Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Romeo, Zaira (2018) The cognitive demand of multitasking under visuo-spatial processing: Assessment, ERPs and electrophysiology of brain networks in chronic stroke patients. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
9Mb

Abstract (english)

This thesis investigates several aspects of visuo-spatial processing from a clinical, electrophysiological and neurofunctional perspective, with the aim of enriching our understanding of neurological syndromes that affect such fundamental perceptual-cognitive skill. A common thread is the use of cognitive load as a mean to study spatial awareness deficits following brain stroke. We show that increased task demands uncovers pathological spatial asymmetries both in right and left hemisphere damaged patients that performed at ceiling in standard paper-and-pencil tests. Although visuo-spatial deficits are commonly considered infrequent after left hemisphere lesions, the comparison between the two clinical populations showed that multitasking reveals patterns of neglect and extinction regardless of the affected hemisphere. A similar multitasking paradigm was then administered to young healthy participants in order to study the electrophysiological signatures of spatial monitoring, examining correct and erroneous processing of peripheral visual stimuli. Task difficulty was increased compared to the clinical version in order to obtain a consistent number of missed targets, thereby simulating patients’ performance. Our results support the hypothesis that processing of visual information under multitasking is regulated by a threshold criterion: the target is successfully detected only when the electrophysiological activity reaches a critical amplitude. Finally, we conducted a resting state electroencephalographic (EEG) study in order to correlate patterns of spontaneous brain activity with neuropsychological scores and multitasking costs indices. This investigation builds on the hypothesis that cognition is not only associated with the specialization of brain regions, but also with the large-scale organization of functionally connected networks. A state-of-art methodology was used to reconstruct 14 brain networks, previously detected in fMRI studies, from electrophysiological signals in chronic stroke patients. The integration of critical clusters within each network was then examined, exploring also its correlation with behavioural measures and the contribution of specific frequency bands. Overall, this empirical work provides an original contribution to the study of the mechanisms underlying brain organization after unilateral damage and the consequent implications for cognitive performance.

Abstract (italian)

Questo lavoro di tesi indaga diversi aspetti relativi all’elaborazione visuo-spaziale da un punto di vista clinico, elettrofisiologico e neurofunzionale, al fine di contribuire allo studio dei disturbi neurologici che comportano deficit a livello percettivo. Il filo conduttore è stato l’utilizzo del carico cognitivo per studiare deficit di consapevolezza spaziale che possono emergere a seguito di un ictus cerebrale. Abbiamo mostrato come l’aumento della difficoltà di un compito sia in grado di rilevare asimmetrie spaziali patologiche in pazienti con lesioni cerebrali all’emisfero destro o sinistro che avevano una prestazione nella norma ai classici test neuropsicologici “carta e matita”. Sebbene i disturbi visuo-spaziali siano ritenuti infrequenti a seguito di lesioni emisferiche sinistre, sorprendentemente il confronto di queste due popolazioni cliniche mette in luce l’efficacia del multitasking nell’individuare pattern di negligenza ed estinzione indipendentemente dal lato della lesione. Una versione modificata del nostro paradigma di multitasking è stata inoltre somministrata ad un gruppo di giovani partecipanti sani al fine di studiare i correlati elettrofisiologici del monitoraggio spaziale, confrontando l’elaborazione corretta ed incorretta di stimoli apparsi nella periferia del campo visivo. La difficoltà del compito è stata aumentata rispetto alla versione clinica al fine di ottenere un consistente numero di stimoli non individuati e dunque di simulare la prestazione di pazienti neurologici. I nostri risultati supportano l’ipotesi che in condizione di multitasking l’elaborazione di informazioni visive sia regolata da un criterio di soglia. Nello specifico, la corretta percezione di uno stimolo è determinata dal raggiungimento di un’ampiezza critica dell’attività corticale. Infine, abbiamo condotto uno studio in resting state al fine di studiare la correlazione tra attività cerebrale spontanea e prestazione comportamentale, misurata attraverso classici indici neuropsicologici ed indici di costo al multitasking. Questo studio prende in considerazione l’ipotesi che la cognizione non sia associata soltanto alla specializzazione delle regioni cerebrali, ma anche all’organizzazione su larga scala di reti neuronali funzionalmente connesse. Attraverso l’utilizzo di un metodo di analisi allo stato dell’arte, 14 reti cerebrali, precedentemente studiate con tecniche di risonanza magnetica funzionale, sono state estratte dal segnale elettroencefalografico in un gruppo di pazienti con esiti di ictus in fase cronica. Inoltre, è stata analizzata l’integrazione di particolari cluster all’interno di ciascuna rete, indagando anche la relativa correlazione con indici comportamentali ed il contributo di specifiche bande di frequenza. In sintesi, questo lavoro empirico offre un contributo originale allo studio dei meccanismi sottostanti l’organizzazione cerebrale a seguito di ictus e delle relative ripercussioni sulla prestazione cognitiva.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Spironelli, Chiara
Supervisor:Zorzi, Marco
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:10 January 2018
Anno di Pubblicazione:05 January 2018
Key Words:multitasking; neglect; visuo-spatial processing; neuropsychological assessment; ERP, EEG; resting state networks
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/01 Psicologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:10609
Depositato il:15 Nov 2018 12:48
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aertsen, A. M., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation: modulation of effective connectivity; Journal of Neurophysiology, 61(5), 900–917. Cerca con Google

Aglioti, S., Smania, N., Barbieri, C., & Corbetta, M. (1997). Influence of Stimulus Salience and Attentional Demands on Visual Search Patterns in Hemispatial Neglect. Brain and Cognition, 34, 388–403. http://doi.org/10.1006/BRCG.1997.0915 Vai! Cerca con Google

Al-Hashimi, O., Zanto, T. P., & Gazzaley, A. (2015). Neural sources of performance decline during continuous multitasking. Cortex, 71, 49–57. Cerca con Google

Alavash, M., Hilgetag, C. C., Thiel, C. M., & Gießing, C. (2015). Persistency and flexibility of complex brain networks underlie dual-task interference. Human Brain Mapping, 36(9), 3542–3562. http://doi.org/10.1002/hbm.22861 Vai! Cerca con Google

Appelros, P., Karlsson, G. M., Seiger, Å., & Nydevik, I. (2002). Neglect and anosognosia after first-ever stroke: Incidence and relationship to disability. Journal of Rehabilitation Medicine, 34, 215–220. http://doi.org/10.1080/165019702760279206 Vai! Cerca con Google

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci., 28, 403–50. review-article. http://doi.org/10.1146/annurev.neuro.28.061604.135709 Vai! Cerca con Google

Azouvi, P., Bartolomeo, P., Beis, J.-M., Perennou, D., Pradat-Diehl, P., & Rousseaux, M. (2006). A battery of tests for the quantitative assessment of unilateral neglect. Restorative Neurology and Neuroscience, 24, 273–285. Cerca con Google

Azouvi, P., Samuel, C., Bernati, T., Bartolomeo, P., Beis, J., Chokron, S., … Perennou, D. (2002). Sensitivity of clinical and behavioural tests of spatial neglect after right hemisphere stroke. J Neurol Neurosurg Psychiatry, 73, 160–166. Cerca con Google

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. http://doi.org/10.1016/j.jml.2007.12.005 Vai! Cerca con Google

Baldassarre, A., Ramsey, L. E., Hacker, C. L., Callejas, A., Astafiev, S. V., Metcalf, N. V., … Corbetta, M. (2014). Large-scale changes in network interactions as a physiological signature of spatial neglect. Brain, 137, 3267–3283. http://doi.org/10.1093/brain/awu297 Vai! Cerca con Google

Baldassarre, A., Ramsey, L. E., Rengachary, J., Zinn, K., Siegel, J. S., Metcalf, N. V., … Shulman, G. L. (2016). Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke. Brain, 139, 2024–2038. http://doi.org/10.1093/brain/aww107 Vai! Cerca con Google

Bartolomeo, P., Thiebaut De Schotten, M., & Doricchi, F. (2007). Left unilateral neglect as a disconnection syndrome. Cerebral Cortex, 17, 2479–2490. http://doi.org/10.1093/cercor/bhl181 Vai! Cerca con Google

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious Mixed Models. arXiv:1506.04967 [Stat]. Cerca con Google

Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001–1013. http://doi.org/10.1098/rstb.2005.1634 Vai! Cerca con Google

Beis, J.-M., Keller, C., Morin, N., Bartolomeo, P., Bernati, T., Chokron, S., … Azouvi, P. (2004). Right spatial neglect after left hemisphere stroke: qualitative and quantitative study. Neurology, 63(9), 1600–1605. Cerca con Google

Besl, P., & McKay, N. (1992). A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. http://doi.org/10.1109/34.121791 Vai! Cerca con Google

Bird, C. M., Malhotra, P., Parton, a, Coulthard, E., Rushworth, M. F. S., & Husain, M. (2006). Visual neglect after right posterior cerebral artery infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 77(9), 1008–1012. http://doi.org/10.1136/jnnp.2006.094417 Vai! Cerca con Google

Biswal, B., Van Kylen, J., & Hyde, J. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, 10, 165–170. Cerca con Google

Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using. Magn Reson Med, 34, 537–541. http://doi.org/10.1002/mrm.1910340409 Vai! Cerca con Google

Blini, E., Romeo, Z., Spironelli, C., Pitteri, M., Meneghello, F., Bonato, M., & Zorzi, M. (2016). Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients. Neuropsychologia, 92, 147–157. http://doi.org/10.1016/j.neuropsychologia.2016.02.028 Vai! Cerca con Google

Bonato, M. (2012). Neglect and Extinction Depend Greatly on Task Demands: A Review. Frontiers in Human Neuroscience, 6, 1–13. http://doi.org/10.3389/fnhum.2012.00195 Vai! Cerca con Google

Bonato, M. (2015). Unveiling residual, spontaneous recovery from subtle hemispatial neglect three years after stroke. Frontiers in Human Neuroscience, 9, 413. http://doi.org/10.3389/fnhum.2015.00413 Vai! Cerca con Google

Bonato, M., & Deouell, L. Y. (2013). Hemispatial neglect: computer-based testing allows more sensitive quantification of attentional disorders and recovery and might lead to better evaluation of rehabilitation. Frontiers in Human Neuroscience, 7, 162. http://doi.org/10.3389/fnhum.2013.00162 Vai! Cerca con Google

Bonato, M., Priftis, K., Marenzi, R., Umiltà, C., & Zorzi, M. (2010). Increased attentional demands impair contralesional space awareness following stroke. Neuropsychologia, 48(13), 3934–3940. http://doi.org/10.1016/j.neuropsychologia.2010.08.022 Vai! Cerca con Google

Bonato, M., Priftis, K., Marenzi, R., Umiltà, C., & Zorzi, M. (2012). Deficits of contralesional awareness: a case study on what paper-and-pencil tests neglect. Neuropsychology, 26(1), 20–36. http://doi.org/10.1037/a0025306 Vai! Cerca con Google

Bonato, M., Priftis, K., Umiltà, C., & Zorzi, M. (2013). Computer-based attention-demanding testing unveils severe neglect in apparently intact patients. Behavioural Neurology, 26(3), 179–181. http://doi.org/10.3233/BEN-2012-129005 Vai! Cerca con Google

Bonato, M., Sella, F., Berteletti, I., & Umiltà, C. (2012). Neuropsychology is nothing without control: A potential fallacy hidden in clinical studies. Cortex, 48(3), 353–355. http://doi.org/10.1016/j.cortex.2011.06.017 Vai! Cerca con Google

Bonato, M., Spironelli, C., Lisi, M., Priftis, K., & Zorzi, M. (2015). Effects of multimodal load on spatial monitoring as revealed by ERPs. PLoS ONE, 10(9), 1–21. http://doi.org/10.1371/journal.pone.0136719 Vai! Cerca con Google

Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., … Sharp, D. J. (2011). Default Mode Network Connectivity Predicts Sustained Attention Deficits after Traumatic Brain Injury. Journal of Neuroscience, 31(38), 13442–13451. http://doi.org/10.1523/JNEUROSCI.1163-11.2011 Vai! Cerca con Google

Brade, D., & D’Esposito, M. (2007). Functional Magnetic Resonance Imaging Evidence for a Hierarchical Organization of the Prefrontal Cortex. Journal of Cognitive Neuroscience, 19(12), 1–18. http://doi.org/10.1007/s11525-006-9103-5 Vai! Cerca con Google

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., … Morris, P. G. (2011). Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proceedings of the National Academy of Sciences, 108(40), 16783–16788. http://doi.org/10.1073/pnas.1112685108 Vai! Cerca con Google

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. http://doi.org/10.1196/annals.1440.011 Vai! Cerca con Google

Buckner, R. L., & Vincent, J. L. (2007). Unrest at rest: Default activity and spontaneous network correlations. NeuroImage, 37, 1091–1096. http://doi.org/10.1016/j.neuroimage.2007.01.010 Vai! Cerca con Google

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(4), 312–312. http://doi.org/10.1038/nrn2618 Vai! Cerca con Google

Burgess, P. W., Veitch, E., de Lacy Costello, A., & Shallice, T. (2000). The cognitive and neuroantomical correlates of multitasking. Neuropsychologia, 38, US, usinfo-f@elsevier com. http://doi.org/10.1016/s0028-3932(99)00134-7 Vai! Cerca con Google

Buxbaum, L. J., Ferraro, M. K., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., … Coslett, H. B. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62, 749–756. http://doi.org/10.1212/01.WNL.0000113730.73031.F4 Vai! Cerca con Google

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–9. http://doi.org/10.1126/science.1099745 Vai! Cerca con Google

Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2014). Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurological Sciences, 22(6), 443–447. http://doi.org/10.1007/s100720200003 Vai! Cerca con Google

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum.Brain Mapp., 13, 43–53. http://doi.org/10.1002/hbm.1024 Vai! Cerca con Google

Carlesimo, G. A., Caltagirone, C., Gainotti, G., Facida, L., Gallassi, R., Lorusso, S., … Parnett, L. (1996). The mental deterioration battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. European Neurology, 36, 378–384. http://doi.org/10.1159/000117297 Vai! Cerca con Google

Carrera, E., & Tononi, G. (2014). Diaschisis: Past, present, future. Brain, 137(9), 2408–2422. http://doi.org/10.1093/brain/awu101 Vai! Cerca con Google

Carter, A. R., Astafiev, S. V., Lang, C. E., Connor, L. T., Rengachary, J., Strube, M. J., … Corbetta, M. (2010). Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Annals of Neurology, 67(3), 365–375. http://doi.org/10.1002/ana.21905 Vai! Cerca con Google

Carter, A. R., Patel, K. R., Astafiev, S. V, Snyder, A. Z., Rengachary, J., Strube, M. J., … Corbetta, M. (2012). Upstream Dysfunction of Somatomotor Functional Connectivity after Corticospinal Damage in Stroke. Neurorehabilitation and Neural Repair, 26(1), 1–19. http://doi.org/10.1177/1545968311411054 Vai! Cerca con Google

Carter, A. R., Shulman, G., & Corbetta, M. (2013). Why use a connectivity-based approach to study stroke and recovery of function. NeuroImage, 62(4), 2271–2280. http://doi.org/10.1016/j.neuroimage.2012.02.070.Why Vai! Cerca con Google

Chen, J. L., & Schlaug, G. (2013). Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke. Frontiers in Neurology, 4 NOV(November), 1–7. http://doi.org/10.3389/fneur.2013.00178 Vai! Cerca con Google

Chen, Y., & Spence, C. (2017). Hemispheric asymmetry: Looking for a novel signature of the modulation of spatial attention in multisensory processing. Psychonomic Bulletin & Review, 24, 690–707. http://doi.org/10.3758/s13423-016-1154-y Vai! Cerca con Google

Chica, A. B., Botta, F., Lupiáñez, J., & Bartolomeo, P. (2012). Spatial attention and conscious perception: Interactions and dissociations between and within endogenous and exogenous processes. Neuropsychologia, 50, 621–629. http://doi.org/10.1016/j.neuropsychologia.2011.12.020 Vai! Cerca con Google

Chica, A. B., Lasaponara, S., Lupiáñez, J., Doricchi, F., & Bartolomeo, P. (2010). Exogenous attention can capture perceptual consciousness: ERP and behavioural evidence. NeuroImage, 51, 1205–1212. http://doi.org/10.1016/j.neuroimage.2010.03.002 Vai! Cerca con Google

Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K., & Alvarez, G. A. (2014). Processing multiple visual objects is limited by overlap in neural channels. Proceedings of the National Academy of Sciences, 111(24), 8955–8960. http://doi.org/10.1073/pnas.1317860111 Vai! Cerca con Google

Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci, 8(11), 1603–1610. Retrieved from http://dx.doi.org/10.1038/nn1574 Vai! Cerca con Google

Corbetta, M., Patel, G., & Shulman, G. L. (2008). The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron, 58(3), 306–324. http://doi.org/10.1016/j.neuron.2008.04.017 Vai! Cerca con Google

Corbetta, M., & Shulman, G. L. (2002). Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nature Reviews Neuroscience, 3(3), 215–229. http://doi.org/10.1038/nrn755 Vai! Cerca con Google

Corbetta, M., & Shulman, G. L. (2011). Spatial Neglect and Attention Networks. Ann Rev Neurosci, 34(1), 569–599. http://doi.org/10.1146/annurev-neuro-061010-113731.SPATIAL Vai! Cerca con Google

Crawford, J. R., Garthwaite, P. H., Azzalini, A., Howell, D. C., & Laws, K. R. (2006). Testing for a deficit in single-case studies: Effects of departures from normality. Neuropsychologia, 44(4), 666–677. http://doi.org/https://doi.org/10.1016/j.neuropsychologia.2005.06.001 Vai! Cerca con Google

Crawford, J. R., & Howell, D. C. (1998). Comparing an Individual’s Test Score Against Norms Derived from Small Samples. The Clinical Neuropsychologist, 12(4), 482–486. http://doi.org/10.1076/clin.12.4.482.7241 Vai! Cerca con Google

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848–13853. http://doi.org/10.1073/pnas.0601417103 Vai! Cerca con Google

Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12, 43–56. http://doi.org/10.1038/nrn2961 Vai! Cerca con Google

Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: Computational insights into potential cognitive architectures. Trends in Neurosciences, 36(5), 268–274. http://doi.org/10.1016/j.tins.2013.03.001 Vai! Cerca con Google

Dodds, C. M., van Belle, J., Peers, P. V., Dove, A., Cusack, R., Duncan, & Manly, T. (2008). The effects of time-on-task and concurrent cognitive load on normal visuospatial bias. Neuropsychology, 22(4), 545. http://doi.org/10.1037/0894-4105.22.4.545 Vai! Cerca con Google

Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., … Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073–11078. http://doi.org/10.1073/pnas.0704320104 Vai! Cerca con Google

Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H., … Petersen, S. E. (2006). A Core System for the Implementation of Task Sets. Neuron, 50(5), 799–812. http://doi.org/doi:10.1016/j.neuron.2006.04.031. Vai! Cerca con Google

Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79(1), 39–88. http://doi.org/10.1016/S0010-0277(00)00124-4 Vai! Cerca con Google

Dux, P. E., Ivanoff, J., Asplund, C. L., & Marois, R. (2006). Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI. Neuron, 52, 1109–1120. http://doi.org/10.1016/j.neuron.2006.11.009 Vai! Cerca con Google

Dux, P. E., Tombu, M. N., Harrison, S., Rogers, B. P., & Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex, 63(1), 127–138. http://doi.org/doi:10.1016/j.neuron.2009.06.005. Vai! Cerca con Google

Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., … Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet, 383, 245–255. http://doi.org/10.1016/S0140-6736(13)61953-4 Vai! Cerca con Google

Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human. Proceedings of the National Academy of Sciences, 103(25), 9381–9386. Cerca con Google

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. http://doi.org/10.1038/nrn2201 Vai! Cerca con Google

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673–9678. http://doi.org/10.1073/pnas.0504136102 Vai! Cerca con Google

Friston, K. J. (2002). Beyond Phrenology: What Can Neuroimaging Tell Us About Distributed Circuitry? Annual Review of Neuroscience, 25, 221–250. http://doi.org/10.1146/annurev.neuro.25.112701.142846 Vai! Cerca con Google

Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. (1993). Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets. Journal of Cerebral Blood Flow & Metabolism, 13(1), 5–14. http://doi.org/10.1038/jcbfm.1993.4 Vai! Cerca con Google

Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D., & Burgess, P. W. (2007). Comment on “Wandering Minds: The Default Network and Stimulus-Independent Thought.” Science, 317(5834), 43b–43b. http://doi.org/10.1126/science.1140801 Vai! Cerca con Google

Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134, 1694–1709. http://doi.org/10.1093/brain/awr085 Vai! Cerca con Google

Goedert, K. M., Boston, R. C., & Barrett, A. M. (2013). Advancing the Science of Spatial Neglect Rehabilitation: An Improved Statistical Approach with Mixed Linear Modeling. Frontiers in Human Neuroscience, 7. http://doi.org/10.3389/fnhum.2013.00211 Vai! Cerca con Google

Goldman, R. I., Stern, J. M., Engel, J., & Choen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm, 13(18), 1–5. http://doi.org/10.1097/01.wnr.0000047685.08940.d0.Simultaneous Vai! Cerca con Google

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430. http://doi.org/10.1097/WCO.0b013e328306f2c5 Vai! Cerca con Google

Greicius, M., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–8. http://doi.org/10.1073/pnas.0135058100 Vai! Cerca con Google

Greicius, M., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 72–78. http://doi.org/10.1093/cercor/bhn059 Vai! Cerca con Google

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Yu, A. B., Kahn, A. E., … Bassett, D. S. (2015). Controllability of structural brain networks. Nature Communications, 6(8414), 1-10. http://doi.org/10.1038/ncomms9414 Vai! Cerca con Google

Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–694. http://doi.org/10.1038/35094500 Vai! Cerca con Google

Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition : evidence from visual neglect. Trends in Cognitive Sciences, 7(3), 125–133. http://doi.org/10.1016/S1364-6613(03)00032-9 Vai! Cerca con Google

Hampson, M., Hampson, M., Driesen, N. N. R., Driesen, N. N. R., Skudlarski, P., Skudlarski, P., … Jc. (2006). Brain connectivity related to working memory performance. Journal of Neuroscience, 26(51), 13338–13343. http://doi.org/10.1523/JNEUROSCI.3408-06.2006.Brain Vai! Cerca con Google

Handy, T. C., Soltani, M., & Mangun, G. R. (2001). Perceptual load and visuocortical processing: event-related potentials reveal sensory-level selection. Psychological Science, 12(3), 213–218. http://doi.org/10.1111/1467-9280.00338 Vai! Cerca con Google

Hayden, B. Y., & Platt, M. L. (2010). Neurons in Anterior Cingulate Cortex Multiplex Information about Reward and Action. Journal of Neuroscience, 30(9), 3339–3346. http://doi.org/10.1523/JNEUROSCI.4874-09.2010 Vai! Cerca con Google

He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect. Neuron, 53(6), 905–918. http://doi.org/10.1016/j.neuron.2007.02.013 Vai! Cerca con Google

Heilbronner, S. R., & Hayden, B. Y. (2016). Dorsal Anterior Cingulate Cortex: A Bottom-Up View, 39, 973–982. http://doi.org/10.1016/S2215-0366(16)30284-X.Epidemiology Vai! Cerca con Google

Heilman, K. M., & Van Den Abell, T. (1979). Right hemispheric dominance for mediating cerebral activation. Neuropsychologia, 17(3–4), 315–321. http://doi.org/10.1016/0028-3932(79)90077-0 Vai! Cerca con Google

Heilman, K. M., Watson, R. T., & Valenstein, E. (1985). Neglect and Related Disorders. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (2nd ed., pp. 243–293). New York: Oxford University Press. Cerca con Google

Hillis, A. E., Wityk, R. J., Barker, P. B., Beauchamp, N. J., Gailloud, P., Murphy, K., … Metter, E. J. (2002). Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain : A Journal of Neurology, 125(125), 1094–104. http://doi.org/10.1093/brain/awf113 Vai! Cerca con Google

Holcombe, A. O., & Chen, W. (2012). Exhausting attentional tracking resources with a single fast-moving object. Cognition, 123(2), 218–228. http://doi.org/10.1016/j.cognition.2011.10.003 Vai! Cerca con Google

Holländer, A., Corballis, M. C., & Hamm, J. P. (2005). Visual-field asymmetry in dual-stream RSVP. Neuropsychologia, 43(1), 35–40. http://doi.org/10.1016/j.neuropsychologia.2004.06.006 Vai! Cerca con Google

Hosokawa, T., Kennerley, S. W., Sloan, J., & Wallis, J. D. (2013). Single-Neuron Mechanisms Underlying Cost-Benefit Analysis in Frontal Cortex. Journal of Neuroscience, 33(44), 17385–17397. http://doi.org/10.1523/JNEUROSCI.2221-13.2013 Vai! Cerca con Google

Husain, M., & Kennard, C. (1996). Visual neglect associated with frontal lobe infarction. Journal of Neurology, 243, 652–657. http://doi.org/10.1007/BF00878662 Vai! Cerca con Google

Husain, M., & Rorden, C. (2003). Nonspatially lateralized mechanisms in hemispatial neglect. Nature Reviews Neuroscience, 4(1), 26–36. http://doi.org/10.1016/B978-012375731-9/50061-6 Vai! Cerca con Google

Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110. Cerca con Google

Kaplan, R. F., Cohen, R. A., Rosengart, A., Elsner, A. E., Hedges, T. R., & Caplan, L. R. (1995). Extinction during time controlled direct retinal stimulation after recovery from right hemispheric stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 59, 534–6. http://doi.org/10.1136/jnnp.59.5.534 Vai! Cerca con Google

Kaplan, R. F., Verfaellie, M., Meadows, M. E., Caplan, L. R., Pessin, M. S., & Dewitt, L. D. (1991). Changing attentional demands in left hemispatial neglect. Archives of Neurology, 48(12), 1263-3. http://doi.org/10.1001/archneur.1991.00530240067023 Vai! Cerca con Google

Karnath, H. O. (2015). Spatial attention systems in spatial neglect. Neuropsychologia, 75, 61–73. http://doi.org/10.1016/j.neuropsychologia.2015.05.019 Vai! Cerca con Google

Karnath, H. O., Berger, M. F., Küker, W., & Rorden, C. (2004). The anatomy of spatial neglect based on voxelwise statistical analysis: A study of 140 patients. Cerebral Cortex, 14(10), 1164–1172. http://doi.org/10.1093/cercor/bhh076 Vai! Cerca con Google

Karnath, H. O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness: a function of the posterior parietal lobe? Nature, 411(2), 950–953. http://doi.org/10.1016/S0010-9452(08)70654-3 Vai! Cerca con Google

Karnath, H. O., Himmelbach, M., Küker, W., & Kuker, W. (2003). The cortical substrate of visual extinction. Neuroreport, 14(3), 437–42. http://doi.org/10.1097/01.wnr.0000059778.23521.88 Vai! Cerca con Google

Karnath, H. O., Himmelbach, M., & Rorden, C. (2002). The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain, 125, 350–360. http://doi.org/10.1093/brain/awf032 Vai! Cerca con Google

Karnath, H. O., & Rorden, C. (2012). The anatomy of spatial neglect. Neuropsychologia, 60(6), 1010–1017. http://doi.org/10.1016/j.neuropsychologia.2011.06.027. Vai! Cerca con Google

Kim, H. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage, 50(4), 1648–1657. http://doi.org/10.1016/j.neuroimage.2010.01.051 Vai! Cerca con Google

Kinsbourne, M. (1970). The cerebral basis of lateral asymmetries in attention. Acta Psychologica, 33, 193–201. http://doi.org/http://dx.doi.org/10.1016/0001-6918(70)90132-0 Vai! Cerca con Google

Kinsbourne, M. (1987). Mechanisms of Unilateral Neglect. Advances in Psychology, 45, 69–86. http://doi.org/10.1016/S0166-4115(08)61709-4 Vai! Cerca con Google

Koechlin, E., & Hyafil, A. (2007). Anterior Prefrontal Function and the Limits of Human Decision-Making. Science, 318(5850), 594-598. Cerca con Google

Làdavas, E. (1990). Selective Spatial Attention in Patients with Visual Extinction. Brain, 113(5), 1527–1538. http://doi.org/10.1093/brain/113.5.1527 Vai! Cerca con Google

Laufs, H., Holt, J. L., Elfont, R., Krams, M., Paul, J. S., Krakow, K., & Kleinschmidt, A. (2006). Where the BOLD signal goes when alpha EEG leaves. NeuroImage, 31(4), 1408–1418. http://doi.org/10.1016/j.neuroimage.2006.02.002 Vai! Cerca con Google

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences, 100(19), 11053–11058. http://doi.org/10.1073/pnas.1831638100 Vai! Cerca con Google

Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451–468. http://doi.org/10.1037/0096-1523.21.3.451 Vai! Cerca con Google

Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75–82. http://doi.org/10.1016/j.tics.2004.12.004 Vai! Cerca con Google

Laws, K. R. (2005). Categories, Controls and Ceilings. Cortex, 41(6), 869–872. http://doi.org/https://doi.org/10.1016/S0010-9452(08)70313-7 Vai! Cerca con Google

Lee, M. H., Hacker, C. D., Snyder, A. Z., Corbetta, M., Zhang, D., Leuthardt, E. C., & Shimony, J. S. (2012). Clustering of resting state networks. PLoS ONE, 7(7), 1–12. http://doi.org/10.1371/journal.pone.0040370 Vai! Cerca con Google

Linacre, J. M., Heinemann, A. W., Wright, B. D., Granger, C. V, & Hamilton, B. B. (1994). The structure and stability of the Functional Independence Measure. Arch Phys Med Rehabil, 75(2), 127–132. http://doi.org/0003-9993(94)90384-0 [pii] Vai! Cerca con Google

Linden, D. E. J. (2007). The Working Memory Networks of the Human Brain. The Neuroscientist, 13(3), 257–267. http://doi.org/10.1177/1073858406298480 Vai! Cerca con Google

Lisi, M., Bonato, M., & Zorzi, M. (2015). Pupil dilation reveals top-down attentional load during spatial monitoring. Biological Psychology, 112, 39–45. http://doi.org/10.1016/j.biopsycho.2015.10.002 Vai! Cerca con Google

Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., & Mantini, D. (2017). Detecting large-scale networks in the human brain using high-density electroencephalography. Human Brain Mapping, 38(9), 4631–4643. http://doi.org/10.1002/hbm.23688 Vai! Cerca con Google

Llinas, R. R. (1988). Intrinsic Electrophysiological Properties Central Nervous System Function. Science, 242, 1654–1664. Cerca con Google

Logie, R. H., Trawley, S., & Law, A. (2011). Multitasking: multiple, domain-specific cognitive functions in a virtual environment. Memory & Cognition, 39, 1561–1574. http://doi.org/10.3758/s13421-011-0120-1 Vai! Cerca con Google

Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., & Phillips, M. D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. NeuroImage, 12(5), 582–587. http://doi.org/10.1006/nimg.2000.0654 Vai! Cerca con Google

Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., … Murray, C. J. L. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2095–2128. http://doi.org/10.1016/S0140-6736(12)61728-0 Vai! Cerca con Google

Luk, C. H., & Wallis, J. D. (2009). Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex. Journal of Neuroscience, 29(23), 7526–7539. http://doi.org/doi:10.1523/JNEUROSCI.0386-09.2009. Vai! Cerca con Google

Lundin-Olsson, L., Nyberg, L., & Gustafson, Y. (1997). “Stops walking when talking” as a predictor of falls in elderly people. The Lancet, 349(9052), 617. http://doi.org/10.1016/S0140-6736(97)24009-2 Vai! Cerca con Google

Lunven, M., & Bartolomeo, P. (2015). Attention and spatial cognition: Neural and anatomical substrates of visual neglect. Annals of Physical and Rehabilitation Medicine, 60(3), 1–6. http://doi.org/10.1016/j.rehab.2016.01.004 Vai! Cerca con Google

Luzzatti, C., Willmes, K., & De Bleser, R. (1996). Aachener aphasie test: versione italiana. Firenze: Organizzazioni Speciali. Cerca con Google

Magni, E., Binetti, G., Bianchetti, A., Rozzini, R., & Trabucchi, M. (1996). Mini‐Mental State Examination: a normative study in Italian elderly population. European Journal of Neurology, 3(3), 198–202. http://doi.org/10.1111/j.1468-1331.1996.tb00423.x Vai! Cerca con Google

Mantini, D., Corbetta, M., Romani, G. L., Orban, G. A., & Vanduffel, W. (2013). Evolutionarily Novel Functional Networks in the Human Brain? Journal of Neuroscience, 33(8), 3259–3275. http://doi.org/10.1523/JNEUROSCI.4392-12.2013 Vai! Cerca con Google

Mantini, D., Franciotti, R., Romani, G. L., & Pizzella, V. (2008). Improving MEG source localizations: An automated method for complete artifact removal based on independent component analysis. NeuroImage, 40, 160–173. http://doi.org/10.1016/j.neuroimage.2007.11.022 Vai! Cerca con Google

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences, 104(32), 13170–13175. Cerca con Google

Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6), 296–305. http://doi.org/10.1016/j.tics.2005.04.010 Vai! Cerca con Google

Mason, M. F., Norton, M. I., Horn, J. D. Van, Wegner, D. M., Grafton, S. T., Macrae, C. N., … Macrae, C. N. (2007). Wandering minds: Stimulus-independent thought. Science, 315, 393–395. http://doi.org/10.1126/science.1131295 Vai! Cerca con Google

Medina, J., Kannan, V., Pawlak, M. A., Kleinman, J. T., Davis, C., Heidler-gary, J. E., … Argye, E. (2009). Reference Frames : Evidence from Unilateral Spatial Neglect. Journal of Cognitive Neuroscience, 21(11), 2073–2084. http://doi.org/10.1162/jocn.2008.21160.Neural Vai! Cerca con Google

Miller, E. K., Gochin, P. M., & Gross, C. G. (1993). Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Research, 616(1), 25–29. http://doi.org/10.1016/0006-8993(93)90187-R Vai! Cerca con Google

Molenberghs, P., Gillebert, C. R., Peeters, R., & Vandenberghe, R. (2008). Convergence between lesion-symptom mapping and functional magnetic resonance imaging of spatially selective attention in the intact brain. J Neurosci, 28(13), 3359–3373. http://doi.org/10.1523/JNEUROSCI.5247-07.2008 Vai! Cerca con Google

Molenberghs, P., Sale, M. V, & Mattingley, J. B. (2012). Is there a critical lesion site for unilateral spatial neglect? A meta-analysis using activation likelihood estimation. Frontiers in Human Neuroscience, 6(78). http://doi.org/10.3389/fnhum.2012.00078 Vai! Cerca con Google

Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., & Husain, M. (2003). The anatomy of visual neglect. Brain, 126, 1986–1997. http://doi.org/10.1093/brain/awg200 Vai! Cerca con Google

Nachev, P., Coulthard, E., Jäger, H. R., Kennard, C., & Husain, M. (2008). Enantiomorphic normalization of focally lesioned brains. NeuroImage, 39(3), 1215–1226. http://doi.org/10.1016/j.neuroimage.2007.10.002 Vai! Cerca con Google

Nijboer, M., Borst, J. P., van Rijn, H., & Taatgen, N. A. (2016). Driving and Multitasking: The Good, the Bad, and the Dangerous. Front. Psychol., 7(1718). http://doi.org/10.3389/fpsyg.2016.01718 Vai! Cerca con Google

Nijboer, M., Borst, J., van Rijn, H., & Taatgen, N. (2014). Single-task fMRI overlap predicts concurrent multitasking interference. NeuroImage, 100, 60–74. http://doi.org/10.1016/j.neuroimage.2014.05.082 Vai! Cerca con Google

O’Connell, R. G., Schneider, D., Hester, R., Mattingley, J. B., & Bellgrove, M. A. (2011). Attentional load asymmetrically affects early electrophysiological indices of visual orienting. Cerebral Cortex, 21(5), 1056–1065. http://doi.org/10.1093/cercor/bhq178 Vai! Cerca con Google

Oldfield, R. C. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. http://doi.org/10.1016/0028-3932(71)90067-4 Vai! Cerca con Google

Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719. http://doi.org/10.1016/S1388-2457(00)00527-7 Vai! Cerca con Google

Paolucci, S., Antonucci, G., Grasso, M. G., & Pizzamiglio, L. (2001). The role of unilateral spatial neglect in rehabilitation of right brain-damaged ischemic stroke patients: A matched comparison. Archives of Physical Medicine and Rehabilitation, 82(6), 743–749. http://doi.org/10.1053/apmr.2001.23191 Vai! Cerca con Google

Park, C., Chang, W. H., Ohn, S. H., Kim, S. T., Bang, O. Y., Pascual-Leone, A., & Kim, Y.-H. (2011). Longitudinal Changes of Resting-State Functional Connectivity During Motor Recovery After Stroke. Stroke, 42(5), 1357–1362. http://doi.org/10.1161/STROKEAHA.110.596155 Vai! Cerca con Google

Park, H., & Friston, K. (2013). Structural and Functional Brain Networks: From Connections to Cognition. Science, 342(6158), 1238411–1238411. http://doi.org/10.1126/science.1238411 Vai! Cerca con Google

Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., … Kinoshita, T. (2011). Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3768–3784. http://doi.org/10.1098/rsta.2011.0081 Vai! Cerca con Google

Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244. http://doi.org/10.1037/0033-2909.116.2.220 Vai! Cerca con Google

Peers, P. V., Cusack, R., & Duncan, J. (2006). Modulation of spatial bias in the dual task paradigm: Evidence from patients with unilateral parietal lesions and controls. Neuropsychologia, 44(8), 1325–1335. http://doi.org/10.1016/j.neuropsychologia.2006.01.033 Vai! Cerca con Google

Peers, P. V, Ludwig, C. J. H., Rorden, C., Cusack, R., Bonfiglioli, C., Bundesen, C., … Duncan, J. (2005). Attentional Functions of Parietal and Frontal Cortex. Cerebral Cortex, 15(10), 1469–1484. http://dx.doi.org/10.1093/cercor/bhi029 Vai! Cerca con Google

Penny, W., Friston, K., Ashblumer, J., Kiebel, S., & Nichols, T. E. (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier Ltd. Cerca con Google

Perani, D., Lucignani, G., Pantano, P., Gerundini, P., Lenzi, G. L., & Fazio, F. (1987). Cerebellar diaschisis in pontine ischemia. A case report with single-photon emission computerized tomography. Journal of Cerebral Blood Flow and Metabolism, 7(1), 127–131. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med2&NEWS=N&AN=3492505 Vai! Cerca con Google

Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. http://doi.org/10.1111/j.1365-2796.2004.01388.x Vai! Cerca con Google

Possin, K. L. (2010). Visual spatial cognition in neurodegenerative disease. Neurocase, 16(6), 466–487. http://doi.org/10.1080/13554791003730600.Visual Vai! Cerca con Google

Priftis, K., Bonato, M., Zorzi, M., & Umiltà, C. (2013). Spatial and non-spatial aspects of neglect. Frontiers in Human Neuroscience, 7. http://doi.org/10.3389/fnhum.2013.00025 Vai! Cerca con Google

Procyk, E., Wilson, C. R. E., Stoll, F. M., Faraut, M. C. M., Petrides, M., & Amiez, C. (2016). Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys. Cerebral Cortex, 26(2), 467–476. http://doi.org/10.1093/cercor/bhu213 Vai! Cerca con Google

Pustina, D., Branch Coslett, H., Turkeltaub, P. E., Tustison, N., Schwartz, M. F., & Avants, B. (2016). Automated segmentation of chronic stroke lesions using LINDA: Lesion Identification with Neighborhood Data Analysis. Human Brain Mapping, 37(4), 1405–1421. http://doi.org/10.1016/j.celrep.2016.09.087.Roles Vai! Cerca con Google

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–82. http://doi.org/10.1073/pnas.98.2.676 Vai! Cerca con Google

Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37, 1083–1090. http://doi.org/10.1016/j.neuroimage.2007.02.041 Vai! Cerca con Google

Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci, 5(3), 184–194. http://dx.doi.org/10.1038/nrn1343 Vai! Cerca con Google

Redel, P., Bublak, P., Sorg, C., Kurz, A., Förstl, H., Müller, H. J., … Finke, K. (2012). Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 33(1). http://doi.org/10.1016/j.neurobiolaging.2010.05.014 Vai! Cerca con Google

Rémy, F., Wenderoth, N., Lipkens, K., & Swinnen, S. P. (2010). Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia, 48(9), 2517–2527. http://doi.org/10.1016/j.neuropsychologia.2010.04.026 Vai! Cerca con Google

Rengachary, J., He, B. J., Shulman, G. L., & Corbetta, M. (2011). A behavioral analysis of spatial neglect and its recovery after stroke. Frontiers in Human Neuroscience, 5(April), 29. http://doi.org/10.3389/fnhum.2011.00029 Vai! Cerca con Google

Ringman, J. M., Saver, J., Wooison, R. F., Clarke, W., & Adams, H. (2004). Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology, 63(3), 468–474. Cerca con Google

Ringman, J., Saver, J., Woolson, R., Clarke, W., & Adams, H. (2004). Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology, 63(3), 468–474. Cerca con Google

Robertson, I. H., Manly, T., Beschin, N., Daini, R., Haeske-Dewick, H., Hömberg, V., … Weber, E. (1997). Auditory sustained attention is a marker of unilateral spatial neglect. Neuropsychologia, 35(12), 1527–1532. http://doi.org/10.1016/S0028-3932(97)00084-5 Vai! Cerca con Google

Robertson, I. H., Mattingley, J. B., Rorden, C., & Driver, J. (1998). Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 395, 169–172. Retrieved from http://dx.doi.org/10.1038/25993 Vai! Cerca con Google

Robertson, I. H., Tegnér, R., Tham, K., Lo, A., & Nimmo-smith, I. (1995). Sustained attention training for unilateral neglect: Theoretical and rehabilitation implications. Journal of Clinical and Experimental Neuropsychology, 17(3), 416–430. http://doi.org/10.1080/01688639508405133 Vai! Cerca con Google

Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 25(1), 230–242. http://doi.org/https://doi.org/10.1016/j.neuroimage.2004.11.017 Vai! Cerca con Google

Rombouts, S. A. R. B., Damoiseaux, J. S., Goekoop, R., Barkhof, F., Scheltens, P., Smith, S. M., & Beckmann, C. F. (2009). Model-free group analysis shows altered BOLD FMRI networks in dementia. Human Brain Mapping, 30(1), 256–266. http://doi.org/10.1002/hbm.20505 Vai! Cerca con Google

Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., & Karnath, H.-O. (2012). Age-specific CT and MRI templates for spatial normalization. NeuroImage, 61(4), 957–965. http://doi.org/10.1016/j.neuroimage.2012.03.020 Vai! Cerca con Google

Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12(4), 191–200. Cerca con Google

Rorden, C., Guerrini, C., Swainson, R., Lazzeri, M., & Baylis, G. C. (2008). Event related potentials reveal that increasing perceptual load leads to increased responses for target stimuli and decreased responses for irrelevant stimuli. Frontiers in Human Neuroscience, 2, 1–7. http://doi.org/10.3389/neuro.09.004.2008 Vai! Cerca con Google

Rorden, C., & Karnath, H. O. (2010). A simple measure of neglect severity. Neuropsychologia, 48(9), 2758–2763. http://doi.org/10.1021/nl061786n.Core-Shell Vai! Cerca con Google

Sadaghiani, S., & D’Esposito, M. (2015). Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex, 25, 2763–2773. http://doi.org/10.1093/cercor/bhu072 Vai! Cerca con Google

Sarri, M., Greenwood, R., Kalra, L., & Driver, J. (2009). Task-related modulation of visual neglect in cancellation tasks. Neuropsychologia, 47, 91–103. http://doi.org/10.1016/j.neuropsychologia.2008.08.020 Vai! Cerca con Google

Sasai, S., Boly, M., Mensen, A., & Tononi, G. (2016). Functional split brain in a driving/listening paradigm. Proc Natl Acad Sci, 113(50), 14444–14449. http://doi.org/10.1073/pnas.1613200113 Vai! Cerca con Google

Schaefer, S. (2014). The ecological approach to cognitive-motor dual-tasking: findings on the effects of expertise and age. Front. Psychol., 5. http://doi.org/10.3389/fpsyg.2014.01167 Vai! Cerca con Google

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Gary, H., Kenna, H., … Greicius, M. D. (2007). Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. Journal of Neurosciences, 27(9), 2349–2356. http://doi.org/10.1523/JNEUROSCI.5587-06.2007.Dissociable Vai! Cerca con Google

Siegel, J. S., Ramsey, L. E., Snyder, A. Z., Metcalf, N. V., Chacko, R. V., Weinberger, K., … Corbetta, M. (2016). Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proceedings of the National Academy of Sciences, 113, E4367–E4376. http://doi.org/10.1073/pnas.1521083113 Vai! Cerca con Google

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106(31), 13040–13045. http://doi.org/10.1073/pnas.0905267106 Vai! Cerca con Google

Spadone, S., Della Penna, S., Sestieri, C., Betti, V., Tosoni, A., Perrucci, M. G., … Corbetta, M. (2015). Dynamic reorganization of human resting-state networks during visuospatial attention. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8112–7. http://doi.org/10.1073/pnas.1415439112 Vai! Cerca con Google

Spence, C. (2008). Cognitive Neuroscience: Searching for the Bottleneck in the Brain. Current Biology, 18(20), 965–968. http://doi.org/10.1016/j.cub.2008.08.039 Vai! Cerca con Google

Spinnler, H., & Tognoni, G. (1987). Standardizzazione e Taratura Italiana di Test Neuropsicologici, ltal. Journal of the Neurological Sciences, 6. Cerca con Google

Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86(1), 1–39. http://doi.org/10.1017/S1472928801000139 Vai! Cerca con Google

Stone, S. P., Halligan, P. W., & Greenwood, R. J. (1993). The Incidence of Neglect Phenomena and Related Disorders in Patients with an Acute Right or Left Hemisphere. Stroke, Age and Ageing, 22(1), 46–52. http://doi.org/https://doi.org/10.1093/ageing/22.1.46 Vai! Cerca con Google

Szczepanski, S. M., & Kastner, S. (2013). Shifting attentional priorities: Control of spatial attention through hemispheric competition. Annals of Internal Medicine, 158(6), 5411–5421. http://doi.org/10.1523/JNEUROSCI.4089-12.2013 Vai! Cerca con Google

Team R Core. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Cerca con Google

Thimm, M., Fink, G. R., Küst, J., Karbe, H., & Sturm, W. (2006). Impact of alertness training on spatial neglect: A behavioural and fMRI study. Neuropsychologia, 44, 1230–1246. http://doi.org/10.1016/j.neuropsychologia.2005.09.008 Vai! Cerca con Google

Timpert, D. C., Weiss, P. H., Vossel, S., Dovern, A., & Fink, G. R. (2015). Apraxia and spatial inattention dissociate in left hemisphere stroke. Cortex, 71, 349–358. http://doi.org/https://doi.org/10.1016/j.cortex.2015.07.023 Vai! Cerca con Google

Tombu, M. N., Asplund, C. L., Dux, P. E., Godwin, D., Martin, J. W., & Marois, R. (2011). A Unified attentional bottleneck in the human brain. Proceedings of the National Academy of Sciences, 108(33), 13426–13431. http://doi.org/10.1073/pnas.1103583108 Vai! Cerca con Google

van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. http://doi.org/10.1016/j.euroneuro.2010.03.008 Vai! Cerca con Google

Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229–239. http://doi.org/10.1038/35067550 Vai! Cerca con Google

Varsou, O., Macleod, M. J., & Schwarzbauer, C. (2013). Functional Connectivity Magnetic Resonance Imaging in Stroke: An Evidence-Based Clinical Review. International Journal of Stroke, 9(2), 191–198. http://doi.org/10.1111/ijs.12033 Vai! Cerca con Google

Verleger, R., Möller, F., Kuniecki, M., Śmigasiewicz, K., Groppa, S., & Siebner, H. R. (2010). The left visual-field advantage in rapid visual presentationis amplified rather than reduced by posterior-parietal rTMS. Experimental Brain Research, 203, 355–365. http://doi.org/10.1007/s00221-010-2237-z Vai! Cerca con Google

Verleger, R., & Śmigasiewicz, K. (2015). Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series. Consciousness and Cognition, 35, 260–273. http://doi.org/10.1016/j.concog.2015.02.013 Vai! Cerca con Google

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity. Journal of Neurophysiology, 100(6), 3328–3342. http://doi.org/10.1152/jn.90355.2008 Vai! Cerca con Google

Wang, L., Yu, C., Chen, H., Qin, W., He, Y., Fan, F., … Zhu, C. (2010). Dynamic functional reorganization of the motor execution network after stroke. Brain, 133(4), 1224–1238. http://doi.org/10.1093/brain/awq043 Vai! Cerca con Google

Wang, P., Zhou, B., Yao, H., Zhan, Y., Zhang, Z., Cui, Y., … Jiang, T. (2015). Aberrant intra- and inter-network connectivity architectures in Alzheimer’s disease and mild cognitive impairment. Scientific Reports, 5(October), 14824. http://doi.org/10.1038/srep14824 Vai! Cerca con Google

Wilson, B., Cockburn, J., & Halligan, P. W. (1987). Behavioural Inattention Test. (Thames Val). Cerca con Google

Yin, D., Song, F., Xu, D., Peterson, B. S., Sun, L., Men, W., … Fan, M. (2012). Patterns in Cortical Connectivity for Determining Outcomes in Hand Function after Subcortical Stroke. PLoS ONE, 7(12). http://doi.org/10.1371/journal.pone.0052727 Vai! Cerca con Google

Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., … Jiang, T. (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research, 97(1–3), 194–205. http://doi.org/10.1016/j.schres.2007.05.029 Vai! Cerca con Google

Zorzi, M., Bonato, M., Treccani, B., Scalambrin, G., Marenzi, R., & Priftis, K. (2012). Neglect Impairs Explicit Processing of the Mental Number Line. Frontiers in Human Neuroscience, 6, 1–12. http://doi.org/10.3389/fnhum.2012.00125 Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record