Three-dimensional (3D) cancer models are overlooking the scientific landscape with the primary goal of bridging the gaps between two-dimensional (2D) cell cultures, animal models and clinical research. In this thesis, we describe an innovative tissue engineering approach applied to colorectal cancer (CRC) starting from decellularized human biopsies in order to generate an organotypic 3D bioactive model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence and scanning electron microscopy analyses. Mass spectrometry of proteome and secretome confirmed a different stromal composition between decellularized healthy mucosa and CRC in terms of structural proteins (COL1A1, COL1A2, and COL3A1) and secreted proteins such as DEFA3. Importantly, we proved that our 3D acellular matrices retained their biological properties: using CAM assay, we observed a decreased angiogenic potential in decellularized CRC compared with healthy colon mucosa, caused by direct effect of DEFA3. In addition, we demonstrated that following a 5 days of recellularization with HT-29 cell line, the 3D tumor matrices induced an over-expression of IL-8, a DEFA3-mediated pathway and a mandatory chemokine in cancer growth and proliferation, compared with recellularized healthy mucosa and 2D conventional culture model. Given the biological activity maintained by the scaffolds after decellularization, we believe this approach is a powerful tool for future pre-clinical research and screenings.

I modelli tumorali tridimensionali (3D) si stanno affacciando sul panorama scientifico con l’obiettivo primario di superare le limitazioni di colture cellulari convenzionali (2D) e modelli animali negli approcci di ricerca clinica. In questa tesi di dottorato, si descrive un innovativo approccio di ingegneria tissutale applicata alla ricerca oncologica mediante il quale, partendo da una biopsia tissutale decellularizzata, si genera un modello organo-tipico 3D bioattivo. Questo modello 3D, ricapitola, in vitro, l’ambiente ultra-strutturale del tessuto nativo come dimostrato da indagini istologiche, immunoistochimiche, di immunofluorescenza e di microscopia elettronica a scansione. L’analisi del proteoma e del secretoma mediante spettrometria di massa ha confermato una differente composizione stromale tra la mucosa colica sana decellularizzata e quella della controparte tumorale (CRC) in termini di proteine strutturali (Collagene 1A1, Collagene 1A2, Collagene 3A1) e di proteine secrete, come la Defensina alfa 3. Abbiamo dimostrato che le nostre matrici 3D mantengono le loro proprietà biologiche dopo il processo di decellularizzazione: mediante la CAM, abbiamo osservato un decremento del potenziale angiogenico della matrice decellularizzata di CRC comparata con la mucosa colica sana, causata da un effetto diretto della Defensina alfa 3. Inoltre, abbiamo dimostrato che dopo 5 giorni di ricellularizzazione con cellule HT-29 (linea stabilizzata di cancro del colon), le matrici tumorali 3D (comparate con le rispettive mucose coliche sane ed il metodo di coltura 2D) hanno indotto una sovra-espressione di IL-8, una chemochina a valle del pathway della Defensina alfa 3, che gioca un ruolo molto importante nella crescita e proliferazione tumorale. In conclusione, avendo dimostrato la capacità dei delle nostre matrici acellulari 3D di mucosa colica sana e CRC di mimare gli stimoli ultra-strutturali e biologici dei rispettivi tessuti nativi, crediamo che questo approccio possa essere un efficace strumento per migliorare il livello delle ricerche precliniche e nei test di screening di farmaci.

Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research / D'Angelo, Edoardo. - (2018 Jan 10).

Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research

D'Angelo, Edoardo
2018

Abstract

I modelli tumorali tridimensionali (3D) si stanno affacciando sul panorama scientifico con l’obiettivo primario di superare le limitazioni di colture cellulari convenzionali (2D) e modelli animali negli approcci di ricerca clinica. In questa tesi di dottorato, si descrive un innovativo approccio di ingegneria tissutale applicata alla ricerca oncologica mediante il quale, partendo da una biopsia tissutale decellularizzata, si genera un modello organo-tipico 3D bioattivo. Questo modello 3D, ricapitola, in vitro, l’ambiente ultra-strutturale del tessuto nativo come dimostrato da indagini istologiche, immunoistochimiche, di immunofluorescenza e di microscopia elettronica a scansione. L’analisi del proteoma e del secretoma mediante spettrometria di massa ha confermato una differente composizione stromale tra la mucosa colica sana decellularizzata e quella della controparte tumorale (CRC) in termini di proteine strutturali (Collagene 1A1, Collagene 1A2, Collagene 3A1) e di proteine secrete, come la Defensina alfa 3. Abbiamo dimostrato che le nostre matrici 3D mantengono le loro proprietà biologiche dopo il processo di decellularizzazione: mediante la CAM, abbiamo osservato un decremento del potenziale angiogenico della matrice decellularizzata di CRC comparata con la mucosa colica sana, causata da un effetto diretto della Defensina alfa 3. Inoltre, abbiamo dimostrato che dopo 5 giorni di ricellularizzazione con cellule HT-29 (linea stabilizzata di cancro del colon), le matrici tumorali 3D (comparate con le rispettive mucose coliche sane ed il metodo di coltura 2D) hanno indotto una sovra-espressione di IL-8, una chemochina a valle del pathway della Defensina alfa 3, che gioca un ruolo molto importante nella crescita e proliferazione tumorale. In conclusione, avendo dimostrato la capacità dei delle nostre matrici acellulari 3D di mucosa colica sana e CRC di mimare gli stimoli ultra-strutturali e biologici dei rispettivi tessuti nativi, crediamo che questo approccio possa essere un efficace strumento per migliorare il livello delle ricerche precliniche e nei test di screening di farmaci.
10-gen-2018
Three-dimensional (3D) cancer models are overlooking the scientific landscape with the primary goal of bridging the gaps between two-dimensional (2D) cell cultures, animal models and clinical research. In this thesis, we describe an innovative tissue engineering approach applied to colorectal cancer (CRC) starting from decellularized human biopsies in order to generate an organotypic 3D bioactive model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence and scanning electron microscopy analyses. Mass spectrometry of proteome and secretome confirmed a different stromal composition between decellularized healthy mucosa and CRC in terms of structural proteins (COL1A1, COL1A2, and COL3A1) and secreted proteins such as DEFA3. Importantly, we proved that our 3D acellular matrices retained their biological properties: using CAM assay, we observed a decreased angiogenic potential in decellularized CRC compared with healthy colon mucosa, caused by direct effect of DEFA3. In addition, we demonstrated that following a 5 days of recellularization with HT-29 cell line, the 3D tumor matrices induced an over-expression of IL-8, a DEFA3-mediated pathway and a mandatory chemokine in cancer growth and proliferation, compared with recellularized healthy mucosa and 2D conventional culture model. Given the biological activity maintained by the scaffolds after decellularization, we believe this approach is a powerful tool for future pre-clinical research and screenings.
extracellular matrix, colorectal cancer, tumor microenvironment, 3D in vitro culture, biological scaffold
Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research / D'Angelo, Edoardo. - (2018 Jan 10).
File in questo prodotto:
File Dimensione Formato  
Tesi_Dottorato_D'Angelo_E_DEF_10.1.2018.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3426811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact