Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Campello, E (2018) A bit deeper on hypercoagulability and cancer:
focus on longitudinal trend of procoagulant microvesicles in gastro-intestinal malignancy.
[Ph.D. thesis]

Full text disponibile come:

PDF Document (Tesi) - Submitted Version

Abstract (english)

Introduction. It is fully recognized that cancer patients are at significant risk of developing thrombotic events (VTE). The prevention of such complications is of the utmost importance from a clinical point of view, seeing as they play a considerable part in the morbidity and mortality of these patients. The main issue is that the pathogenesis of the cancer-associated coagulopathy is complex and multifactorial. To assess the level of risk and identification of patients at high risk for thrombosis, the guidelines recommend including the detection of plasma thrombotic markers in “score systems” combining clinical and biological markers. However, current scores have been shown to perform poorly in predicting VTE in cancer patients. Thus, the identification of novel biomarkers associated with the grade of hypercoagulability in individual malignancies is required to drive the development of cancer type–specific scoring systems with improved predictive value.

Aim of the study. We conducted a longitudinal cohort study to evaluate the trend of several coagulation parameters in patients with gastro-intestinal cancer with particular focus on circulating microvesicles (MVs) and MV-tissue factor (TF) activity. Our primary outcome was the description of coagulation fluctuations over a 6-month period following cancer diagnosis and the secondary outcome was the association between coagulation parameters and the occurrence of VTE complications.

Material and Methods. Patients with a new diagnosis of gastro-intestinal cancer who underwent surgery were consecutively enrolled at the Padua University Hospital. Exclusion criteria were: cancer recurrence, severe liver or renal failure, Karnofsky Performance Status <60%, recent venous/arterial thromboembolism, pregnancy/puerperium, overt/recent sepsis. Longitudinal blood samples were collected at baseline, 7 days after surgery, 1 and 6 months after surgery. Each patient was followed for at least 6 months and for a maximum of 12 months. The primary outcome was the evaluation of coagulative parameters trend over a 6-month period following the diagnosis. Coagulation test performed included: factor (F)VIII and fibrinogen levels; D-Dimer and plasminogen activator inhibitor (PAI-1) antigen; hereditary thrombophilia; thromboelastometry; contact activation system (FXIIa-C1-inhibitor (C1INH), FXIa-C1INH and KAL-C1INH complexes); MV-TF activity; circulating MVs. Clinical outcomes recorded during the follow-up were: i) surgical radicality (i.e. complete or incomplete); ii) cancer severity (i.e. localized or advanced cancer); iii) any thrombotic event including superficial vein thrombosis, symptomatic or asymptomatic VTE or thrombosis in unusual sites. The secondary outcome was the association between the coagulative profile at the different time-points and the clinical outcomes.

Results. Ninety-three patients (25 with pancreatic, 33 with colon and 35 with gastroesophageal cancer) were enrolled. The median clinical follow-up was 6 months [6-8.5] for pancreatic, 8 months [7-11] for colon, and 6.5 months for gastric cancer [6-9.25]. VTE incidence rate was 9.21 [95%CI 3.37-20.4] per 100 person-years for pancreatic cancer, 6.69 [95%CI 2.13-16.2] per 100 person-years for colon and 10.4 [95%CI 4.24-21.7] per 100 person-years for gastric cancer. The subgroup of pancreatic cancer at baseline showed increased levels of FVIII, D-Dimer, PAI-1 antigen, MV-TF activity and circulating MVs compared with the other cancer subtypes.
In the overall cancer population, baseline contact system complexes were increased compared to levels measured in a reference healthy population, and pancreatic and gastric cancers showed the highest activation. Patients receiving chemotherapy at the 6-month time point showed significantly higher levels of FXIIa-C1INH and kallikrein-C1INH complexes compared to patients without chemotherapy.
In a multivariate model, levels of MV-TF activity were independent predictors of incomplete surgical resection (OR 2.25 [1.25-7.0]) and cancer severity (OR 1.87 [1.20-3.8]).
We observed that the majority of MVs detected were small (diameter 0.2-0.4 µm). Moreover, we confirmed that PS-negative MVs are the majority and thus PS is not the most suitable marker to detect the total number of MVs. MV-TF activity correlated with PS+MVs big and small, with endothelial MVs and big tumour MVs. Endothelial MVs, as well as MV-TF activity, showed a positive association with surgical radicality and cancer severity (OR 1.19 [1.04-1.36] and 1.30 [1.05-1.6], respectively).
Levels of MV-TF activity ≥0.19 pg/mL conveyed a 2.38 [1.81-4.11] HR for VTE occurrence. Furthermore, baseline levels of FXIa >0.61 nM conveyed a 1.66 [1.02-2.9] HR to develop VTE over a median follow-up period of 6 months after diagnosis. This prediction model was adjusted for age, sex, BMI, cancer type, severity, and surgical radicality.

Conclusions. Hypercoagulability in gastro-intestinal cancer is mainly mediated by high levels of FVIII, increased levels of complexes derived from the activation of the contact system, high MV-TF activity and increased levels of PS+MVs, endothelial and tumour MVs. Pancreatic cancer showed the most hypercoagulable profile. The prothrombotic factors remained altered up to 6 months after surgical resection of the neoplasm even in patients with surgical radicality, indicating that cancer-associated hypercoagulability persists months after tumour removal. Increased MV-TF activity and endothelial MVs are independent predictors of advanced disease and incomplete surgical resection. Finally, baseline increased levels of MV-TF activity and FXIa were independent predictors of VTE occurrence over the 6 months following cancer diagnosis. As TF is upregulated in cancer, it seems reasonable to hypothesize that concomitant activation of both the intrinsic and extrinsic pathways may act synergistically to produce a highly prothrombotic state in cancer.

Abstract (italian)


Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Simioni, P
Supervisor:Spiezia, L
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE CLINICHE E SPERIMENTALI
Data di deposito della tesi:10 January 2018
Anno di Pubblicazione:10 January 2018
Key Words:cancer, hypercoagulability, microvesocles, tissue factor
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/09 Medicina interna
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina
Codice ID:10603
Depositato il:26 Oct 2018 09:09
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Trousseau A. Phlegmasia alba dolens. Clin Med Hotel-dieu Paris 1865; 3: 654–712. Cerca con Google

2. Varki A. Trousseau's syndrome: Multiple definitions and multiple mechanisms. Blood 2007; 110: 1723-9. Cerca con Google

3. Elyamany G, Alzahrani AM, Bukhary E. Cancer-associated thrombosis: an overview. Clin Med Insights Oncol 2014; 8: 129-37. Cerca con Google

4. Walker AJ, Card TR, West J, et al. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer 2013; 49: 1404-13. Cerca con Google

5. Heit JA, O'Fallon WM, Petterson TM, et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med 2002; 162: 1245-8. Cerca con Google

6. Timp JF, Braekkan SK, Versteeg HH, et al. Epidemiology of cancer-associated venous thrombosis. Blood 2013; 122: 1712-23. Cerca con Google

7. Bouillaud S. De l’Obliteration des veines et de son influence sur la formation des hydropisies partielles: consideration sur la hydropisies passive et general. Arch Gen Med 1823; 1: 188-204. Cerca con Google

8. Gussoni G, Frasson S, La Regina M, et al. Three-month mortality rate and clinical predictors in patients with venous thromboembolism and cancer. Findings from the RIETE registry. Thromb Res 2013; 131: 24-30. Cerca con Google

9. Sallah S, Wan JY, Nguyen NP. Venous thrombosis in patients with solid tumors: determination of frequency and characteristics. Thromb Haemost 2002; 87: 575-9. Cerca con Google

10. Stein PD, Beemath A, Meyers FA, et al. Incidence of venous thromboembolism in patients hospitalized with cancer. Am J Med 2006; 119: 60-8. Cerca con Google

11. Cronin-Fenton DP, Sondergaard F, Pedersen LA, et al. Hospitalisation for venous thromboembolism in cancer patients and the general population: a population-based cohort study in Denmark, 1997-2006. Br J Cancer 2010; 103: 947-53. Cerca con Google

12. Cohen AT, Katholing A, Rietbrock S, et al. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. A population-based cohort study. Thromb Haemost 2017; 117: 57-65. Cerca con Google

13. Blom JW, Doggen CJ, Osanto S, et al. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005; 293: 715-22. Cerca con Google

14. Riedl J, Kaider A, Reitter EM, et al. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb Haemost 2014; 111: 670-8. Cerca con Google

15. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med 2006; 166: 458-64. Cerca con Google

16. Chew HK, Wun T, Harvey DJ, et al. Incidence of venous thromboembolism and the impact on survival in breast cancer patients. J Clin Oncol 2007; 25: 70-6. Cerca con Google

17. Sorensen HT, Mellemkjaer L, Olsen JH, et al. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000; 343: 1846-50. Cerca con Google

18. Kourlaba G, Relakis J, Mylonas C, et al. The humanistic and economic burden of venous thromboembolism in cancer patients: a systematic review. Blood Coagul Fibrinolysis 2015; 26: 13-31. Cerca con Google

19. Lyman GH, Eckert L, Wang Y, et al. Venous thromboembolism risk in patients with cancer receiving chemotherapy: a real-world analysis. Oncologist 2013; 18: 1321-9. Cerca con Google

20. Cohoon KP, Ransom JE, Leibson CL, et al. Direct Medical Costs Attributable to Cancer-Associated Venous Thromboembolism: A Population-Based Longitudinal Study. Am J Med 2016; 129: 1000 e15-25. Cerca con Google

21. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med 2012; 9: e1001275. Cerca con Google

22. Blom JW, Vanderschoot JPM, Oostindier MJ, et al. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study.[see comment]. Journal of Thrombosis & Haemostasis 2006; 4: 529-35. Cerca con Google

23. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Archives of Internal Medicine 2006; 166: 458-64. Cerca con Google

24. Cronin-Fenton DP, Sondergaard F, Pedersen LA, et al. Hospitalisation for venous thromboembolism in cancer patients and the general population: a population-based cohort study in Denmark, 1997-2006. British Journal of Cancer 2010; 103: 947-53. Cerca con Google

25. Otten HM, Mathijssen J, ten Cate H, et al. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: an underestimated phenomenon. Arch Intern Med 2004; 164: 190-4. Cerca con Google

26. Ay C, Vormittag R, Dunkler D, et al. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. Journal of Clinical Oncology 2009; 27: 4124-9. Cerca con Google

27. Hall IE, Andersen MS, Krumholz HM, et al. Predictors of venous thromboembolism in patients with advanced common solid cancers. J Cancer Epidemiol 2009; 2009: 182521. Cerca con Google

28. Connolly GC, Khorana AA, Kuderer NM, et al. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thrombosis Research 2010; 126: 113-8. Cerca con Google

29. Abdel-Razeq HN, Hijjawi SB, Jallad SG, et al. Venous thromboembolism risk stratification in medically-ill hospitalized cancer patients. A comprehensive cancer center experience. Journal of Thrombosis & Thrombolysis 2010; 30: 286-93. Cerca con Google

30. Di Nisio M, Ferrante N, De Tursi M, et al. Incidental venous thromboembolism in ambulatory cancer patients receiving chemotherapy. Thromb Haemost 2010; 104: 1049-54. Cerca con Google

31. Reeves D, Liu CY. Retrospective evaluation of venous thromboembolism prophylaxis in the adult cancer population. J Oncol Pharm Pract 2010; 16: 27-31. Cerca con Google

32. Ay C, Pabinger I, Cohen AT. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb Haemost 2017; 117: 219-30. Cerca con Google

33. Khorana AA, Dalal M, Lin J, et al. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer 2013; 119: 648-55. Cerca con Google

34. Khorana AA, Francis CW, Culakova E, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007; 110: 2339-46. Cerca con Google

35. Dickmann B, Ahlbrecht J, Ay C, et al. Regional lymph node metastases are a strong risk factor for venous thromboembolism: results from the Vienna Cancer and Thrombosis Study. Haematologica 2013; 98: 1309-14. Cerca con Google

36. Ahlbrecht J, Dickmann B, Ay C, et al. Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2012; 30: 3870-5. Cerca con Google

37. Kroger K, Weiland D, Ose C, et al. Risk factors for venous thromboembolic events in cancer patients. Ann Oncol 2006; 17: 297-303. Cerca con Google

38. Lee YG, Lee E, Kim I, et al. Cisplatin-Based Chemotherapy Is a Strong Risk Factor for Thromboembolic Events in Small-Cell Lung Cancer. Cancer Res Treat 2015; 47: 670-5. Cerca con Google

39. Moore RA, Adel N, Riedel E, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol 2011; 29: 3466-73. Cerca con Google

40. Starling N, Rao S, Cunningham D, et al. Thromboembolism in patients with advanced gastroesophageal cancer treated with anthracycline, platinum, and fluoropyrimidine combination chemotherapy: a report from the UK National Cancer Research Institute Upper Gastrointestinal Clinical Studies Group. J Clin Oncol 2009; 27: 3786-93. Cerca con Google

41. Seng S, Liu Z, Chiu SK, et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: a systematic review and meta-analysis. J Clin Oncol 2012; 30: 4416-26. Cerca con Google

42. Nalluri SR, Chu D, Keresztes R, et al. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 2008; 300: 2277-85. Cerca con Google

43. Pritchard KI, Paterson AH, Paul NA, et al. Increased thromboembolic complications with concurrent tamoxifen and chemotherapy in a randomized trial of adjuvant therapy for women with breast cancer. National Cancer Institute of Canada Clinical Trials Group Breast Cancer Site Group. J Clin Oncol 1996; 14: 2731-7. Cerca con Google

44. Bohlius J, Wilson J, Seidenfeld J, et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J Natl Cancer Inst 2006; 98: 708-14. Cerca con Google

45. Bennett CL, Silver SM, Djulbegovic B, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 2008; 299: 914-24. Cerca con Google

46. White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost 2003; 90: 446-55. Cerca con Google

47. Baumann Kreuziger L, Jaffray J, Carrier M. Epidemiology, diagnosis, prevention and treatment of catheter-related thrombosis in children and adults. Thromb Res 2017; 157: 64-71. Cerca con Google

48. Kamphuisen PW, Lee AY. Catheter-related thrombosis: lifeline or a pain in the neck? Hematology Am Soc Hematol Educ Program 2012; 2012: 638-44. Cerca con Google

49. Saber W, Moua T, Williams EC, et al. Risk factors for catheter-related thrombosis (CRT) in cancer patients: a patient-level data (IPD) meta-analysis of clinical trials and prospective studies. J Thromb Haemost 2011; 9: 312-9. Cerca con Google

50. Debourdeau P, Farge D, Beckers M, et al. International clinical practice guidelines for the treatment and prophylaxis of thrombosis associated with central venous catheters in patients with cancer. J Thromb Haemost 2013; 11: 71-80. Cerca con Google

51. Chopra V, Anand S, Hickner A, et al. Risk of venous thromboembolism associated with peripherally inserted central catheters: a systematic review and meta-analysis. Lancet 2013; 382: 311-25. Cerca con Google

52. Geerts W. Central venous catheter-related thrombosis. Hematology Am Soc Hematol Educ Program 2014; 2014: 306-11. Cerca con Google

53. Dentali F, Gianni M, Agnelli G, et al. Association between inherited thrombophilic abnormalities and central venous catheter thrombosis in patients with cancer: a meta-analysis. J Thromb Haemost 2008; 6: 70-5. Cerca con Google

54. Rajasekhar A, Streiff MB. How I treat central venous access device-related upper extremity deep vein thrombosis. Blood 2017; 129: 2727-36. Cerca con Google

55. Alcalay A, Wun T, Khatri V, et al. Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol 2006; 24: 1112-8. Cerca con Google

56. Mandala M, Barni S, Prins M, et al. Acquired and inherited risk factors for developing venous thromboembolism in cancer patients receiving adjuvant chemotherapy: a prospective trial. Ann Oncol 2010; 21: 871-6. Cerca con Google

57. Konigsbrugge O, Lotsch F, Reitter EM, et al. Presence of varicose veins in cancer patients increases the risk for occurrence of venous thromboembolism. J Thromb Haemost 2013; 11: 1993-2000. Cerca con Google

58. Gran OV, Smith EN, Braekkan SK, et al. Joint effects of cancer and variants in the factor 5 gene on the risk of venous thromboembolism. Haematologica 2016; 101: 1046-53. Cerca con Google

59. Kovac M, Kovac Z, Tomasevic Z, et al. Factor V Leiden mutation and high FVIII are associated with an increased risk of VTE in women with breast cancer during adjuvant tamoxifen - results from a prospective, single center, case control study. Eur J Intern Med 2015; 26: 63-7. Cerca con Google

60. Imberti D, Agnelli G, Ageno W, et al. Clinical characteristics and management of cancer-associated acute venous thromboembolism: findings from the MASTER Registry. Haematologica 2008; 93: 273-8. Cerca con Google

61. Martinelli I, De Stefano V. Rare thromboses of cerebral, splanchnic and upper-extremity veins. A narrative review. Thromb Haemost 2010; 103: 1136-44. Cerca con Google

62. Prandoni P, Lensing AW, Cogo A, et al. The long-term clinical course of acute deep venous thrombosis. Ann Intern Med 1996; 125: 1-7. Cerca con Google

63. Prandoni P, Lensing AW, Piccioli A, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002; 100: 3484-8. Cerca con Google

64. Trujillo-Santos J, Nieto JA, Tiberio G, et al. Predicting recurrences or major bleeding in cancer patients with venous thromboembolism. Findings from the RIETE Registry. Thromb Haemost 2008; 100: 435-9. Cerca con Google

65. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5: 463-6. Cerca con Google

66. Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008; 111: 4902-7. Cerca con Google

67. Pabinger I, Posch F. Flamethrowers: blood cells and cancer thrombosis risk. Hematology Am Soc Hematol Educ Program 2014; 2014: 410-7. Cerca con Google

68. Simanek R, Vormittag R, Ay C, et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost 2010; 8: 114-20. Cerca con Google

69. Ay C, Dunkler D, Simanek R, et al. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2011; 29: 2099-103. Cerca con Google

70. Ay C, Simanek R, Vormittag R, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008; 112: 2703-8. Cerca con Google

71. Ay C, Vormittag R, Dunkler D, et al. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2009; 27: 4124-9. Cerca con Google

72. Chen M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp (Warsz) 2006; 54: 75-84. Cerca con Google

73. Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood 2009; 113: 2878-87. Cerca con Google

74. Teitel JM, Bauer KA, Lau HK, et al. Studies of the prothrombin activation pathway utilizing radioimmunoassays for the F2/F1 + 2 fragment and thrombin--antithrombin complex. Blood 1982; 59: 1086-97. Cerca con Google

75. Stender MT, Frokjaer JB, Larsen TB, et al. Preoperative plasma D-dimer is a predictor of postoperative deep venous thrombosis in colorectal cancer patients: a clinical, prospective cohort study with one-year follow-up. Dis Colon Rectum 2009; 52: 446-51. Cerca con Google

76. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102: 2165-8. Cerca con Google

77. Kanz R, Vukovich T, Vormittag R, et al. Thrombosis risk and survival in cancer patients with elevated C-reactive protein. J Thromb Haemost 2011; 9: 57-63. Cerca con Google

78. Reitter EM, Kaider A, Ay C, et al. Longitudinal analysis of hemostasis biomarkers in cancer patients during antitumor treatment. J Thromb Haemost 2016; 14: 294-305. Cerca con Google

79. Falanga A, Russo L, Milesi V, et al. Mechanisms and risk factors of thrombosis in cancer. Crit Rev Oncol Hematol 2017; 118: 79-83. Cerca con Google

80. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood 2010; 116: 5377-82. Cerca con Google

81. Mandala M, Clerici M, Corradino I, et al. Incidence, risk factors and clinical implications of venous thromboembolism in cancer patients treated within the context of phase I studies: the 'SENDO experience'. Ann Oncol 2012; 23: 1416-21. Cerca con Google

82. Verso M, Agnelli G, Barni S, et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score. Intern Emerg Med 2012; 7: 291-2. Cerca con Google

83. Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008; 22: 414-23. Cerca con Google

84. Louzada ML, Carrier M, Lazo-Langner A, et al. Development of a clinical prediction rule for risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism. Circulation 2012; 126: 448-54. Cerca con Google

85. den Exter PL, Kooiman J, Huisman MV. Validation of the Ottawa prognostic score for the prediction of recurrent venous thromboembolism in patients with cancer-associated thrombosis. J Thromb Haemost 2013; 11: 998-1000. Cerca con Google

86. Lyman GH, Bohlke K, Khorana AA, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: american society of clinical oncology clinical practice guideline update 2014. J Clin Oncol 2015; 33: 654-6. Cerca con Google

87. Karimi M, Cohan N. Cancer-associated thrombosis. Open Cardiovasc Med J 2010; 4: 78-82. Cerca con Google

88. Bick RL. Cancer-associated thrombosis. N Engl J Med 2003; 349: 109-11. Cerca con Google

89. Rickles FR. Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol Haemost Thromb 2006; 35: 103-10. Cerca con Google

90. Falanga A, Marchetti M, Russo L. The mechanisms of cancer-associated thrombosis. Thromb Res 2015; 135 Suppl 1: S8-S11. Cerca con Google

91. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 2013; 11: 223-33. Cerca con Google

92. Falanga A, Alessio MG, Donati MB, et al. A new procoagulant in acute leukemia. Blood 1988; 71: 870-5. Cerca con Google

93. Kazmierczak M, Lewandowski K, Wojtukiewicz MZ, et al. Cancer procoagulant in patients with adenocarcinomas. Blood Coagul Fibrinolysis 2005; 16: 543-7. Cerca con Google

94. Mackman N. The many faces of tissue factor. J Thromb Haemost 2009; 7 Suppl 1: 136-9. Cerca con Google

95. Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 1687-93. Cerca con Google

96. Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013; 122: 1873-80. Cerca con Google

97. Callander NS, Varki N, Rao LV. Immunohistochemical identification of tissue factor in solid tumors. Cancer 1992; 70: 1194-201. Cerca con Google

98. Khorana AA, Ahrendt SA, Ryan CK, et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 2007; 13: 2870-5. Cerca con Google

99. Davila M, Amirkhosravi A, Coll E, et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost 2008; 6: 1517-24. Cerca con Google

100. Kakkar AK, Lemoine NR, Scully MF, et al. Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg 1995; 82: 1101-4. Cerca con Google

101. Thaler J, Preusser M, Ay C, et al. Intratumoral tissue factor expression and risk of venous thromboembolism in brain tumor patients. Thromb Res 2013; 131: 162-5. Cerca con Google

102. Ueno T, Toi M, Koike M, et al. Tissue factor expression in breast cancer tissues: its correlation with prognosis and plasma concentration. Br J Cancer 2000; 83: 164-70. Cerca con Google

103. Uno K, Homma S, Satoh T, et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br J Cancer 2007; 96: 290-5. Cerca con Google

104. Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 2009; 27: 4834-8. Cerca con Google

105. van den Berg YW, Osanto S, Reitsma PH, et al. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 2012; 119: 924-32. Cerca con Google

106. Magnus N, D'Asti E, Meehan B, et al. Oncogenes and the coagulation system--forces that modulate dormant and aggressive states in cancer. Thromb Res 2014; 133 Suppl 2: S1-9. Cerca con Google

107. Minnema MC, Fijnheer R, De Groot PG, et al. Extremely high levels of von Willebrand factor antigen and of procoagulant factor VIII found in multiple myeloma patients are associated with activity status but not with thalidomide treatment. J Thromb Haemost 2003; 1: 445-9. Cerca con Google

108. Auwerda JJ, Sonneveld P, de Maat MP, et al. Prothrombotic coagulation abnormalities in patients with newly diagnosed multiple myeloma. Haematologica 2007; 92: 279-80. Cerca con Google

109. Nickel KF, Ronquist G, Langer F, et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015; 126: 1379-89. Cerca con Google

110. Binder BR, Christ G, Gruber F, et al. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 2002; 17: 56-61. Cerca con Google

111. Yagci M, Sucak GT, Haznedar R. Fibrinolytic activity in multiple myeloma. Am J Hematol 2003; 74: 231-7. Cerca con Google

112. Casslen B, Bossmar T, Lecander I, et al. Plasminogen activators and plasminogen activator inhibitors in blood and tumour fluids of patients with ovarian cancer. Eur J Cancer 1994; 30A: 1302-9. Cerca con Google

113. Pyke C, Kristensen P, Ralfkiaer E, et al. The plasminogen activation system in human colon cancer: messenger RNA for the inhibitor PAI-1 is located in endothelial cells in the tumor stroma. Cancer Res 1991; 51: 4067-71. Cerca con Google

114. Seruga B, Zhang H, Bernstein LJ, et al. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 2008; 8: 887-99. Cerca con Google

115. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777-83. Cerca con Google

116. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123: 2768-76. Cerca con Google

117. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109: 13076-81. Cerca con Google

118. Gupta AK, Joshi MB, Philippova M, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584: 3193-7. Cerca con Google

119. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107: 15880-5. Cerca con Google

120. von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209: 819-35. Cerca con Google

121. Gyorgy B, Szabo TG, Pasztoi M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68: 2667-88. Cerca con Google

122. Campello E, Spiezia L, Radu CM, et al. Microparticles as biomarkers of venous thromboembolic events. Biomark Med 2016; 10: 743-55. Cerca con Google

123. Gardiner C, Harrison P, Belting M, et al. Extracellular vesicles, tissue factor, cancer and thrombosis - discussion themes of the ISEV 2014 Educational Day. J Extracell Vesicles 2015; 4: 26901. Cerca con Google

124. Owens AP, 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108: 1284-97. Cerca con Google

125. Mooberry MJ, Bradford R, Hobl EL, et al. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia. J Thromb Haemost 2016; 14: 1031-42. Cerca con Google

126. Lacroix R, Dubois C, Leroyer AS, et al. Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost 2013; 11 Suppl 1: 24-35. Cerca con Google

127. Rautou PE, Mackman N. Microvesicles as risk markers for venous thrombosis. Expert Rev Hematol 2013; 6: 91-101. Cerca con Google

128. Zhou L, Qi XL, Xu MX, et al. Microparticles: new light shed on the understanding of venous thromboembolism. Acta Pharmacol Sin 2014; 35: 1103-10. Cerca con Google

129. Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97: 425-34. Cerca con Google

130. Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102: 2678-83. Cerca con Google

131. Biro E, Sturk-Maquelin KN, Vogel GM, et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 2003; 1: 2561-8. Cerca con Google

132. Abid Hussein MN, Meesters EW, Osmanovic N, et al. Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. J Thromb Haemost 2003; 1: 2434-43. Cerca con Google

133. Siddiqui FA, Desai H, Amirkhosravi A, et al. The presence and release of tissue factor from human platelets. Platelets 2002; 13: 247-53. Cerca con Google

134. Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017; 130: 1499-506. Cerca con Google

135. Thomas GM, Panicot-Dubois L, Lacroix R, et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 2009; 206: 1913-27. Cerca con Google

136. Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10: 1355-62. Cerca con Google

137. Rubin O, Delobel J, Prudent M, et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion 2013; 53: 1744-54. Cerca con Google

138. van Beers EJ, Schaap MC, Berckmans RJ, et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009; 94: 1513-9. Cerca con Google

139. Koshiar RL, Somajo S, Norstrom E, et al. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One 2014; 9: e104200. Cerca con Google

140. Somajo S, Koshiar RL, Norstrom E, et al. Protein S and factor V in regulation of coagulation on platelet microparticles by activated protein C. Thromb Res 2014; 134: 144-52. Cerca con Google

141. Tans G, Rosing J, Thomassen MC, et al. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991; 77: 2641-8. Cerca con Google

142. Lacroix R, Dignat-George F. Microparticles: new protagonists in pericellular and intravascular proteolysis. Semin Thromb Hemost 2013; 39: 33-9. Cerca con Google

143. Lacroix R, Plawinski L, Robert S, et al. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 2012; 97: 1864-72. Cerca con Google

144. Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066. Cerca con Google

145. Freyssinet JM. Cellular microparticles: what are they bad or good for? J Thromb Haemost 2003; 1: 1655-62. Cerca con Google

146. Ye R, Ye C, Huang Y, et al. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis. Thromb Res 2012; 130: 253-8. Cerca con Google

147. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359: 938-49. Cerca con Google

148. Puddu P, Puddu GM, Cravero E, et al. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 2010; 26: 140-5. Cerca con Google

149. Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 2012; 10: 437-46. Cerca con Google

150. Mooberry MJ, Key NS. Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A 2015. Cerca con Google

151. Lacroix R, Robert S, Poncelet P, et al. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost 2010; 36: 807-18. Cerca con Google

152. Shantsila E, Montoro-Garcia S, Gallego P, et al. Circulating microparticles: challenges and perspectives of flow cytometric assessment. Thromb Haemost 2014; 111: 1009-14. Cerca con Google

153. Nomura S, Niki M, Nisizawa T, et al. Microparticles as Biomarkers of Blood Coagulation in Cancer. Biomark Cancer 2015; 7: 51-6. Cerca con Google

154. Campello E, Spiezia L, Radu CM, et al. Evaluation of a procoagulant phospholipid functional assay as a routine test for measuring circulating microparticle activity. Blood Coagul Fibrinolysis 2014; 25: 534-7. Cerca con Google

155. Osumi K, Ozeki Y, Saito S, et al. Development and assessment of enzyme immunoassay for platelet-derived microparticles. Thromb Haemost 2001; 85: 326-30. Cerca con Google

156. Jy W, Horstman LL, Jimenez JJ, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004; 2: 1842-51. Cerca con Google

157. Key NS, Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin Thromb Hemost 2010; 36: 865-75. Cerca con Google

158. Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 2011; 7: 780-8. Cerca con Google

159. Yuana Y, Oosterkamp TH, Bahatyrova S, et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost 2010; 8: 315-23. Cerca con Google

160. van der Pol E, Coumans F, Varga Z, et al. Innovation in detection of microparticles and exosomes. J Thromb Haemost 2013; 11 Suppl 1: 36-45. Cerca con Google

161. van der Pol E, Hoekstra AG, Sturk A, et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010; 8: 2596-607. Cerca con Google

162. Lacroix R, Judicone C, Mooberry M, et al. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 2013. Cerca con Google

163. Cointe S, Judicone C, Robert S, et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost 2017; 15: 187-93. Cerca con Google

164. Inglis HC, Danesh A, Shah A, et al. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytometry A 2015; 87: 1052-63. Cerca con Google

165. Burger D, Schock S, Thompson CS, et al. Microparticles: biomarkers and beyond. Clin Sci (Lond) 2013; 124: 423-41. Cerca con Google

166. Dvorak HF, Quay SC, Orenstein NS, et al. Tumor shedding and coagulation. Science 1981; 212: 923-4. Cerca con Google

167. Dvorak HF, Van DeWater L, Bitzer AM, et al. Procoagulant activity associated with plasma membrane vesicles shed by cultured tumor cells. Cancer Res 1983; 43: 4434-42. Cerca con Google

168. Campello E, Radu CM, Spiezia L, et al. Modulating thrombotic diathesis in hereditary thrombophilia and antiphospholipid antibody syndrome: a role for circulating microparticles? Clin Chem Lab Med 2017; 55: 934-43. Cerca con Google

169. Campello E, Spiezia L, Radu CM, et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res 2011; 127: 473-7. Cerca con Google

170. Thaler J, Ay C, Mackman N, et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10: 1363-70. Cerca con Google

171. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 2009; 15: 6830-40. Cerca con Google

172. Khorana AA, Francis CW, Menzies KE, et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost 2008; 6: 1983-5. Cerca con Google

173. Tesselaar ME, Romijn FP, Van Der Linden IK, et al. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 2007; 5: 520-7. Cerca con Google

174. Bharthuar A, Khorana AA, Hutson A, et al. Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers. Thromb Res 2013; 132: 180-4. Cerca con Google

175. Date K, Ettelaie C, Maraveyas A. Tissue factor-bearing microparticles and inflammation: a potential mechanism for the development of venous thromboembolism in cancer. J Thromb Haemost 2017. Cerca con Google

176. Ruf W, Disse J, Carneiro-Lobo TC, et al. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 2011; 9 Suppl 1: 306-15. Cerca con Google

177. Maraveyas A, Ettelaie C, Echrish H, et al. Weight-adjusted dalteparin for prevention of vascular thromboembolism in advanced pancreatic cancer patients decreases serum tissue factor and serum-mediated induction of cancer cell invasion. Blood Coagul Fibrinolysis 2010; 21: 452-8. Cerca con Google

178. van Doormaal F, Kleinjan A, Berckmans RJ, et al. Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thromb Haemost 2012; 108: 160-5. Cerca con Google

179. Thaler J, Ay C, Weinstabl H, et al. Circulating procoagulant microparticles in cancer patients. Ann Hematol 2011; 90: 447-53. Cerca con Google

180. Sartori MT, Della Puppa A, Ballin A, et al. Circulating microparticles of glial origin and tissue factor bearing in high-grade glioma: a potential prothrombotic role. Thromb Haemost 2013; 110: 378-85. Cerca con Google

181. Auwerda JJ, Yuana Y, Osanto S, et al. Microparticle-associated tissue factor activity and venous thrombosis in multiple myeloma. Thromb Haemost 2011; 105: 14-20. Cerca con Google

182. Yates JW, Chalmer B, McKegney FP. Evaluation of patients with advanced cancer using the Karnofsky performance status. Cancer 1980; 45: 2220-4. Cerca con Google

183. Brierley J, Gospodarowicz M, O'Sullivan B. The principles of cancer staging. Ecancermedicalscience 2016; 10: ed61. Cerca con Google

184. Campello E, Spiezia L, Zabeo E, et al. Hypercoagulability detected by whole blood thromboelastometry (ROTEM(R)) and impedance aggregometry (MULTIPLATE(R)) in obese patients. Thromb Res 2015; 135: 548-53. Cerca con Google

185. Konings J, Govers-Riemslag JW, Spronk HM, et al. Activation of the contact system in patients with a first acute myocardial infarction. Thromb Res 2013; 132: 138-42. Cerca con Google

186. Govers-Riemslag JW, Smid M, Cooper JA, et al. The plasma kallikrein-kinin system and risk of cardiovascular disease in men. J Thromb Haemost 2007; 5: 1896-903. Cerca con Google

187. Minnema MC, Pajkrt D, Wuillemin WA, et al. Activation of clotting factor XI without detectable contact activation in experimental human endotoxemia. Blood 1998; 92: 3294-301. Cerca con Google

188. Hisada Y, Alexander W, Kasthuri R, et al. Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays. Thromb Res 2016; 139: 90-7. Cerca con Google

189. Wisgrill L, Lamm C, Hartmann J, et al. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A 2016; 89: 663-72. Cerca con Google

190. Aass HC, Ovstebo R, Troseid AM, et al. Fluorescent particles in the antibody solution result in false TF- and CD14-positive microparticles in flow cytometric analysis. Cytometry A 2011; 79: 990-9. Cerca con Google

191. Mezouar S, Frere C, Darbousset R, et al. Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb Res 2016; 139: 65-76. Cerca con Google

192. Larocca A, Cavallo F, Bringhen S, et al. Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood 2012; 119: 933-9; quiz 1093. Cerca con Google

193. Shai A, Rennert HS, Rennert G, et al. Statins, aspirin and risk of thromboembolic events in ovarian cancer patients. Gynecol Oncol 2014; 133: 304-8. Cerca con Google

194. Mansfield AS, Tafur AJ, Wang CE, et al. Predictors of active cancer thromboembolic outcomes: validation of the Khorana score among patients with lung cancer. J Thromb Haemost 2016; 14: 1773-8. Cerca con Google

195. van Es N, Di Nisio M, Cesarman G, et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study. Haematologica 2017; 102: 1494-501. Cerca con Google

196. Hamzehzadeh L, Yousefi M, Ghaffari SH. Colorectal Cancer Screening: A Comprehensive Review to Recent Non-Invasive Methods. Int J Hematol Oncol Stem Cell Res 2017; 11: 250-61. Cerca con Google

197. Blasi A, Molina V, Sanchez-Cabus S, et al. Prediction of thromboembolic complications after liver resection for cholangiocarcinoma: is there a place for thromboelastometry? Blood Coagul Fibrinolysis 2017. Cerca con Google

198. Long AT, Kenne E, Jung R, et al. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14: 427-37. Cerca con Google

199. Roeise O, Sivertsen S, Ruud TE, et al. Studies on components of the contact phase system in patients with advanced gastrointestinal cancer. Cancer 1990; 65: 1355-9. Cerca con Google

200. Tafur AJ, Dale G, Cherry M, et al. Prospective evaluation of protein C and factor VIII in prediction of cancer-associated thrombosis. Thromb Res 2015; 136: 1120-5. Cerca con Google

201. Andren-Sandberg A, Lecander I, Martinsson G, et al. Peaks in plasma plasminogen activator inhibitor-1 concentration may explain thrombotic events in cases of pancreatic carcinoma. Cancer 1992; 69: 2884-7. Cerca con Google

202. Sciacca FL, Ciusani E, Silvani A, et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin Cancer Res 2004; 10: 1312-7. Cerca con Google

203. Denko NC, Giaccia AJ. Tumor hypoxia, the physiological link between Trousseau's syndrome (carcinoma-induced coagulopathy) and metastasis. Cancer Res 2001; 61: 795-8. Cerca con Google

204. Renne T, Pozgajova M, Gruner S, et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271-81. Cerca con Google

205. Fredenburgh JC, Gross PL, Weitz JI. Emerging anticoagulant strategies. Blood 2017; 129: 147-54. Cerca con Google

206. Connor DE, Exner T, Ma DD, et al. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010; 103: 1044-52. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record