, and K. P. De Jong, “Recent Developments in the Synthesis of Supported Catalysts,” Chem. Rev., vol. 115, no. 14, pp. 6687–6718, 2015. Cerca con Google

[191] European Commission, “On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative,” 2014. Cerca con Google

[192] P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, and Z. F. Liu, “Use of iron oxide nanomaterials in wastewater treatment: A review,” Sci. Total Environ., vol. 424, pp. 1–10, May 2012. Cerca con Google

[193] S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” J. Clean. Prod., vol. 64, pp. 24–35, Feb. 2014. Cerca con Google

[194] S.-S. Lin and M. D. Gurol, “Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications,” Environ. Sci. Technol., vol. 32, no. 10, pp. 1417–1423, May 1998. Cerca con Google

[195] S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, and S. L. Suib, “A Review of Porous Manganese Oxide Materials,” Chem. Mater., vol. 10, no. 10, pp. 2619–2628, 1998. Cerca con Google

[196] P. G. Smirniotis, P. M. Sreekanth, D. A. Peña, and R. G. Jenkins, “Manganese Oxide Catalysts Supported on TiO 2 , Al 2 O 3 , and SiO 2 : A Comparison for Low-Temperature SCR of NO with NH 3,” Ind. Eng. Chem. Res., vol. 45, no. 19, pp. 6436–6443, Sep. 2006. Cerca con Google

[197] T. S. Park, S. K. Jeong, S. H. Hong, and S. C. Hong, “Selective Catalytic Reduction of Nitrogen Oxides with NH 3 over Natural Manganese Ore at Low Temperature,” pp. 4491–4495, 2001. Cerca con Google

[198] J. J. Spivey and J. B. Butt, “Literature review: deactivation of catalysts in the oxidation of volatile organic compounds,” Catal. Today, vol. 11, no. 4, pp. 465–500, Jan. 1992. Cerca con Google

[199] A. Bedon, M. M. Natile, and A. Glisenti, “On the synthesis and stability of La0.6Sr0.4Ga0.3Fe0.7O3,” J. Eur. Ceram. Soc., vol. 37, no. 3, pp. 1049–1058, Mar. 2017. Cerca con Google

[200] N. S. McIntyre and in D. Briggs and M. P. Seah (eds.), “Practical Surface Analysis in Auger and X-ray Photoelectron Spectroscopy,” John Wiley Sons, New York, vol. 1, pp. 397–427, 1983. Cerca con Google

[201] O. Mn, J. Pike, J. Hanson, L. Zhang, and S. Chan, “Synthesis and Redox Behavior of Nanocrystalline Hausmannite,” Society, vol. 42, no. 11, pp. 5609–5616, 2007. Cerca con Google

[202] S. C. Kim and W. G. Shim, “Catalytic combustion of VOCs over a series of manganese oxide catalysts,” Appl. Catal. B Environ., vol. 98, no. 3–4, pp. 180–185, 2010. Cerca con Google

[203] Gregg S J and K. S. W. Sing, “Adsorption, Surface Area and Porosity,” New York, Academic Press. 1999. Cerca con Google

[204] Z. A. Alothman, “A review: Fundamental aspects of silicate mesoporous materials,” Materials (Basel)., vol. 5, no. 12, pp. 2874–2902, 2012. Cerca con Google

[205] E. R. Stobbe, B. A. de Boer, and J. W. Geus, “The reduction and oxidation behaviour of manganese oxides,” Catal. Today, vol. 47, no. 1–4, pp. 161–167, Jan. 1999. Cerca con Google

[206] F. Kapteijn, L. Singoredjo, A. Andreini, and J. A. Moulijn, “Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia,” Appl. Catal. B Environ., vol. 3, no. 2–3, pp. 173–189, Feb. 1994. Cerca con Google

[207] F. C. Buciuman, F. Patcas, and J. Zsakó, “TPR-study of Substitution Effects on Reducibility and Oxidative Non-stoichiometry of La0.8A’0.2MnO3+δ Perovskites,” J. Therm. Anal. Calorim., vol. 61, no. 3, pp. 819–825, 2000. Cerca con Google

[208] H. Yang, P. G. Kotula, Y. Sato, M. Chi, Y. Ikuhara, and N. D. Browning, “Segregation of Mn2+ dopants as interstitials in SrTiO3 grain boundaries,” Mater. Res. Lett., vol. 2, no. 1, pp. 16–22, 2014. Cerca con Google

[209] J. Requies, M. B. Güemez, S. Perez Gil, V. L. Barrio, J. F. Cambra, U. Izquierdo, and P. L. Arias, “Natural and synthetic iron oxides for hydrogen storage and purification,” J. Mater. Sci., vol. 48, no. 14, pp. 4813–4822, 2013. Cerca con Google

[210] H.-Y. Lin, Y.-W. Chen, and C. Li, “The mechanism of reduction of iron oxide by hydrogen,” Thermochim. Acta, vol. 400, no. 1, pp. 61–67, 2003. Cerca con Google

[211] G. Xiao, Q. Liu, S. Wang, V. G. Komvokis, M. D. Amiridis, A. Heyden, S. Ma, and F. Chen, “Synthesis and characterization of Mo-doped SrFeO 3-δ as cathode materials for solid oxide fuel cells,” J. Power Sources, vol. 202, pp. 63–69, 2012. Cerca con Google

[212] Y. Niu, J. Sunarso, F. Liang, W. Zhou, Z. Zhu, and Z. Shao, “A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO3 − δ Perovskite Cathodes,” J. Electrochem. Soc., vol. 158, no. 2, pp. B132–B138, 2011. Cerca con Google

[213] S. Q. Chen, H. Wang, and Y. Liu, “Perovskite La-St-Fe-O (St=Ca, Sr) supported nickel catalysts for steam reforming of ethanol: The effect of the A site substitution,” Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 7995–8005, 2009. Cerca con Google

[214] G. Pecchi, M. G. Jiliberto, A. Buljan, and E. J. Delgado, “Relation between defects and catalytic activity of calcium doped LaFeO 3 perovskite,” Solid State Ionics, vol. 187, no. 1, pp. 27–32, 2011. Cerca con Google

[215] H. Xian, F.-L. Li, X.-G. Li, X.-W. Zhang, M. Meng, T.-Y. Zhang, and N. Tsubaki, “Influence of preparation conditions to structure property, NOx and SO2 sorption behavior of the BaFeO3−x perovskite catalyst,” Fuel Process. Technol., vol. 92, no. 9, pp. 1718–1724, 2011. Cerca con Google

[216] F. Dong, D. Chen, Y. Chen, Q. Zhao, and Z. Shao, “La-doped BaFeO3-δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte,” J. Mater. Chem., vol. 22, no. 30, pp. 15071–15079, 2012. Cerca con Google

[217] N. Li, A. Boréave, J. P. Deloume, and F. Gaillard, “Catalytic combustion of toluene over a Sr and Fe substituted LaCoO3 perovskite,” Solid State Ionics, vol. 179, no. 27–32, pp. 1396–1400, 2008. Cerca con Google

[218] R. Zhang, A. Villanueva, H. Alamdari, and S. Kaliaguine, “Crystal structure, redox properties and catalytic performance of Ga-based mixed oxides for NO reduction by C3H6,” Catal. Commun., vol. 9, no. 1, pp. 111–116, 2008. Cerca con Google

[219] A. A. Leontiou, A. K. Ladavos, T. V. Bakas, T. C. Vaimakis, and P. J. Pomonis, “Reverse uptake of oxygen from La1−xSrx (Fe3+/Fe4+)O3±δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, 0.90),” Appl. Catal. A Gen., vol. 241, no. 1, pp. 143–154, 2003. Cerca con Google

[220] T. Seiyama, N. Yamazoe, and K. Eguchi, “Characterization and activity of some mixed metal oxide catalysts,” Ind. Eng. Chem. Prod. Res. Dev., vol. 24, no. 1, pp. 19–27, 1985. Cerca con Google

[221] T. Nitadori and M. Misono, “Catalytic properties of La1 − xA′xFeO3(A′ = Sr,Ce) and La1 − xCexCoO3,” J. Catal., vol. 93, no. 2, pp. 459–466, Jun. 1985. Cerca con Google

[222] B. P. Barbero, J. A. Gamboa, and L. E. Cadús, “Synthesis and characterisation of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds,” Appl. Catal. B Environ., vol. 65, no. 1–2, pp. 21–30, May 2006. Cerca con Google

[223] M. I. Zaki, M. A. Hasan, L. Pasupulety, N. E. Fouad, and H. Knözinger, “CO and CH4 total oxidation over manganese oxide supported on ZrO2, TiO2, TiO2–Al2O3 and SiO2–Al2O3 catalysts,” New J. Chem., vol. 23, no. 12, pp. 1197–1202, 1999. Cerca con Google

[224] Y. Han, K. Ramesh, L. Chen, E. Widjaja, and S. Chilukoti, “Observation of the Reversible Phase-Transformation of r -Mn 2 O 3 Nanocrystals during the Catalytic Combustion of Methane by in Situ Raman Spectroscopy,” J. Phys. Chem. C Lett., vol. 3, pp. 2830–2833, 2007. Cerca con Google

[225] N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, L. Mogni, and A. Caneiro, “Rate limiting steps of the porous La0.6Sr0.4Co0.8Fe0.2O3−δ electrode material,” Solid State Ionics, vol. 180, no. 28–31, pp. 1448–1452, Nov. 2009. Cerca con Google

[226] D. Rembelski, J. P. Viricelle, L. Combemale, and M. Rieu, “Characterization and Comparison of Different Cathode Materials for SC-SOFC: LSM, BSCF, SSC, and LSCF,” Fuel Cells, vol. 12, no. 2, pp. 256–264, Apr. 2012. Cerca con Google

[227] F. S. Baumann, J. Maier, and J. Fleig, “The polarization resistance of mixed conducting SOFC cathodes: A comparative study using thin film model electrodes,” Solid State Ionics, vol. 179, no. 21–26, pp. 1198–1204, 2008. Cerca con Google

[228] E. Siebert, A. Hammouche, and M. Kleitz, “Impedance spectroscopy analysis of La1-xSrxMnO3-yttria-stabilized zirconia electrode kinetics,” Electrochim. Acta, vol. 40, no. 11, pp. 1741–1753, 1995. Cerca con Google

[229] T. Ishihara, “Solid oxide reversible cells (SORCs) using LaGaO3-based oxide electrolyte and oxide fuel electrode,” vol. 20001, p. 20001, 2017. Cerca con Google

[230] C. Yang, Z. Yang, C. Jin, M. Liu, and F. Chen, “High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8Nb0.2O4+δ–Co–Fe alloy hydrogen electrodes,” Int. J. Hydrogen Energy, vol. 38, no. 26, pp. 11202–11208, Aug. 2013. Cerca con Google

[231] T. H. Shin, J.-H. Myung, M. Verbraeken, G. Kim, and J. T. S. Irvine, “Oxygen deficient layered double perovskite as an active cathode for CO 2 electrolysis using a solid oxide conductor,” Faraday Discuss., vol. 182, pp. 227–239, 2015. Cerca con Google

[232] X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki, and K. Miura, “Interface reactions in the NiO-SDC-LSGM system,” Solid State Ionics, vol. 133, no. 3, pp. 153–160, 2000. Cerca con Google

[233] A. T. Duong and D. R. Mumm, “On the interaction of SSC and LSGM in composite SOFC electrodes,” J. Power Sources, vol. 241, pp. 281–287, 2013. Cerca con Google

[234] K. Chen and S. P. Jiang, “Review—Materials Degradation of Solid Oxide Electrolysis Cells,” J. Electrochem. Soc., vol. 163, no. 11, pp. F3070–F3083, 2016. Cerca con Google

[235] K. Huang, J.-H. Wan, and J. B. Goodenough, “Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials,” J. Electrochem. Soc., vol. 148, no. 7, p. A788, 2001. Cerca con Google

[236] R. Polini, A. Falsetti, and E. Traversa, “Sol-gel synthesis and characterization of Co-doped LSGM perovskites,” J. Eur. Ceram. Soc., vol. 25, no. 12 SPEC. ISS., pp. 2593–2598, 2005. Cerca con Google

[237] K. Bin Yoo and G. M. Choi, “Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC,” Solid State Ionics, vol. 180, no. 11–13, pp. 867–871, 2009. Cerca con Google

[238] T. Zhu, D. E. Fowler, K. R. Poeppelmeier, M. Han, and S. A. Barnett, “Hydrogen Oxidation Mechanisms on Perovskite Solid Oxide Fuel Cell Anodes,” J. Electrochem. Soc., vol. 163, no. 8, pp. F952–F961, 2016. Cerca con Google

[239] Q. X. Fu, F. Tietz, and D. Stöver, “La[sub 0.4]Sr[sub 0.6]Ti[sub 1−x]Mn[sub x]O[sub 3−δ] Perovskites as Anode Materials for Solid Oxide Fuel Cells,” J. Electrochem. Soc., vol. 153, no. 4, p. D74, 2006. Cerca con Google

[240] K. Hosoi, H. Hagiwara, S. Ida, and T. Ishihara, “La 0.8 Sr 0.2 FeO 3−δ as Fuel Electrode for Solid Oxide Reversible Cells Using LaGaO 3 -Based Oxide Electrolyte,” J. Phys. Chem. C, vol. 120, no. 29, pp. 16110–16117, Jul. 2016. Cerca con Google

[241] X. Yang and J. T. S. Irvine, “(La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam,” J. Mater. Chem., vol. 18, no. 20, p. 2349, 2008. Cerca con Google

[242] M. Gong, X. Liu, J. Trembly, and C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application,” J. Power Sources, vol. 168, no. 2, pp. 289–298, 2007. Cerca con Google

[243] X. Ge, C. Fu, and S. H. Chan, “Double layer capacitance of anode/solid-electrolyte interfaces,” Phys. Chem. Chem. Phys., vol. 13, no. 33, p. 15134, 2011. Cerca con Google

[244] J. Nielsen and J. Hjelm, “Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes,” Electrochim. Acta, vol. 115, pp. 31–45, 2014. Cerca con Google

[245] A. Flura, C. Nicollet, S. Fourcade, V. Vibhu, A. Rougier, J.-M. Bassat, and J.-C. Grenier, “Identification and modelling of the oxygen gas diffusion impedance in SOFC porous electrodes: application to Pr2NiO4+δ,” Electrochim. Acta, vol. 174, pp. 1030–1040, Aug. 2015. Cerca con Google

[246] C. Sun and U. Stimming, “Recent anode advances in solid oxide fuel cells,” J. Power Sources, vol. 171, no. 2, pp. 247–260, 2007. Cerca con Google

[247] T. Hibino and H. Iwahara, “Simplification of Solid Oxide Fuel Cell System Using Partial Oxidation of Methane,” Chemistry Letters, vol. 22, no. 7. pp. 1131–1134, 1993. Cerca con Google

[248] Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. a Barnett, “A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.,” Nature, vol. 435, no. 7043, pp. 795–798, 2005. Cerca con Google

[249] M. Kuhn, T. W. Napporn, M. Meunier, S. Vengallatore, and D. Therriault, “Miniaturization limits for single-chamber micro-solid oxide fuel cells with coplanar electrodes,” J. Power Sources, vol. 194, pp. 941–949, 2009. Cerca con Google

[250] M. Kuhn, T. W. Napporn, M. Meunier, and D. Therriault, “Single-chamber micro solid oxide fuel cells : Study of anode and cathode materials in coplanar electrode design,” Solid State Ionics, vol. 181, no. 5–7, pp. 332–337, 2010. Cerca con Google

[251] I. Riess, “Catalytic Requirements for Mixed Reactant Fuel Cells,” Funct. Mater. Lett., vol. 1, no. 2, pp. 105–113, 2008. Cerca con Google

[252] I. Riess, “Significance of impeded reactions in solid state electrochemistry–Conspicuous examples,” Solid State Ionics, vol. 177, no. 19–25, pp. 1591–1596, Oct. 2006. Cerca con Google

[253] I. Riess, “The significance of impeded reactions in solid state electrochemistry,” Solid State Ion. BT - 7th Int. Symp. Syst. with Fast Ion. Transp., vol. 176, no. 19–22, pp. 1667–1674, 2004. Cerca con Google

[254] I. Riess, “Catalysis of electrochemical processes and the suppression of chemical ones are needed in mixed reactant fuel cells — Can this be achieved?,” Solid State Ionics, vol. 181, no. 17–18, pp. 790–795, Jun. 2010. Cerca con Google

[255] D. Rembelski, M. Rieu, L. Combemale, and J. P. Viricelle, “In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells,” J. Power Sources, vol. 242, pp. 811–816, 2013. Cerca con Google

[256] B. Morel, R. Roberge, S. Savoie, T. W. Napporn, and M. Meunier, “Temperature and performance variations along single chamber solid oxide fuel cells,” J. Power Sources, vol. 186, no. 1, pp. 89–95, Jan. 2009. Cerca con Google

[257] G. Yang, C. Su, W. Wang, R. Ran, M. O. Tadé, and Z. Shao, “Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation,” J. Power Sources, vol. 264, pp. 220–228, Oct. 2014. Cerca con Google

[258] Z. H. Wang, Z. Lü, K. F. Chen, B. Wei, X. B. Zhu, X. Q. Huang, and W. H. Su, “Redox Tolerance of Thin and Thick Ni/YSZ Anodes of Electrolyte-Supported Single-Chamber Solid Oxide Fuel Cells under Methane Oxidation Conditions,” Fuel Cells, vol. 13, no. 6, pp. 1109–1115, Dec. 2013. Cerca con Google

[259] J. Malveiro, T. Ramos, L. P. Ferreira, J. C. Waerenborgh, M. R. Nunes, M. Godinho, and M. D. Carvalho, “Magnesium doping on brownmillerite Ca2FeAlO5,” J. Solid State Chem., vol. 180, no. 6, pp. 1863–1874, 2007. Cerca con Google

[260] A. Shaula, Y. Pivak, J. Waerenborgh, P. Gaczynski, A. Yaremchenko, and V. Kharton, “Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions,” Solid State Ionics, vol. 177, no. 33–34, pp. 2923–2930, Nov. 2006. Cerca con Google

[261] F. Ramezanipour, J. E. Greedan, L. M. D. Cranswick, V. O. Garlea, J. Siewenie, G. King, A. Llobet, and R. L. Donaberger, “The effect of the B-site cation and oxygen stoichiometry on the local and average crystal and magnetic structures of Sr2Fe1.9M0.1O5+y (M = Mn, Cr, Co; y = 0, 0.5),” J. Mater. Chem., vol. 22, no. 19, p. 9522, 2012. Cerca con Google

[262] J.-P. Eufinger, A. Schmidt, M. Lerch, and J. Janek, “Novel anion conductors – conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C 12 A 7 :X (X = O, OH, Cl, F, CN, S, N),” Phys. Chem. Chem. Phys., vol. 17, no. 10, pp. 6844–6857, 2015. Cerca con Google

[263] H. Hosono, K. Hayashi, T. Kamiya, T. Atou, and T. Susaki, “New functionalities in abundant element oxides: ubiquitous element strategy,” Sci. Technol. Adv. Mater., vol. 12, no. 3, p. 34303, 2011. Cerca con Google

[264] J. T. S. Irvine, M. Lacerda, and A. R. West, “Oxide ion conductivity in Ca12Al14O33,” Mater. Res. Bull., vol. 23, no. 7, pp. 1033–1038, 1988. Cerca con Google

[265] J. C. Waerenborgh, D. P. Rojas, N. P. Vyshatko, A. L. Shaula, V. V. Kharton, I. P. Marozau, and E. N. Naumovich, “Fe4+ formation in brownmillerite CaAl0.5Fe0.5O2.5+δ,” Mater. Lett., vol. 57, no. 28, pp. 4388–4393, Oct. 2003. Cerca con Google

[266] S. Tian, J. Jiang, D. Hosseini, A. M. Kierzkowska, Q. Imtiaz, M. Broda, and C. R. Müller, “Development of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process - Supporting Information,” ChemSusChem, vol. 8, no. 22, pp. 3839–3846, 2015. Cerca con Google

[267] D. Hirabayashi, T. Yoshikawa, K. Mochizuki, K. Suzuki, and Y. Sakai, “Formation of brownmillerite type calcium ferrite (Ca2Fe 2O5) and catalytic properties in propylene combustion,” Catal. Letters, vol. 110, no. 3–4, pp. 269–274, 2006. Cerca con Google

[268] M. Liang, W. Kang, and K. Xie, “Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique,” J. Nat. Gas Chem., vol. 18, no. 1, pp. 110–113, Mar. 2009. Cerca con Google

[269] G. Carollo, A. Garbujo, D. Ferri, M. M. Natile, and A. Glisenti, “Cu/CGO Cermet Based Electrodes for Symmetric and Reversible Solid Oxide Fuel Cells,” in Hydrogen and Fuel Cells, pp. 53–64. Cerca con Google

[270] A. Ringuedé and J. Fouletier, “Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures,” Solid State Ionics, vol. 139, no. 3–4, pp. 167–177, 2001. Cerca con Google

[271] Y. L. Yang, A. J. Jacobson, C. L. Chen, G. P. Luo, K. D. Ross, and C. W. Chu, “Oxygen exchange kinetics on a highly oriented La0.5Sr0.5CoO3-?? thin film prepared by pulsed-laser deposition,” Appl. Phys. Lett., vol. 79, no. 6, pp. 776–778, 2001. Cerca con Google

[272] T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, and I. Anzai, “Reaction Between Solid Oxide Fuel-Cell Materials,” Solid State Ionics, vol. 50, no. 3–4, pp. 189–196, 1992. Cerca con Google

[273] M. Liu, “Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors,” Solid State Ionics, vol. 107, no. 1–2, pp. 105–110, 1998. Cerca con Google

[274] T. Ishihara, T. Yamada, H. Arikawa, H. Nishiguchi, and Y. Takita, “Mixed electronic – oxide ionic conductivity and oxygen permeating property of Fe- , Co- or Ni-doped LaGaO 3 perovskite oxide,” Solid State Ionics, vol. 135, pp. 631–636, 2000. Cerca con Google

[275] V. V. Kharton, A. L. Shaulo, A. P. Viskup, M. Avdeev, A. A. Yaremchenko, M. V. Patrakeev, A. I. Kurbakov, E. N. Naumovich, and F. M. B. Marques, “Perovskite-like system (Sr,La)(Fe,Ga)O3-δ: Structure and ionic transport under oxidizing conditions,” Solid State Ionics, vol. 150, no. 3–4, pp. 229–243, 2002. Cerca con Google

[276] S. Kim, S. Wang, X. Chen, Y. L. Yang, N. Wu, A. Ignatiev, A. J. Jacobson, and B. Abeles, “Oxygen surface exchange in mixed ionic electronic conductors: Application La0.5Sr0.5Fe0.8Ga0.2O3-delta,” J. Electrochem. Soc., vol. 147, no. 6, pp. 2398–2406, 2000. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record