Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Rossi, Alice (2018) Effects of Presenilin 2 mutations associated with Familial Alzheimer's Disease on mitochondrial bioenergetics. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 15 January 2021 for intellectual property related reasons.
Visibile to: nobody


Abstract (english)

Alzheimer’s Disease (AD) is a neurodegenerative disorder of the central nervous system. It is mainly sporadic, however, a little percentage of cases is inherited (Familial AD, FAD) and due to autosomal dominant mutations on three different genes, coding for Amyloid Precursor Protein (APP), Presenilin 1 (PS1) and Presenilin 2 (PS2). Presenilins, mainly localized at Endoplasmic Reticulum (ER) membranes, are the catalytic core of the ɣ-secretase complex, although several ɣ-secretase-independent activities of PSs, such as modulation of neurites outgrowth, apoptosis, autophagy, synaptic functions and regulation of Ca2+ homeostasis, have been described.
Ca2+, a key intracellular second messenger, is involved in multiple cellular functionalities. Interestingly, alterations in Ca2+ homeostasis have been proposed as an early event in different neurodegenerative diseases, including AD. Notably, FAD-PS mutants have been reported to be directly involved in these dysregulations. In our lab, it has been previously showed that PS2 expression, both WT and, more potently, FAD mutants (such as PS2-T122R), but not PS1, decreases the ER Ca2+ content, mainly by inhibiting SERCA pump activity. Moreover, PS2 increases ER-mitochondria physical and functional coupling, favouring the process of ER to mitochondria Ca2+ transfer. However, due to its effect on ER [Ca2+], which results in a lower amount of available Ca2+ within the ER, its expression dampens mitochondrial Ca2+ rises upon cell stimulation.
Based on the well-established role of Ca2+ on mitochondrial metabolism, here we investigate the possible effects on mitochondrial functionalities of the complex balance between alterations in ER Ca2+ content and increased ER-mitochondria coupling, induced by FAD-PS2 mutants expression. A neuroblastoma cell line (SH-SY5Y) grown in a medium containing galactose, as a substitute of glucose, has been used. This growth condition enhances mitochondrial metabolism and results in an excellent experimental protocol to visualize possible mitochondrial defects.
Lower total cellular ATP levels were measured in FAD-PS2-T122R expressing cells, grown either in glucose- or galactose-containing medium, with the reduction more evident in the latter condition, thus suggesting possible mitochondrial defects induced by PS2 expression.
In order to investigate how Ca2+ dysregulation induced by PS2 could influence mitochondrial metabolism, we stimulated mitochondrial ATP production inducing ER Ca2+ release, followed by mitochondria Ca2+ uptake, using both bradykinin, as a maximal IP3R stimulation, and Fetal Calf Serum (FCS), as a more physiological stimulus. In both conditions, a reduction in mitochondrial ATP production, measured by a mitochondrial luciferase-based ATP probe, has been observed in cells expressing FAD-PS2, but not PS1. The defects in ATP synthesis were observed in SH-SY5Y, MEF, HT22 cells and in cortical neurons from PS2-N141I transgenic (Tg) mice (PS2.30H), by employing FRET-based ATP probes (ATeam 1.03) specifically targeted to the mitochondrial matrix or the nucleus. We also evaluated the glycolytic flux in these cells, by both employing a cytosolic luciferase-based ATP probe and measuring the extracellular medium acidification, but we did not observed any difference in these two parameters in FAD-PS2 expressing cells, compared to controls.
In order to understand the mechanism through which PS2 causes the observed mitochondrial dysfunction, we firstly considered the marked Ca2+ dysregulation induced by PS2 expression. We thus decided to modulate Ca 2+ handling in control cells, to mimic the ER Ca2+ depletion caused by PS2 expression. We used two different approaches: i) treating control cells with a SERCA pump inhibitor (Cyclopiazonic acid, CPA), to partially reduce the ER Ca2+ content, or ii) overexpressing a mutated-MICU1 (MICU1mut), a component of the mitochondrial Ca2+ uniporter complex. Although both approaches were able to reduce the capacity of control cells to produce ATP, for similar mitochondrial Ca2+ uptake in control and PS2-expressing cells, a lower mitochondrial ATP production in FAD-PS2 expressing-cells compared to CPA-treated or MICU1mut expressing controls was still observed. Taken together, these results suggest that part of the FAD-PS2-induced defects in mitochondrial metabolism is due to a reduced ER Ca2+ content and, consequently, mitochondrial Ca2+ uptake, negatively regulating the Ca2+-dependent mitochondrial metabolism. However, additional mechanisms, induced by FAD-PS2, are likely involved in mitochondrial dysfunctions. We thus evaluated the respiratory chain activity measuring the oxygen consumption rate (OCR): both basal and maximal OCR were reduced in FAD-PS2, but not in FAD-PS1, expressing cells. Moreover, a reduced mitochondrial ATP-linked respiration was measured in PS2-T122R expressing cells, while no difference was found in the proton leak.
Since the expression levels of the ATP synthase and the respiratory chain complexes were not affected by FAD-PS2 expression, and isolated mitochondria from WT and PS2-N141I Tg mice did not reveal substantial differences in mitochondrial respiratory activity, we reasoned that the impairment in ATP production observed in intact cells is not due to defective mitochondria per se, but likely depends on the cellular environment.
Importantly, for a proper mitochondrial metabolism, the right amount of substrates produced through glycolysis in the cytosol has to reach the mitochondrial matrix to support the TCA cycle and the respiratory chain activity. Hexokinase1 (HK1), the enzyme that catalyses the first step of glycolysis converting glucose to glucose 6-phosphate, seems to be involved in the modulation of the mitochondrial substrates import, since HK1 interaction/detachment with/from mitochondria can modulate mitochondrial substrates permeability. Firstly, we measured a reduced HK1-mitochondria co-localization in FAD-PS2 expressing SH-SY5Y cells, in FAD-PS2 patient-derived fibroblasts and in primary cortical neurons from FAD-PS2-N141I Tg mice, compared to controls. By mimicking the FAD-PS2 effect on HK1-mitochondria interaction treating control cells with Clotrimazole, a drug capable to detach HK1 from mitochondria, a reduced mitochondrial ATP production was measured; however, the impairment on ATP production induced by clotrimazole was less marked than that caused by FAD-PS2 expression. These results indicate that, although the detachment of HK1 from mitochondria plays a pivotal role in causing mitochondrial defects upon FAD-PS2 expression, the PS2-induced Ca2+ dysregulation, described above, may additionally contribute to the overall mitochondrial impairment. These results have been confirmed also by a genetic approach. We down-regulated the expression of endogenous HK1, by specific siRNAs, and we rescued HK1 protein level by over-expressing siRNA-resistant full-length- (FL-HK1) or truncated- (Tr-HK1) HK1. This latter protein lacks the mitochondrial binding domain, but still conserves the catalytic activity. We found that, upon endogenous HK1 silencing, mitochondrial ATP production is strongly reduced. Interestingly, while the re-expression of FL-HK1 was able to completely rescue the reduced ATP production, the Tr-HK1 was unable to do it, again confirming that the detachment of HK1 from mitochondria is involved in the mitochondrial impairment caused by FAD-PS2.
Related to HK1 and its role in the regulation of mitochondrial substrates permeability, an increase in the cytosolic amount of pyruvate was measured in FAD-PS2 expressing cells, compared to controls, employing a cytosolic FRET-based pyruvate probe, Pyronic. Importantly, by pharmacologically blocking mitochondrial pyruvate carrier (MPC), the protein responsible for mitochondrial pyruvate uptake, with two different drugs, UK5099 and Pioglitazone, no differences were anymore detected between control and FAD-PS2 expressing cells, suggesting that FAD-PS2 is acting on this pathway.
Overall, we have showed that FAD-PS2 mutants decrease cellular ATP levels, in particular mitochondrial ATP production, by two different mechanisms: 1) causing Ca2+ dysregulation, mainly decreasing the ER Ca2+ content, and thus the amount of Ca2+ available for mitochondrial Ca2+ uptake; 2) inducing the detachment of HK1 from mitochondria, likely affecting the availability of substrates (i.e., pyruvate) for mitochondria. Further experiments will be aimed at: i) evaluate the impact of the PS2-dependent strengthened ER-mitochondria coupling on the reported mitochondrial defects; ii) defining the molecular mechanism through which FAD- PS2 mutants affect HK1 intracellular distribution; iii) evaluate the impact of these alterations on the onset/progression of the AD phenotype.

Abstract (italian)

La malattia di Alzheimer è un disturbo neurodegenerativo del sistema nervoso centrale. È, principalmente, una malattia sporadica; tuttavia in una piccola percentuale di casi è ereditata e dovuta a mutazioni autosomiche dominanti in tre diversi geni, che codificano per la Proteina Precursore dell’Amiloide (APP), per Presenilina1 (PS1) e per Presenilina2 (PS2). Le preseniline, principalmente localizzate nella membrana del reticolo endoplasmatico (RE), costituiscono la porzione catalitica del complesso enzimatico della ɣ-secretasi. Le stesse, oltre ad essere fondamentali per l’attività di questo complesso enzimatico, hanno molte funzioni che sono indipendenti dalla ɣ-secretasi; tra queste, la modulazione della crescita dei neuriti, dell’apoptosi, dell’autofagia, delle funzioni sinaptiche e dell’omeostasi del Ca2+.
Il Ca2+ è un secondo messaggero intracellulare fondamentale, coinvolto in molteplici funzionalità cellulari; alterazioni dell'omeostasi del Ca2+ sono state proposte come eventi precoci in diverse malattie neurodegenerative, tra cui la malattia di Alzheimer. In particolare, è stato dimostrato che mutazioni in PS2 associate a forme familiari di Alzheimer (FAD) sono direttamente coinvolte in queste alterazioni. Nel nostro laboratorio è stato precedentemente dimostrato che l'espressione di PS2, sia della forma WT ma soprattutto delle forme mutate associate a FAD (come PS2-T122R), ma non di PS1, riduce il contenuto di Ca2 + nel RE principalmente inibendo l'attività della pompa SERCA. PS2, inoltre, aumenta la vicinanza fisica e funzionale di RE e mitocondri, favorendo il processo di trasferimento di Ca2+ tra i due organelli; tuttavia, a causa del suo effetto sulla [Ca2+] nel RE, che ha come conseguenza una minore quantità di Ca2 + disponibile per il rilascio nel citosol, la quantità di Ca2 + che entra nei mitocondri, dopo stimolazione, è ridotta.
Sulla base del ruolo fondamentale svolto dal Ca2 + nella regolazione del metabolismo mitocondriale, nel lavoro presentato in questa tesi abbiamo esaminato i possibili effetti sulla funzionalità mitocondriale del complesso equilibrio tra alterazioni del contenuto di Ca2+ nel RE e l’aumento della vicinanza tra RE e mitocondri, indotti dall’espressione di forme mutate di PS2 legate a FAD. Per svolgere questo studio abbiamo utilizzato una linea cellulare di neuroblastoma (SH-SY5Y), cresciuta in un terreno contenente galattosio, invece di glucosio. Infatti, le cellule cresciute in un terreno che contiene galattosio aumentano il metabolismo mitocondriale, rendendo così questo protocollo sperimentale ottimale per evidenziare eventuali difetti mitocondriali.
In cellule esprimenti FAD-PS2-T122R, cresciute in un terreno contenente glucosio o galattosio, sono stati misurati livelli totali di ATP cellulare minori rispetto a quelli di cellule di controllo. La riduzione di questo parametro era più evidente in cellule cresciute in terreno contenente galattosio, suggerendo possibili difetti mitocondriali indotti da PS2.
Per studiare come la deregolazione del Ca2+, causata dall'espressione di PS2, possa influenzare il metabolismo mitocondriale, abbiamo indotto il rilascio di Ca2+ dal RE, a cui segue un aumento di Ca2+ nei mitocondri che conseguentemente stimola la produzione di ATP mitocondriale. A tal fine abbiamo utilizzato sia bradichinina, come stimolo massimale del recettore IP3, sia siero fetale di vitello (FCS), contenente fattori che inducono una stimolazione più fisiologica dello stesso recettore. In entrambe le condizioni, è stata osservata una riduzione nella produzione di ATP mitocondriale, misurata utilizzando luciferasi (in particolare la sonda mitocondriale), in cellule esprimenti FAD-PS2, ma non in cellule che esprimevano FAD-PS1. I difetti nella sintesi di ATP sono stati osservati in cellule SH-SY5Y, MEF, HT22 e in neuroni corticali di topi FAD-PS2-N141I (Tg, PS2.30H), utilizzando anche sonde per l’ATP basate su FRET (ATeam 1.03), contemporaneamente espresse nella matrice mitocondriale e nel nucleo. Abbiamo anche valutato se l’espressione di FAD-PS2 potesse influenzare la glicolisi; per fare questo, abbiamo espresso in cellule una luciferasi citosolica, per valutare l’ATP prodotta nel citoplasma, e abbiamo misurato l’acidificazione del mezzo extracellulare, come indice di glicolisi. Per entrambe i parametri, non abbiamo osservato alcuna differenza tra cellule esprimenti FAD-PS2 o di controllo.
Per comprendere il meccanismo attraverso il quale PS2 causa la disfunzione mitocondriale osservata, data la nota deregolazione dell’omeostasi del Ca2+ indotta da PS2, abbiamo innanzitutto deciso di simulare la deplezione di Ca2+ nel RE causata dall’espressione di PS2 nelle cellule di controllo. Abbiamo usato due approcci diversi: da un lato abbiamo trattato le cellule di controllo con un inibitore della pompa SERCA (acido ciclopiazonico, CPA) per ridurre il contenuto di Ca2+ nel RE, dall’altro abbiamo sovraespresso una forma mutata di MICU1 (MICU1mut). In entrambi i casi abbiamo ottenuto una riduzione nell’entrata di Ca2+ nel mitocondrio, mimando perfettamente il difetto causato dall’espressione di FAD-PS2. Come atteso, il trattamento con CPA e l'overepressione di MICU1mut riducono notevolmente la produzione di ATP rispetto alle cellule di controllo non trattate. Ciononostante, a parità di Ca2+ che entra nel mitocondrio in cellule esprimenti o meno FAD-PS2, abbiamo misurato una minore produzione di ATP mitocondriale in cellule esprimenti forme mutate di PS2, rispetto ai controlli trattati con CPA o esprimenti MICU1mut. Tali risultati suggeriscono che i difetti nel metabolismo mitocondriale indotti dall’espressione di FAD-PS2 solo almeno in parte riconducibili alla riduzione del contenuto di Ca2+ nel RE, e quindi al suo ingresso nei mitocondri. Tuttavia, sono probabilmente coinvolti meccanismi aggiuntivi nelle disfunzioni mitocondriali osservate. Abbiamo, quindi, valutato l'attività della catena respiratoria misurando la velocità nel consumo di ossigeno (OCR). E’ stato così possibile osservare che sia il consumo di ossigeno a basale che il massimo consumo di ossigeno sono ridotti in cellule esprimenti FAD-PS2, ma non FAD-PS1. Inoltre, in cellule esprimenti PS2-T122R è stata misurata una riduzione della respirazione mitocondriale legata alla produzione di ATP. Tuttavia, poiché i livelli di espressione dell’ATP sintasi e dei complessi della catena respiratoria non variano, in seguito all’espressione di PS2, e dato che misure di respirazione in mitocondri isolati da topi WT e PS2-N141I Tg non hanno rivelato differenze sostanziali, la riduzione nella produzione di ATP osservata in cellule intatta non è verosimilmente dovuta ad un’alterazione intrinseca nell'attività della catena respiratoria. Questo suggerisce che i difetti riscontrati possano dipendere dall'ambiente cellulare, piuttosto che da un difetto intrinseco degli stessi mitocondri.
Per un corretto metabolismo mitocondriale, la giusta quantità di substrati prodotti nel citoplasma attraverso la glicolisi deve raggiungere la matrice mitocondriale per supportare il ciclo di Krebs e l'attività della catena respiratoria. L’esochinasi 1 (HK1), enzima che catalizza la prima reazione della glicolisi, convertendo il glucosio in glucosio 6-fosfato, sembra anche modulare l’ingresso dei substrati nei mitocondri, poiché l'interazione/distacco di HK1 con/dai mitocondri può modulare la permeabilità mitocondriale ai substrati. Abbiamo misurato una riduzione nella co-localizzazione tra HK1 e mitocondri in cellule SH-SY5Y esprimenti FAD-PS2, in fibroblasti da pazienti FAD con mutazioni in -PS2 e in neuroni corticali da topi transgenici FAD-PS2. Il trattamento di cellule di controllo con clotrimazolo, una sostanza nota per avere la capacità di indurre il distacco di HK1 dai mitocondri, si è rivelato capace di ridurre la colocalizzazione tra HK1 e mitocondri a un livello simile a quello causato da PS2, mimandone così l'effetto. In seguito a questo trattamento, cellule di controllo mostravano una ridotta produzione di ATP mitocondriale, rispetto a cellule non trattate; tuttavia, l'effetto del clotrimazolo sulla produzione di ATP era meno evidente rispetto alla diminuzione causata dall'espressione di FAD-PS2. Questo significa che, anche se il distacco di HK1 dai mitocondri svolge un ruolo importante nel determinare i difetti mitocondriali osservati in seguito a espressione di FAD-PS2, la disfunzione nell’omeostasi del Ca2+, descritta in precedenza, contribuisce anch’essa alla diminuzione complessiva dell’attività mitocondriale. Questi risultati sono stati confermati anche con un approccio genetico. Abbiamo abbattuto l'espressione di HK1 endogena, mediante specifici siRNAs e abbiamo sovra-espresso la forma intera di HK1 (FL-HK1) o la forma tronca di HK1 (Tr-HK1), proteina ques’ultima che manca del dominio di legame mitocondriale ma che presenta ancora l'attività catalitica. Il silenziamento della proteina endogena causa una notevole riduzione nella produzione di ATP mitocondriale; la ri-espressione di FL-HK1 è in grado di recuperare completamente il difetto nella produzione di ATP, mentre quella di Tr-HK1 no. Questi risultati confermano nuovamente che il distacco di HK1 dai mitocondri è coinvolto nella manifestazione dei difetti mitocondriali osservati in seguito all’espressione di FAD-PS2. Relativamente a HK1 e al suo ruolo nella regolazione della permeabilità mitocondriale ai substrati, in cellule esprimenti PS2 è stato misurato un aumento nella quantità di piruvato nel citoplasma . È importante notare come il blocco farmacologico della proteina responsabile del trasporto del piruvato all’interno del mitocondrio (MPC) con due diversi farmaci, UK5099 e Pioglitazone, annulli le differenze tra le cellule esprimenti FAD-PS2 e i controlli, indicando che l'espressione di FAD-PS2 agisce anche su questa via metabolica.
In questo lavoro, abbiamo mostrato che forme mutate di PS2 legate a FAD diminuiscono i livelli cellulari di ATP, in particolare la produzione di ATP mitocondriale, con due diversi meccanismi: 1) causando una deregolazione dell’omeostasi del Ca2+, principalmente diminuendo il contenuto di Ca2+ nel RE, e quindi il conseguente ingresso di Ca2+ nel mitocondrio; 2) inducendo il distacco di HK1 dai mitocondri, influenzando così la disponibilità di substrati (per es., piruvato) per i mitocondri. Ulteriori esperimenti saranno finalizzati a: i) valutare l'impatto dell’aumento della vicinanza tra RE e mitocondri causato dall’espressione di PS2 sui difetti mitocondriali riportati; ii) definire il meccanismo molecolare attraverso il quale FAD-PS2 induce il distacco di HK1 dai mitocondri; iii) valutare l’eventuale impatto di queste alterazioni nella progressione del fenotipo AD.

EPrint type:Ph.D. thesis
Tutor:Pizzo, Paola
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE BIOMEDICHE SPERIMENTALI
Data di deposito della tesi:09 January 2018
Anno di Pubblicazione:09 January 2018
Key Words:Malattia di Alzheimer, Presenilina2, bioenergetica mitocondrial, esochinasi, calcio. Alzheimer's Disease, Presenilin2, mitochondrial bioenergetics, hexokinase, calcium
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/04 Patologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche
Codice ID:10599
Depositato il:15 Nov 2018 12:51
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

• Abu-Hamad, S., Sivan, S., and Shoshan-Barmatz, V. (2006). The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc. Natl. Acad. Sci. U. S. A. 103, 5787-5792. Cerca con Google

• Abu-Hamad, S., Zaid, H., Israelson, A., Nahon, E., and Shoshan-Barmatz, V. (2008). Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J. Biol. Chem. 283, 13482-13490. Cerca con Google

• Amigo, I., Traba, J., Gonzalez-Barroso, M.M., Rueda, C.B., Fernandez, M., Rial, E., Sanchez, A., Satrustegui, J., and Del Arco, A. (2013). Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J. Biol. Chem. 288, 7791-7802. Cerca con Google

• Amoedo, N.D., Punzi, G., Obre, E., Lacombe, D., De Grassi, A., Pierri, C.L., and Rossignol, R. (2016). AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim. Biophys. Acta 1863, 2394-2412. Cerca con Google

• Anflous-Pharayra, K., Lee, N., Armstrong, D.L., and Craigen, W.J. (2011). VDAC3 has differing mitochondrial functions in two types of striated muscles. Biochim. Biophys. Acta 1807, 150-156. Cerca con Google

• Anunciado-Koza, R.P., Zhang, J., Ukropec, J., Bajpeyi, S., Koza, R.A., Rogers, R.C., Cefalu, W.T., Mynatt, R.L., and Kozak, L.P. (2011). Inactivation of the mitochondrial carrier SLC25A25 (ATP-Mg2+/Pi transporter) reduces physical endurance and metabolic efficiency in mice. J. Biol. Chem. 286, 11659-11671. Cerca con Google

• Area-Gomez, E., de Groof, A.J., Boldogh, I., Bird, T.D., Gibson, G.E., Koehler, C.M., Yu, W.H., Duff, K.E., Yaffe, M.P., Pon, L.A., and Schon, E.A. (2009). Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810-1816. Cerca con Google

• Area-Gomez, E., Del Carmen Lara Castillo, M., Tambini, M.D., Guardia-Laguarta, C., de Groof, A.J., Madra, M., Ikenouchi, J., Umeda, M., Bird, T.D., Sturley, S.L., and Schon, E.A. (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. Embo j. 31, 4106-4123. Cerca con Google

• Arzoine, L., Zilberberg, N., Ben-Romano, R., and Shoshan-Barmatz, V. (2009). Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J. Biol. Chem. 284, 3946-3955. Cerca con Google

• Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher-Timme, C.A., Sancak, Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L., Koteliansky, V., and Mootha, V.K. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341-345. Cerca con Google

• Belanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell. Metab. 14, 724-738. Cerca con Google

• Berg, J., Tymoczko, J., and Stryer L. (2002). Biochemistry Berg JM, Tymoczko JL, Stryer L.). Cerca con Google

• Berman, D.E., Dall'Armi, C., Voronov, S.V., McIntire, L.B., Zhang, H., Moore, A.Z., Staniszewski, A., Arancio, O., Kim, T.W., and Di Paolo, G. (2008). Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat. Neurosci. 11, 547-554. Cerca con Google

• Bernardi, P. (1999). Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127-1155. Cerca con Google

• Berridge, M.J. (2012). Calcium signalling remodelling and disease. Biochem. Soc. Trans. 40, 297-309. Cerca con Google

• Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529. Cerca con Google

• Bojarski, L., Pomorski, P., Szybinska, A., Drab, M., Skibinska-Kijek, A., Gruszczynska-Biegala, J., and Kuznicki, J. (2009). Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer's disease. Biochim. Biophys. Acta 1793, 1050-1057. Cerca con Google

• Bolanos, J.P., Almeida, A., and Moncada, S. (2010). Glycolysis: a bioenergetic or a survival pathway? Trends Biochem. Sci. 35, 145-149. Cerca con Google

• Bondarenko, A.I., Jean-Quartier, C., Parichatikanond, W., Alam, M.R., Waldeck-Weiermair, M., Malli, R., and Graier, W.F. (2014). Mitochondrial Ca(2+) uniporter (MCU)-dependent and MCU-independent Ca(2+) channels coexist in the inner mitochondrial membrane. Pflugers Arch. 466, 1411-1420. Cerca con Google

• Bootman, M.D., Chehab, T., Bultynck, G., Parys, J.B., and Rietdorf, K. (2017). The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium Cerca con Google

• Bragadin, M., Pozzan, T., and Azzone, G.F. (1979). Activation energies and enthalpies during Ca2+ transport in rat liver mitochondria. FEBS Lett. 104, 347-351. Cerca con Google

• Brand, M.D., and Nicholls, D.G. (2011). Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297-312. Cerca con Google

• Bravo, R., Vicencio, J.M., Parra, V., Troncoso, R., Munoz, J.P., Bui, M., Quiroga, C., Rodriguez, A.E., Verdejo, H.E., Ferreira, J., et al. (2011). Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell. Sci. 124, 2143-2152. Cerca con Google

• Brdiczka, D.G., Zorov, D.B., and Sheu, S.S. (2006). Mitochondrial contact sites: their role in energy metabolism and apoptosis. Biochim. Biophys. Acta 1762, 148-163. Cerca con Google

• Bricker, D.K., Taylor, E.B., Schell, J.C., Orsak, T., Boutron, A., Chen, Y.C., Cox, J.E., Cardon, C.M., Van Vranken, J.G., Dephoure, N., et al. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96-100. Cerca con Google

• Brookes, P.S., Parker, N., Buckingham, J.A., Vidal-Puig, A., Halestrap, A.P., Gunter, T.E., Nicholls, D.G., Bernardi, P., Lemasters, J.J., and Brand, M.D. (2008). UCPs--unlikely calcium porters. Nat. Cell Biol. 10, 1235-7; author reply 1237-40. Cerca con Google

• Brunello, L., Zampese, E., Florean, C., Pozzan, T., Pizzo, P., and Fasolato, C. (2009). Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J. Cell. Mol. Med. 13, 3358-3369. Cerca con Google

• Brunkan, A.L., and Goate, A.M. (2005). Presenilin function and gamma-secretase activity. J. Neurochem. 93, 769-792. Cerca con Google

• Cabezas-Opazo, F.A., Vergara-Pulgar, K., Perez, M.J., Jara, C., Osorio-Fuentealba, C., and Quintanilla, R.A. (2015). Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease. 2015, 509654. Cerca con Google

• Cali, T., Ottolini, D., and Brini, M. (2011). Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Biofactors 37, 228-240. Cerca con Google

• Cali, T., Ottolini, D., Negro, A., and Brini, M. (2013). Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. Biochim. Biophys. Acta 1832, 495-508. Cerca con Google

• Cali, T., Ottolini, D., Negro, A., and Brini, M. (2012). alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914-17929. Cerca con Google

• Cali, T., Ottolini, D., Soriano, M.E., and Brini, M. (2015). A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum. Mol. Genet. 24, 1045-1060. Cerca con Google

• Calkins, M.J., and Reddy, P.H. (2011). Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochim. Biophys. Acta 1812, 507-513. Cerca con Google

• Carafoli, E. (2005). Calcium--a universal carrier of biological signals. Delivered on 3 July 2003 at the Special FEBS Meeting in Brussels. Febs j. 272, 1073-1089. Cerca con Google

• Cardenas, C., Miller, R.A., Smith, I., Bui, T., Molgo, J., Muller, M., Vais, H., Cheung, K.H., Yang, J., Parker, I., et al. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270-283. Cerca con Google

• Cardenas, M.L., Cornish-Bowden, A., and Ureta, T. (1998). Evolution and regulatory Oxid Med. Cell. Longev role of the hexokinases. Biochim. Biophys. Acta 1401, 242-264. Cerca con Google

• Casley, C.S., Canevari, L., Land, J.M., Clark, J.B., and Sharpe, M.A. (2002). Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91-100. Cerca con Google

• Catterall, W.A. (2011). Voltage-gated calcium channels. Cold Spring Harb Perspect. Biol. 3, a003947. Cerca con Google

• Chan, S.L., Mayne, M., Holden, C.P., Geiger, J.D., and Mattson, M.P. (2000). Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J. Biol. Chem. 275, 18195-18200. Cerca con Google

• Chen, Y.R., and Glabe, C.G. (2006). Distinct early folding and aggregation properties of Alzheimer amyloid-beta peptides Abeta40 and Abeta42: stable trimer or tetramer formation by Abeta42. J. Biol. Chem. 281, 24414-24422. Cerca con Google

• Chiara, F., Castellaro, D., Marin, O., Petronilli, V., Brusilow, W.S., Juhaszova, M., Sollott, S.J., Forte, M., Bernardi, P., and Rasola, A. (2008). Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One 3, e1852. Cerca con Google

• Chow, J., Rahman, J., Achermann, J.C., Dattani, M.T., and Rahman, S. (2017). Mitochondrial disease and endocrine dysfunction. Nat. Rev. Endocrinol. 13, 92-104. Cerca con Google

• Chow, J., Rahman, J., Achermann, J.C., Dattani, M.T., and Rahman, S. (2017). Mitochondrial disease and endocrine dysfunction. Nat. Rev. Endocrinol. 13, 92-104. Cerca con Google

• Chung, S.H. (2009). Aberrant phosphorylation in the pathogenesis of Alzheimer's disease. BMB Rep. 42, 467-474. Cerca con Google

• Chyung, J.H., Raper, D.M., and Selkoe, D.J. (2005). Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J. Biol. Chem. 280, 4383-4392. Cerca con Google

• Cieri, D., Vicario, M., Giacomello, M., Vallese, F., Filadi, R., Wagner, T., Pozzan, T., Pizzo, P., Scorrano, L., Brini, M., and Cali, T. (2017). SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ. Cerca con Google

• Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., et al. (1997). Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat. Med. 3, 67-72. Cerca con Google

• Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047-1058. Cerca con Google

• Clarke, D., and Sokoloff, L. (1999). Intermediary metabolism. In Basic Neurochemestry: molecular, cellular and medical aspects, Siegel GJ, Agranoff BW, Albers RW, et al.) Cerca con Google

• Colombini, M. (1979). A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279, 643-645. Cerca con Google

• Contino, S., Porporato, P.E., Bird, M., Marinangeli, C., Opsomer, R., Sonveaux, P., Bontemps, F., Dewachter, I., Octave, J.N., Bertrand, L., Stanga, S., and Kienlen-Campard, P. (2017). Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Front. Physiol. 8, 796. Cerca con Google

• Contreras, L., Drago, I., Zampese, E., and Pozzan, T. (2010). Mitochondria: the calcium connection. Biochim. Biophys. Acta 1797, 607-618. Cerca con Google

• Cooper, G. (2000). The Cell: A Molecular Approach Cerca con Google

• Cosson, P., Marchetti, A., Ravazzola, M., and Orci, L. (2012). Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLoS One 7, e46293. Cerca con Google

• Cribbs, J.T., and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939-944. Cerca con Google

• Crowley, P.D., and Gallagher, H.C. (2014). Clotrimazole as a pharmaceutical: past, present and future. J. Appl. Microbiol. 117, 611-617. Cerca con Google

• Csordas, G., Golenar, T., Seifert, E.L., Kamer, K.J., Sancak, Y., Perocchi, F., Moffat, C., Weaver, D., de la Fuente Perez, S., Bogorad, R., et al. (2013). MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell. Metab. 17, 976-987. Cerca con Google

• Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., Mannella, C.A., and Hajnoczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915-921. Cerca con Google

• Csordas, G., Thomas, A.P., and Hajnoczky, G. (1999). Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. Embo j. 18, 96-108. Cerca con Google

• de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610. Cerca con Google

• de la Fuente, S., Fonteriz, R.I., Montero, M., and Alvarez, J. (2013). Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium 54, 37-45. Cerca con Google

• De Marchi, E., Bonora, M., Giorgi, C., and Pinton, P. (2014). The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56, 1-13. Cerca con Google

• De Stefani, D., Bononi, A., Romagnoli, A., Messina, A., De Pinto, V., Pinton, P., and Rizzuto, R. (2012). VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ. 19, 267-273. Cerca con Google

• De Stefani, D., Raffaello, A., Teardo, E., Szabo, I., and Rizzuto, R. (2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336-340. Cerca con Google

• De Strooper, B., and Annaert, W. (2010). Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu. Rev. Cell Dev. Biol. 26, 235-260. Cerca con Google

• De Strooper, B., Iwatsubo, T., and Wolfe, M.S. (2012). Presenilins and gamma-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect. Med. 2, a006304. Cerca con Google

• De Vos, K.J., Morotz, G.M., Stoica, R., Tudor, E.L., Lau, K.F., Ackerley, S., Warley, A., Shaw, C.E., and Miller, C.C. (2012). VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299-1311. Cerca con Google

• del Arco, A., and Satrustegui, J. (2004). Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J. Biol. Chem. 279, 24701-24713. Cerca con Google

• DELUCA, H.F., and ENGSTROM, G.W. (1961). Calcium uptake by rat kidney mitochondria. Proc. Natl. Acad. Sci. U. S. A. 47, 1744-1750. Cerca con Google

• Demuro, A., and Parker, I. (2013). Cytotoxicity of intracellular abeta42 amyloid oligomers involves Ca2+ release from the endoplasmic reticulum by stimulated production of inositol trisphosphate. J. Neurosci. 33, 3824-3833. Cerca con Google

• Denton, R.M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309-1316. Cerca con Google

• Denton, R.M., Richards, D.A., and Chin, J.G. (1978). Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem. J. 176, 899-906. Cerca con Google

• Di Benedetto, G., Pendin, D., Greotti, E., Pizzo, P., and Pozzan, T. (2014). Ca2+ and cAMP cross-talk in mitochondria. J. Physiol. 592, 305-312. Cerca con Google

• Divakaruni, A.S., Wallace, M., Buren, C., Martyniuk, K., Andreyev, A.Y., Li, E., Fields, J.A., Cordes, T., Reynolds, I.J., Bloodgood, B.L., et al. (2017). Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. J. Cell Biol. 216, 1091-1105. Cerca con Google

• Divakaruni, A.S., Wiley, S.E., Rogers, G.W., Andreyev, A.Y., Petrosyan, S., Loviscach, M., Wall, E.A., Yadava, N., Heuck, A.P., Ferrick, D.A., et al. (2013). Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. U. S. A. 110, 5422-5427. Cerca con Google

• Dott, W., Mistry, P., Wright, J., Cain, K., and Herbert, K.E. (2014). Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol. 2, 224-233. Cerca con Google

• Drago, I., Giacomello, M., Pizzo, P., and Pozzan, T. (2008). Calcium dynamics in the peroxisomal lumen of living cells. J. Biol. Chem. 283, 14384-14390. Cerca con Google

• Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M., and Yan, S.S. (2010). Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc. Natl. Acad. Sci. U. S. A. 107, 18670-18675. Cerca con Google

• Etcheberrigaray, R., Hirashima, N., Nee, L., Prince, J., Govoni, S., Racchi, M., Tanzi, R.E., and Alkon, D.L. (1998). Calcium responses in fibroblasts from asymptomatic members of Alzheimer's disease families. Neurobiol. Dis. 5, 37-45. Cerca con Google

• Falkowska, A., Gutowska, I., Goschorska, M., Nowacki, P., Chlubek, D., and Baranowska-Bosiacka, I. (2015). Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int. J. Mol. Sci. 16, 25959-25981. Cerca con Google

• Fiala, J.C. (2007). Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol. 114, 551-571. Cerca con Google

• Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2016). Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. Cell. Rep. 15, 2226-2238. Cerca con Google

• Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2015). Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc. Natl. Acad. Sci. U. S. A. 112, E2174-81. Cerca con Google

• Filadi, R., Theurey, P., Rossi, A., Fedeli, C., and Pizzo, P. (2017). Mitochondrial Ca2+ handling and behind : the importance of being in contact with other organelles. Cerca con Google

• Fill, M., and Copello, J.A. (2002). Ryanodine receptor calcium release channels. Physiol. Rev. 82, 893-922. Cerca con Google

• Florean, C., Zampese, E., Zanese, M., Brunello, L., Ichas, F., De Giorgi, F., and Pizzo, P. (2008). High content analysis of gamma-secretase activity reveals variable dominance of presenilin mutations linked to familial Alzheimer's disease. Biochim. Biophys. Acta 1783, 1551-1560. Cerca con Google

• Forner, S., Baglietto-Vargas, D., Martini, A.C., Trujillo-Estrada, L., and LaFerla, F.M. (2017). Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends Neurosci. 40, 347-357. Cerca con Google

• Forstl, H., and Kurz, A. (1999). Clinical features of Alzheimer's disease. Eur. Arch. Psychiatry Clin. Neurosci. 249, 288-290. Cerca con Google

• Foskett, J.K., White, C., Cheung, K.H., and Mak, D.O. (2007). Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87, 593-658. Cerca con Google

• Gandy, S. (2005). The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest. 115, 1121-1129. Cerca con Google

• Garcia, D., and Shaw, R.J. (2017). AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 66, 789-800. Cerca con Google

• Garrib, A., and McMurray, W.C. (1986). Purification and characterization of glycerol-3-phosphate dehydrogenase (flavin-linked) from rat liver mitochondria. J. Biol. Chem. 261, 8042-8048. Cerca con Google

• Giacomello, M., Barbiero, L., Zatti, G., Squitti, R., Binetti, G., Pozzan, T., Fasolato, C., Ghidoni, R., and Pizzo, P. (2005). Reduction of Ca2+ stores and capacitative Ca2+ entry is associated with the familial Alzheimer's disease presenilin-2 T122R mutation and anticipates the onset of dementia. Neurobiol. Dis. 18, 638-648. Cerca con Google

• Giacomello, M., Drago, I., Bortolozzi, M., Scorzeto, M., Gianelle, A., Pizzo, P., and Pozzan, T. (2010). Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38, 280-290. Cerca con Google

• Giacomello, M., Drago, I., Pizzo, P., and Pozzan, T. (2007). Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ. 14, 1267-1274. Cerca con Google

• Gilabert, J.A., and Parekh, A.B. (2000). Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). Embo j. 19, 6401-6407. Cerca con Google

• Glancy, B., Willis, W.T., Chess, D.J., and Balaban, R.S. (2013). Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52, 2793-2809. Cerca con Google

• Green, K.N., Demuro, A., Akbari, Y., Hitt, B.D., Smith, I.F., Parker, I., and LaFerla, F.M. (2008). SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J. Gen. Physiol. 132, i1. Cerca con Google

• Guo, Q., Furukawa, K., Sopher, B.L., Pham, D.G., Xie, J., Robinson, N., Martin, G.M., and Mattson, M.P. (1996). Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8, 379-383. Cerca con Google

• Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101-112. Cerca con Google

• Halim, N.D., Mcfate, T., Mohyeldin, A., Okagaki, P., Korotchkina, L.G., Patel, M.S., Jeoung, N.H., Harris, R.A., Schell, M.J., and Verma, A. (2010). Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58, 1168-1176. Cerca con Google

• Hansford, R.G., and Chappell, J.B. (1967). The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Biochem. Biophys. Res. Commun. 27, 686-692. Cerca con Google

• Hardie, D.G., Ross, F.A., and Hawley, S.A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262. Cerca con Google

• Hardy, J., and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. Cerca con Google

• Harris, J.J., Jolivet, R., and Attwell, D. (2012). Synaptic energy use and supply. Neuron 75, 762-777. Cerca con Google

• Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Carling, D., and Hardie, D.G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879-27887. Cerca con Google

• Hawley, S.A., Pan, D.A., Mustard, K.J., Ross, L., Bain, J., Edelman, A.M., Frenguelli, B.G., and Hardie, D.G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell. Metab. 2, 9-19. Cerca con Google

• Herms, J., Anliker, B., Heber, S., Ring, S., Fuhrmann, M., Kretzschmar, H., Sisodia, S., and Muller, U. (2004). Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. Embo j. 23, 4106-4115. Cerca con Google

• Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L., and De Strooper, B. (2000). Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461-462. Cerca con Google

• Herrero-Mendez, A., Almeida, A., Fernandez, E., Maestre, C., Moncada, S., and Bolanos, J.P. (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747-752. Cerca con Google

• Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.L., Zamboni, N., Westermann, B., Kunji, E.R., and Martinou, J.C. (2012). Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93-96. Cerca con Google

• Hildyard, J.C., Ammala, C., Dukes, I.D., Thomson, S.A., and Halestrap, A.P. (2005). Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier. Biochim. Biophys. Acta 1707, 221-230. Cerca con Google

• Hirabayashi, Y., Kwon, S.K., Paek, H., Pernice, W.M., Paul, M.A., Lee, J., Erfani, P., Raczkowski, A., Petrey, D.S., Pon, L.A., and Polleux, F. (2017). ER-mitochondria tethering by PDZD8 regulates Ca(2+) dynamics in mammalian neurons. Science 358, 623-630. Cerca con Google

• Holmuhamedov, E., and Lemasters, J.J. (2009). Ethanol exposure decreases mitochondrial outer membrane permeability in cultured rat hepatocytes. Arch. Biochem. Biophys. 481, 226-233. Cerca con Google

• Holtzman, D.M., Morris, J.C., and Goate, A.M. (2011). Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr1. Cerca con Google

• Honarnejad, K., and Herms, J. (2012). Presenilins: role in calcium homeostasis. Int. J. Biochem. Cell Biol. 44, 1983-1986. Cerca con Google

• Hoppe, U.C. (2010). Mitochondrial calcium channels. FEBS Lett. 584, 1975-1981. Cerca con Google

• Hung, A.Y., Koo, E.H., Haass, C., and Selkoe, D.J. (1992). Increased expression of beta-amyloid precursor protein during neuronal differentiation is not accompanied by secretory cleavage. Proc. Natl. Acad. Sci. U. S. A. 89, 9439-9443. Cerca con Google

• Hurley, R.L., Barre, L.K., Wood, S.D., Anderson, K.A., Kemp, B.E., Means, A.R., and Witters, L.A. (2006). Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J. Biol. Chem. 281, 36662-36672. Cerca con Google

• Iijima-Ando, K., Sekiya, M., Maruko-Otake, A., Ohtake, Y., Suzuki, E., Lu, B., and Iijima, K.M. (2012). Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1. PLoS Genet. 8, e1002918. Cerca con Google

• Imamura, H., Nhat, K.P., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y., Nagai, T., and Noji, H. (2009). Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad. Sci. U. S. A. 106, 15651-15656. Cerca con Google

• Ito, E., Oka, K., Etcheberrigaray, R., Nelson, T.J., McPhie, D.L., Tofel-Grehl, B., Gibson, G.E., and Alkon, D.L. (1994). Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 91, 534-538. Cerca con Google

• Jean-Quartier, C., Bondarenko, A.I., Alam, M.R., Trenker, M., Waldeck-Weiermair, M., Malli, R., and Graier, W.F. (2012). Studying mitochondrial Ca(2+) uptake - a revisit. Mol. Cell. Endocrinol. 353, 114-127. Cerca con Google

• Jean-Quartier, C., Bondarenko, A.I., Alam, M.R., Trenker, M., Waldeck-Weiermair, M., Malli, R., and Graier, W.F. (2012). Studying mitochondrial Ca(2+) uptake - a revisit. Mol. Cell. Endocrinol. 353, 114-127. Cerca con Google

• Jiang, D., Zhao, L., and Clapham, D.E. (2009). Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144-147. Cerca con Google

• John, S., Weiss, J.N., and Ribalet, B. (2011). Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One 6, e17674. Cerca con Google

• Jouaville, L.S., Pinton, P., Bastianutto, C., Rutter, G.A., and Rizzuto, R. (1999). Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. U. S. A. 96, 13807-13812. Cerca con Google

• Jung, D.H., Mo, S.H., and Kim, D.H. (2006). Calumenin, a multiple EF-hands Ca2+-binding protein, interacts with ryanodine receptor-1 in rabbit skeletal sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 343, 34-42. Cerca con Google

• Kaether, C., Schmitt, S., Willem, M., and Haass, C. (2006). Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic 7, 408-415. Cerca con Google

• Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H., and Goldstein, L.S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-459. Cerca con Google

• Karabinos, A., Bhattacharya, D., Morys-Wortmann, C., Kroll, K., Hirschfeld, G., Kratzin, H.D., Barnikol-Watanabe, S., and Hilschmann, N. (1996). The divergent domains of the NEFA and nucleobindin proteins are derived from an EF-hand ancestor. Mol. Biol. Evol. 13, 990-998. Cerca con Google

• Kasri, N.N., Kocks, S.L., Verbert, L., Hebert, S.S., Callewaert, G., Parys, J.B., Missiaen, L., and De Smedt, H. (2006). Up-regulation of inositol 1,4,5-trisphosphate receptor type 1 is responsible for a decreased endoplasmic-reticulum Ca2+ content in presenilin double knock-out cells. Cell Calcium 40, 41-51. Cerca con Google

• Kim, J., Kleizen, B., Choy, R., Thinakaran, G., Sisodia, S.S., and Schekman, R.W. (2007). Biogenesis of gamma-secretase early in the secretory pathway. J. Cell Biol. 179, 951-963. Cerca con Google

• Kim, T.W., Pettingell, W.H., Hallmark, O.G., Moir, R.D., Wasco, W., and Tanzi, R.E. (1997). Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J. Biol. Chem. 272, 11006-11010. Cerca con Google

• Kimberly, W.T., Xia, W., Rahmati, T., Wolfe, M.S., and Selkoe, D.J. (2000). The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation. J. Biol. Chem. 275, 3173-3178. Cerca con Google

• Kipanyula, M.J., Contreras, L., Zampese, E., Lazzari, C., Wong, A.K., Pizzo, P., Fasolato, C., and Pozzan, T. (2012). Ca2+ dysregulation in neurons from transgenic mice expressing mutant presenilin 2. Aging Cell. 11, 885-893. Cerca con Google

• Korzeniowski, M.K., Szanda, G., Balla, T., and Spat, A. (2009). Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium 46, 49-55. Cerca con Google

• Krieger-Brauer, H.I., and Gratzl, M. (1983). Effects of monovalent and divalent cations on Ca2+ fluxes across chromaffin secretory membrane vesicles. J. Neurochem. 41, 1269-1276. Cerca con Google

• Kwong, J.Q., Lu, X., Correll, R.N., Schwanekamp, J.A., Vagnozzi, R.J., Sargent, M.A., York, A.J., Zhang, J., Bers, D.M., and Molkentin, J.D. (2015). The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell. Rep. 12, 15-22. Cerca con Google

• LaFerla, F.M. (2002). Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat. Rev. Neurosci. 3, 862-872. Cerca con Google

• LaFerla, F.M., Green, K.N., and Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer's disease. Nat. Rev. Neurosci. 8, 499-509. Cerca con Google

• LaPointe, N.E., Morfini, G., Pigino, G., Gaisina, I.N., Kozikowski, A.P., Binder, L.I., and Brady, S.T. (2009). The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J. Neurosci. Res. 87, 440-451. Cerca con Google

• Lazzari, C., Kipanyula, M.J., Agostini, M., Pozzan, T., and Fasolato, C. (2015). Abeta42 oligomers selectively disrupt neuronal calcium release. Neurobiol. Aging 36, 877-885. Cerca con Google

• Leal, N.S., Schreiner, B., Pinho, C.M., Filadi, R., Wiehager, B., Karlstrom, H., Pizzo, P., and Ankarcrona, M. (2016). Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid beta-peptide production. J. Cell. Mol. Med. 20, 1686-1695. Cerca con Google

• Lee, S.F., Shah, S., Li, H., Yu, C., Han, W., and Yu, G. (2002). Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J. Biol. Chem. 277, 45013-45019. Cerca con Google

• Leissring, M.A., Akbari, Y., Fanger, C.M., Cahalan, M.D., Mattson, M.P., and LaFerla, F.M. (2000). Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793-798. Cerca con Google

• Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., and Wang, K. (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973-977. Cerca con Google

• Lewis, R.S. (2007). The molecular choreography of a store-operated calcium channel. Nature 446, 284-287. Cerca con Google

• Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R.D., and Garlid, K.D. (1992). Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria. J. Biol. Chem. 267, 17983-17989. Cerca con Google

• Li, X., Han, G., Li, X., Kan, Q., Fan, Z., Li, Y., Ji, Y., Zhao, J., Zhang, M., Grigalavicius, M., et al. (2017). Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells. Oncotarget 8, 46363-46380. Cerca con Google

• Lin, P., Yao, Y., Hofmeister, R., Tsien, R.Y., and Farquhar, M.G. (1999). Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J. Cell Biol. 145, 279-289. Cerca con Google

• Linn, T.C., Pettit, F.H., and Reed, L.J. (1969). Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. U. S. A. 62, 234-241. Cerca con Google

• Liou, J., Kim, M.L., Heo, W.D., Jones, J.T., Myers, J.W., Ferrell, J.E.,Jr, and Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235-1241. Cerca con Google

• Lissandron, V., Podini, P., Pizzo, P., and Pozzan, T. (2010). Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc. Natl. Acad. Sci. U. S. A. 107, 9198-9203. Cerca con Google

• Lodish, H., Berk, A., and Zipursky, S. (2000). Molecular Cell Biology Cerca con Google

• Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T.H., Kim, H.M., Drake, D., Liu, X.S., et al. (2014). REST and stress resistance in ageing and Alzheimer's disease. Nature 507, 448-454. Cerca con Google

• Luo, W.J., Wang, H., Li, H., Kim, B.S., Shah, S., Lee, H.J., Thinakaran, G., Kim, T.W., Yu, G., and Xu, H. (2003). PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J. Biol. Chem. 278, 7850-7854. Cerca con Google

• Luongo, T.S., Lambert, J.P., Yuan, A., Zhang, X., Gross, P., Song, J., Shanmughapriya, S., Gao, E., Jain, M., Houser, S.R., et al. (2015). The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell. Rep. 12, 23-34. Cerca con Google

• Ma, Q.H., Futagawa, T., Yang, W.L., Jiang, X.D., Zeng, L., Takeda, Y., Xu, R.X., Bagnard, D., Schachner, M., Furley, A.J., et al. (2008). A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat. Cell Biol. 10, 283-294. Cerca con Google

• Magistretti, P.J., and Allaman, I. (2015). A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883-901. Cerca con Google

• Mahapatra, N.R., Mahata, M., Hazra, P.P., McDonough, P.M., O'Connor, D.T., and Mahata, S.K. (2004). A dynamic pool of calcium in catecholamine storage vesicles. Exploration in living cells by a novel vesicle-targeted chromogranin A-aequorin chimeric photoprotein. J. Biol. Chem. 279, 51107-51121. Cerca con Google

• Mak, D.O., and Foskett, J.K. (2015). Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 58, 67-78. Cerca con Google

• Mallilankaraman, K., Cardenas, C., Doonan, P.J., Chandramoorthy, H.C., Irrinki, K.M., Golenar, T., Csordas, G., Madireddi, P., Yang, J., Muller, M., et al. (2012). MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 14, 1336-1343. Cerca con Google

• Mammucari, C., Raffaello, A., Vecellio Reane, D., and Rizzuto, R. (2016). Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. Biochim. Biophys. Acta 1863, 2457-2464. Cerca con Google

• Manczak, M., Calkins, M.J., and Reddy, P.H. (2011). Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum. Mol. Genet. 20, 2495-2509. Cerca con Google

• Martin, L., Latypova, X., and Terro, F. (2011). Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 58, 458-471. Cerca con Google

• McCarthy, J.V., Twomey, C., and Wujek, P. (2009). Presenilin-dependent regulated intramembrane proteolysis and gamma-secretase activity. Cell Mol. Life Sci. 66, 1534-1555. Cerca con Google

• McCommis, K.S., Chen, Z., Fu, X., McDonald, W.G., Colca, J.R., Kletzien, R.F., Burgess, S.C., and Finck, B.N. (2015). Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. Cell. Metab. 22, 682-694. Cerca con Google

• McCormack, J.G., Halestrap, A.P., and Denton, R.M. (1990). Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391-425. Cerca con Google

• Meldolesi, J., and Pozzan, T. (1998). The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23, 10-14. Cerca con Google

• Mishra, P., and Chan, D.C. (2016). Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379-387. Cerca con Google

• Mitchell, K.J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E.K., Pozzan, T., Rizzuto, R., and Rutter, G.A. (2001). Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 155, 41-51. Cerca con Google

• Mitchell, P., and Moyle, J. (1967). Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137-139. Cerca con Google

• Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882-887. Cerca con Google

• Morre, D.J., Merritt, W.D., and Lembi, C.A. (1971). Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73, 43-49. Cerca con Google

• Murphy, E., Pan, X., Nguyen, T., Liu, J., Holmstrom, K.M., and Finkel, T. (2014). Unresolved questions from the analysis of mice lacking MCU expression. Biochem. Biophys. Res. Commun. 449, 384-385. Cerca con Google

• Neumann, D., Buckers, J., Kastrup, L., Hell, S.W., and Jakobs, S. (2010). Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys. 3, 4-5036-3-4. Cerca con Google

• Nosek, M.T., Dransfield, D.T., and Aprille, J.R. (1990). Calcium stimulates ATP-Mg/Pi carrier activity in rat liver mitochondria. J. Biol. Chem. 265, 8444-8450. Cerca con Google

• Nowikovsky, K., Pozzan, T., Rizzuto, R., Scorrano, L., and Bernardi, P. (2012). Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1. J. Gen. Physiol. 139, 445-454. Cerca con Google

• Oldershaw, K.A., and Taylor, C.W. (1990). 2,5-Di-(tert-butyl)-1,4-benzohydroquinone mobilizes inositol 1,4,5-trisphosphate-sensitive and -insensitive Ca2+ stores. FEBS Lett. 274, 214-216. Cerca con Google

• Oules, B., Del Prete, D., Greco, B., Zhang, X., Lauritzen, I., Sevalle, J., Moreno, S., Paterlini-Brechot, P., Trebak, M., Checler, F., Benfenati, F., and Chami, M. (2012). Ryanodine receptor blockade reduces amyloid-beta load and memory impairments in Tg2576 mouse model of Alzheimer disease. J. Neurosci. 32, 11820-11834. Cerca con Google

• Palmieri, L., Pardo, B., Lasorsa, F.M., del Arco, A., Kobayashi, K., Iijima, M., Runswick, M.J., Walker, J.E., Saheki, T., Satrustegui, J., and Palmieri, F. (2001). Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. Embo j. 20, 5060-5069. Cerca con Google

• Palty, R., Silverman, W.F., Hershfinkel, M., Caporale, T., Sensi, S.L., Parnis, J., Nolte, C., Fishman, D., Shoshan-Barmatz, V., Herrmann, S., Khananshvili, D., and Sekler, I. (2010). NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. U. S. A. 107, 436-441. Cerca con Google

• Pan, X., Liu, J., Nguyen, T., Liu, C., Sun, J., Teng, Y., Fergusson, M.M., Rovira, I.I., Allen, M., Springer, D.A., et al. (2013). The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464-1472. Cerca con Google

• Pardo, B., Contreras, L., Serrano, A., Ramos, M., Kobayashi, K., Iijima, M., Saheki, T., and Satrustegui, J. (2006). Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria. J. Biol. Chem. 281, 1039-1047. Cerca con Google

• Parihar, M.S., and Hemnani, T. (2004). Alzheimer's disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 11, 456-467. Cerca con Google

• Parks, A.L., and Curtis, D. (2007). Presenilin diversifies its portfolio. Trends Genet. 23, 140-150. Cerca con Google

• Pastorino, J.G., and Hoek, J.B. (2008). Regulation of hexokinase binding to VDAC. J. Bioenerg. Biomembr. 40, 171-182. Cerca con Google

• Pastorino, J.G., Shulga, N., and Hoek, J.B. (2002). Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277, 7610-7618. Cerca con Google

• Patron, M., Raffaello, A., Granatiero, V., Tosatto, A., Merli, G., De Stefani, D., Wright, L., Pallafacchina, G., Terrin, A., Mammucari, C., and Rizzuto, R. (2013). The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J. Biol. Chem. 288, 10750-10758. Cerca con Google

• Paupe, V., Prudent, J., Dassa, E.P., Rendon, O.Z., and Shoubridge, E.A. (2015). CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell. Metab. 21, 109-116. Cerca con Google

• Pera, M., Larrea, D., Guardia-Laguarta, C., Montesinos, J., Velasco, K.R., Agrawal, R.R., Xu, Y., Chan, R.B., Di Paolo, G., Mehler, M.F., et al. (2017). Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. Embo j. 36, 3356-3371. Cerca con Google

• Perl, D.P. (2010). Neuropathology of Alzheimer's disease. Mt. Sinai J. Med. 77, 32-42. Cerca con Google

• Perocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E., and Mootha, V.K. (2010). MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467, 291-296. Cerca con Google

• Perrin, R.J., Fagan, A.M., and Holtzman, D.M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461, 916-922. Cerca con Google

• Pinton, P., Pozzan, T., and Rizzuto, R. (1998). The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. Embo j. 17, 5298-5308. Cerca con Google

• Pitter, J.G., Maechler, P., Wollheim, C.B., and Spat, A. (2002). Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium 31, 97-104. Cerca con Google

• Pizzo, P., Lissandron, V., Capitanio, P., and Pozzan, T. (2011). Ca(2+) signalling in the Golgi apparatus. Cell Calcium 50, 184-192. Cerca con Google

• Pozzan, T., and Rizzuto, R. (2000). The renaissance of mitochondrial calcium transport. Eur. J. Biochem. 267, 5269-5273. Cerca con Google

• Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A., and Hogan, P.G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233. Cerca con Google

• Querfurth, H.W., and LaFerla, F.M. (2010). Alzheimer's disease. N. Engl. J. Med. 362, 329-344. Cerca con Google

• Raffaello, A., De Stefani, D., Sabbadin, D., Teardo, E., Merli, G., Picard, A., Checchetto, V., Moro, S., Szabo, I., and Rizzuto, R. (2013). The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. Embo j. 32, 2362-2376. Cerca con Google

• Raffaello, A., Mammucari, C., Gherardi, G., and Rizzuto, R. (2016). Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem. Sci. 41, 1035-1049. Cerca con Google

• Rasola, A., and Bernardi, P. (2011). Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50, 222-233. Cerca con Google

• Raychaudhury, B., Gupta, S., Banerjee, S., and Datta, S.C. (2006). Peroxisome is a reservoir of intracellular calcium. Biochim. Biophys. Acta 1760, 989-992. Cerca con Google

• Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., and Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763-1766. Cerca con Google

• Rizzuto, R., and Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369-408. Cerca con Google

• Rizzuto, R., Simpson, A.W., Brini, M., and Pozzan, T. (1992). Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325-327. Cerca con Google

• ROBERTSON, J.D. (1960). The molecular structure and contact relationships of cell membranes. Prog. Biophys. Mol. Biol. 10, 343-418. Cerca con Google

• Robey, R.B., and Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683-4696. Cerca con Google

• Roche, T.E., and Hiromasa, Y. (2007). Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol. Life Sci. 64, 830-849. Cerca con Google

• Roos, J., DiGregorio, P.J., Yeromin, A.V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J.A., Wagner, S.L., Cahalan, M.D., Velicelebi, G., and Stauderman, K.A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435-445. Cerca con Google

• Rowland, A.A., and Voeltz, G.K. (2012). Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607-625. Cerca con Google

• Rutter, G.A., Burnett, P., Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., Tavare, J.M., and Denton, R.M. (1996). Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc. Natl. Acad. Sci. U. S. A. 93, 5489-5494. Cerca con Google

• S, K., C, S., Cs, K., and S, W. (2014). Clotrimazole as a Cancer Drug: A Short Review. Med. Chem. (Los Angeles) 4, 722-724. Cerca con Google

• Sampson, M.J., Decker, W.K., Beaudet, A.L., Ruitenbeek, W., Armstrong, D., Hicks, M.J., and Craigen, W.J. (2001). Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J. Biol. Chem. 276, 39206-39212. Cerca con Google

• San Martin, A., Ceballo, S., Ruminot, I., Lerchundi, R., Frommer, W.B., and Barros, L.F. (2013). A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8, e57712. Cerca con Google

• Sancak, Y., Markhard, A.L., Kitami, T., Kovacs-Bogdan, E., Kamer, K.J., Udeshi, N.D., Carr, S.A., Chaudhuri, D., Clapham, D.E., Li, A.A., et al. (2013). EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342, 1379-1382. Cerca con Google

• Satrustegui, J., Pardo, B., and Del Arco, A. (2007). Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol. Rev. 87, 29-67. Cerca con Google

• Scherer, P.E., Lederkremer, G.Z., Williams, S., Fogliano, M., Baldini, G., and Lodish, H.F. (1996). Cab45, a novel (Ca2+)-binding protein localized to the Golgi lumen. J. Cell Biol. 133, 257-268. Cerca con Google

• Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864-870. Cerca con Google

• Schonfeld, P., and Reiser, G. (2013). Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab. 33, 1493-1499. Cerca con Google

• Seidler, N.W., Jona, I., Vegh, M., and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816-17823. Cerca con Google

• Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754-760. Cerca con Google

• Shimojo, M., Sahara, N., Murayama, M., Ichinose, H., and Takashima, A. (2007). Decreased Abeta secretion by cells expressing familial Alzheimer's disease-linked mutant presenilin 1. Neurosci. Res. 57, 446-453. Cerca con Google

• Shoshan-Barmatz, V., Krelin, Y., and Shteinfer-Kuzmine, A. (2017). VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium Cerca con Google

• Shoshan-Barmatz, V., and Mizrachi, D. (2012). VDAC1: from structure to cancer therapy. Front. Oncol. 2, 164. Cerca con Google

• Smith, I.F., Boyle, J.P., Vaughan, P.F., Pearson, H.A., Cowburn, R.F., and Peers, C.S. (2002). Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells expressing a familial Alzheimer's disease presenilin-1 mutation. Brain Res. 949, 105-111. Cerca con Google

• Stoica, R., De Vos, K.J., Paillusson, S., Mueller, S., Sancho, R.M., Lau, K.F., Vizcay-Barrena, G., Lin, W.L., Xu, Y.F., Lewis, J., et al. (2014). ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996. Cerca con Google

• Stoica, R., Paillusson, S., Gomez-Suaga, P., Mitchell, J.C., Lau, D.H., Gray, E.H., Sancho, R.M., Vizcay-Barrena, G., De Vos, K.J., Shaw, C.E., et al. (2016). ALS/FTD-associated FUS activates GSK-3beta to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep. 17, 1326-1342. Cerca con Google

• Stone, S.J., and Vance, J.E. (2000). Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275, 34534-34540. Cerca con Google

• Stutzmann, G.E., Caccamo, A., LaFerla, F.M., and Parker, I. (2004). Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer's-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J. Neurosci. 24, 508-513. Cerca con Google

• Sun, L., Shukair, S., Naik, T.J., Moazed, F., and Ardehali, H. (2008). Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell. Biol. 28, 1007-1017. Cerca con Google

• Sun, L., Shukair, S., Naik, T.J., Moazed, F., and Ardehali, H. (2008). Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell. Biol. 28, 1007-1017. Cerca con Google

• Supnet, C., Grant, J., Kong, H., Westaway, D., and Mayne, M. (2006). Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J. Biol. Chem. 281, 38440-38447. Cerca con Google

• Suter, M., Riek, U., Tuerk, R., Schlattner, U., Wallimann, T., and Neumann, D. (2006). Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281, 32207-32216. Cerca con Google

• Suzuki, T., Bridges, D., Nakada, D., Skiniotis, G., Morrison, S.J., Lin, J.D., Saltiel, A.R., and Inoki, K. (2013). Inhibition of AMPK catabolic action by GSK3. Mol. Cell 50, 407-419. Cerca con Google

• Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901-911. Cerca con Google

• Taylor, E.B. (2017). Functional Properties of the Mitochondrial Carrier System. Trends Cell Biol. 27, 633-644. Cerca con Google

• Teague, W.M., Pettit, F.H., Wu, T.L., Silberman, S.R., and Reed, L.J. (1982). Purification and properties of pyruvate dehydrogenase phosphatase from bovine heart and kidney. Biochemistry 21, 5585-5592. Cerca con Google

• Territo, P.R., Mootha, V.K., French, S.A., and Balaban, R.S. (2000). Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am. J. Physiol. Cell. Physiol. 278, C423-35. Cerca con Google

• Thangaratnarajah, C., Ruprecht, J.J., and Kunji, E.R. (2014). Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat. Commun. 5, 5491. Cerca con Google

• Thestrup, T., Litzlbauer, J., Bartholomaus, I., Mues, M., Russo, L., Dana, H., Kovalchuk, Y., Liang, Y., Kalamakis, G., Laukat, Y., et al. (2014). Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175-182. Cerca con Google

• Thinakaran, G., and Koo, E.H. (2008). Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615-29619. Cerca con Google

• Tolia, A., and De Strooper, B. (2009). Structure and function of gamma-secretase. Semin. Cell Dev. Biol. 20, 211-218. Cerca con Google

• Trenker, M., Malli, R., Fertschai, I., Levak-Frank, S., and Graier, W.F. (2007). Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat. Cell Biol. 9, 445-452. Cerca con Google

• Trimmer, P.A., and Borland, M.K. (2005). Differentiated Alzheimer's disease transmitochondrial cybrid cell lines exhibit reduced organelle movement. Antioxid. Redox Signal. 7, 1101-1109. Cerca con Google

• Trushina, E., Nemutlu, E., Zhang, S., Christensen, T., Camp, J., Mesa, J., Siddiqui, A., Tamura, Y., Sesaki, H., Wengenack, T.M., Dzeja, P.P., and Poduslo, J.F. (2012). Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer's disease. PLoS One 7, e32737. Cerca con Google

• Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S.F., Hao, Y.H., Serneels, L., De Strooper, B., Yu, G., and Bezprozvanny, I. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer's disease-linked mutations. Cell 126, 981-993. Cerca con Google

• Vais, H., Mallilankaraman, K., Mak, D.D., Hoff, H., Payne, R., Tanis, J.E., and Foskett, J.K. (2016). EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. Cell. Rep. 14, 403-410. Cerca con Google

• Vanderperre, B., Herzig, S., Krznar, P., Horl, M., Ammar, Z., Montessuit, S., Pierredon, S., Zamboni, N., and Martinou, J.C. (2016). Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet. PLoS Genet. 12, e1006056. Cerca con Google

• VASINGTON, F.D., and MURPHY, J.V. (1962). Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J. Biol. Chem. 237, 2670-2677. Cerca con Google

• Verfaillie, T., Garg, A.D., and Agostinis, P. (2013). Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 332, 249-264. Cerca con Google

• Vigueira, P.A., McCommis, K.S., Schweitzer, G.G., Remedi, M.S., Chambers, K.T., Fu, X., McDonald, W.G., Cole, S.L., Colca, J.R., Kletzien, R.F., Burgess, S.C., and Finck, B.N. (2014). Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion. Cell. Rep. 7, 2042-2053. Cerca con Google

• Wakabayashi, T., Craessaerts, K., Bammens, L., Bentahir, M., Borgions, F., Herdewijn, P., Staes, A., Timmerman, E., Vandekerckhove, J., Rubinstein, E., et al. (2009). Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nat. Cell Biol. 11, 1340-1346. Cerca con Google

• Waldeck-Weiermair, M., Duan, X., Naghdi, S., Khan, M.J., Trenker, M., Malli, R., and Graier, W.F. (2010). Uncoupling protein 3 adjusts mitochondrial Ca(2+) uptake to high and low Ca(2+) signals. Cell Calcium 48, 288-301. Cerca con Google

• Walker, E.S., Martinez, M., Brunkan, A.L., and Goate, A. (2005). Presenilin 2 familial Alzheimer's disease mutations result in partial loss of function and dramatic changes in Abeta 42/40 ratios. J. Neurochem. 92, 294-301. Cerca con Google

• Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539. Cerca con Google

• Wang, P.T., Garcin, P.O., Fu, M., Masoudi, M., St-Pierre, P., Pante, N., and Nabi, I.R. (2015). Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria. J. Cell. Sci. 128, 2759-2765. Cerca con Google

• Wang, P.T., Garcin, P.O., Fu, M., Masoudi, M., St-Pierre, P., Pante, N., and Nabi, I.R. (2015). Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria. J. Cell. Sci. 128, 2759-2765. Cerca con Google

• Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A., and Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J. Neurosci. 29, 9090-9103. Cerca con Google

• Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G., and Zhu, X. (2008). Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. U. S. A. 105, 19318-19323. Cerca con Google

• Wang, Y., Deng, X., and Gill, D.L. (2010). Calcium signaling by STIM and Orai: intimate coupling details revealed. Sci. Signal. 3, pe42. Cerca con Google

• Weingarten, M.D., Lockwood, A.H., Hwo, S.Y., and Kirschner, M.W. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U. S. A. 72, 1858-1862. Cerca con Google

• Wibom, R., Lasorsa, F.M., Tohonen, V., Barbaro, M., Sterky, F.H., Kucinski, T., Naess, K., Jonsson, M., Pierri, C.L., Palmieri, F., and Wedell, A. (2009). AGC1 deficiency associated with global cerebral hypomyelination. N. Engl. J. Med. 361, 489-495. Cerca con Google

• Wiederkehr, A., Szanda, G., Akhmedov, D., Mataki, C., Heizmann, C.W., Schoonjans, K., Pozzan, T., Spat, A., and Wollheim, C.B. (2011). Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell. Metab. 13, 601-611. Cerca con Google

• Wojda, U., Salinska, E., and Kuznicki, J. (2008). Calcium ions in neuronal degeneration. IUBMB Life 60, 575-590. Cerca con Google

• Wong, A.K., Capitanio, P., Lissandron, V., Bortolozzi, M., Pozzan, T., and Pizzo, P. (2013). Heterogeneity of Ca2+ handling among and within Golgi compartments. J. Mol. Cell. Biol. 5, 266-276. Cerca con Google

• Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008. Cerca con Google

• Wu, S., Sampson, M.J., Decker, W.K., and Craigen, W.J. (1999). Each mammalian mitochondrial outer membrane porin protein is dispensable: effects on cellular respiration. Biochim. Biophys. Acta 1452, 68-78. Cerca con Google

• Wu, Y., Rasmussen, T.P., Koval, O.M., Joiner, M.L., Hall, D.D., Chen, B., Luczak, E.D., Wang, Q., Rokita, A.G., Wehrens, X.H., Song, L.S., and Anderson, M.E. (2015). The mitochondrial uniporter controls fight or flight heart rate increases. Nat. Commun. 6, 6081. Cerca con Google

• Xia, D., Watanabe, H., Wu, B., Lee, S.H., Li, Y., Tsvetkov, E., Bolshakov, V.Y., Shen, J., and Kelleher, R.J.,3rd. (2015). Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. Neuron 85, 967-981. Cerca con Google

• Xie, G.C., and Wilson, J.E. (1988). Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch. Biochem. Biophys. 267, 803-810. Cerca con Google

• Yao, J., Irwin, R.W., Zhao, L., Nilsen, J., Hamilton, R.T., and Brinton, R.D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 106, 14670-14675. Cerca con Google

• Yeromin, A.V., Zhang, S.L., Jiang, W., Yu, Y., Safrina, O., and Cahalan, M.D. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229. Cerca con Google

• Yoo, A.S., Cheng, I., Chung, S., Grenfell, T.Z., Lee, H., Pack-Chung, E., Handler, M., Shen, J., Xia, W., Tesco, G., et al. (2000). Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561-572. Cerca con Google

• Yu, G., Nishimura, M., Arawaka, S., Levitan, D., Zhang, L., Tandon, A., Song, Y.Q., Rogaeva, E., Chen, F., Kawarai, T., et al. (2000). Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48-54. Cerca con Google

• Zaid, H., Abu-Hamad, S., Israelson, A., Nathan, I., and Shoshan-Barmatz, V. (2005). The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ. 12, 751-760. Cerca con Google

• Zampese, E., Fasolato, C., Kipanyula, M.J., Bortolozzi, M., Pozzan, T., and Pizzo, P. (2011). Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. U. S. A. 108, 2777-2782. Cerca con Google

• Zampese, E., and Pizzo, P. (2012). Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol. Life Sci. 69, 1077-1104. Cerca con Google

• Zatti, G., Burgo, A., Giacomello, M., Barbiero, L., Ghidoni, R., Sinigaglia, G., Florean, C., Bagnoli, S., Binetti, G., Sorbi, S., Pizzo, P., and Fasolato, C. (2006). Presenilin mutations linked to familial Alzheimer's disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium 39, 539-550. Cerca con Google

• Zatti, G., Ghidoni, R., Barbiero, L., Binetti, G., Pozzan, T., Fasolato, C., and Pizzo, P. (2004). The presenilin 2 M239I mutation associated with familial Alzheimer's disease reduces Ca2+ release from intracellular stores. Neurobiol. Dis. 15, 269-278. Cerca con Google

• Zhang, S., Hulver, M.W., McMillan, R.P., Cline, M.A., and Gilbert, E.R. (2014). The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr. Metab. (Lond) 11, 10-7075-11-10. Cerca con Google

• Zhang, Y.W., Wang, R., Liu, Q., Zhang, H., Liao, F.F., and Xu, H. (2007). Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc. Natl. Acad. Sci. U. S. A. 104, 10613-10618. Cerca con Google

• Zheng, H., and Koo, E.H. (2006). The amyloid precursor protein: beyond amyloid. Mol. Neurodegener 1, 5. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record