Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Battaglia, Eleonora (2018) Correlations between defect content, microstructure and casting quality in HPDC AlSi alloys. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Accepted Version
Thesis not accessible until 01 November 2020 for intellectual property related reasons.
Visibile to: nobody

11Mb

Abstract (english)

Two are the key players of this doctoral thesis: secondary AlSi alloys and the High Pressure Die Casting (HPDC) process.
As the levels of CO2 and other greenhouse gasses increase, the industry sector is called to reduce the emissions produced and to contain the energy consumptions. Therefore, secondary Al ingot production shows a 6% annual rate growth, mainly drawn by the transport sector.
In particular, automotive industry and, in general, transportation one increasingly needs light components in order to reduce total weights and therefore limit harmful emissions and fuel consumption. To this end, HPDC process is getting more and more crucial. It is, on one hand, versatile and highly productive but, on the other, the elevated amount of defects found in the castings sometimes compromises the characteristics of the final product.
The research activities performed during the Ph.D. years focused on the High Pressure Die Casting (HPDC) process and the assessment of the correlations between process parameters, casting quality and mechanical response improvement. The research work comprises three interconnected topics: (i) the effect of the process on the casting quality in terms of defect generation and eutectic Si morphology, (ii) how defects and microstructure influence the mechanical response of the components and (iii) how the mechanical properties can be improved through specific heat treatments.
The thesis starts dealing with the work developed within the EU MUSIC project aimed at transforming a production-rate-dominated manufacturing process into a quality/efficiency-driven and integration-oriented one. In the frame of the EU MUSIC project, an investigation procedure was developed which led to the definition of preliminary correlations between process parameters, defect content and static mechanical properties obtained analyzing both reference castings and commercialized industrial demonstrators.
A specific focus was always devoted to the possible industrial application in order to narrow down the gap between academic research and industry.
The second section deals with the definition of a so-called Penalty Index based on FE simulation model and fractographic investigations. It gave satisfactory predictions of both static strength and fatigue life of castings based on defect locations on the fracture surfaces and their projected areas. The elaborated criterion gives good results even though it does not take into account the real morphology of defects (which can be a very complex 3D morphology in the case of irregular flaws); its main drawback is that it is a "post-mortem" application. However, this limit can be overcome thanks to the wider diffusion of industrial high-resolution Computed Tomography (CT).
The third section is mainly dedicated to the study of HPDC microstructure. Two secondary Al-Si alloys, an AlSi12(b) and an AlSi12Cu1(Fe), were used to produce HPDCs. In both cases, there was an evident non-homogeneity of the microstructure, in particular of the eutectic Si morphology which could be correlated, to some extent, to the different as-cast mechanical response of the castings. Heat treatments at 350°C and soaking times ranging from1 to 8 hours were performed
Mechanical testing, hardness and metallographic investigations were carried out in order to understand the effect of the heat treatments. Microstructural observations using OM, SEM, TEM and EBSD investigations were also performed.
Based on the obtained results, the heat treating procedure was effective since it did not cause surface blistering (a real issue in the heat treatment of die castings) or component distortion.
The visible mechanical improvement in terms of both static and fatigue response was determined by Si crystals’ size and morphology. Thanks to heat treatment, the Si particle morphology changed from an interconnected ‘network’ to a more fragmented and smooth one. In terms of mechanical behavior, from a rapid crack propagation which led to a drastic reduction of the load-bearing area during the component use, the heat treatment caused a less instantaneous failure since the crack had to propagate through the ductile Al matrix.
The best solution was assessed and proposed to obtain significant mechanical properties and low costs.
Preliminary lab tests aimed at verifying the effect on the eutectic Si of common alloying elements such as Cu and Fe were finally conducted. A small mold was designed and manufactured in order to produce castings with solidification velocities comparable with those typical of the HPDC process. The base alloy was an AlSi12(b) ingot which was melt and several elements (i.e. Cu, Fe, Mn) were added to reach the AlSi12Cu1(Fe) alloy ranges. A refining effect of Cu was observed, however further investigations are necessary in order to better understand its joined effect with Fe.
This doctoral thesis deals with a complex topic; a high number of sequential actions are involved in the process. This is the reason why the developed work brought interesting and useful results, but it can also be considered a starting point for further investigations. Further analyses can be conducted to understand the causes of the non-uniform eutectic Si morphology and the nature of the Si precipitates within the α-Al phase as well as an enhancement of the elaborated Penalty Index can be obtained.

Abstract (italian)

In questa tesi di dottorato vengono presi in considerazione due principali aspetti: le leghe AlSi secondarie e il processo di pressocolata (HPDC).
Poiché i livelli di CO2 e gas serra sono in continuo aumento, il settore industriale è chiamato a ridurre le emissioni prodotte e contenere i consumi energetici. Perciò la produzione di Alluminio secondario mostra un aumento annuale del 6%, trainato principalmente dal settore dei trasporti.
In particolare, l'industria automotive e, in generale, quella dei trasporti necessitano sempre più di componenti leggeri al fine di ridurre i pesi totali e di conseguenza limitare le emissioni dannose ed il consumo di carburante. A questo fine, il processo di pressocolata sta diventando sempre più cruciale. Esso, da un lato, è versatile e altamente produttivo, ma dall'altro l'elevata quantità di difetti che si possono trovare nei getti talvolta compromette le caratteristiche finali dei getti.
L'attività di ricerca condotta durante gli anni di dottorato si è focalizzata sul processo di pressocolata e la valutazione delle correlazioni tra parametri di processo, qualità dei getti e miglioramento della risposta meccanica. Il lavoro di ricerca comprende tre argomenti interconnessi: (i) l'effetto del processo sulla qualità dei getti in termini di generazione di difetti e morfologia del Silicio, (ii) come difetti e microstruttura influenzano la risposta meccanica dei componenti e (iii) come le proprietà meccaniche possono essere migliorate attraverso specifici trattamenti termici.
La tesi inizia riportando il lavoro svolto nell'ambito del progetto ricerca Europeo MUSIC finalizzato a trasformare un processo dominato dal livello produttivo in uno guidato da qualità, efficienza ed integrazione. Nel contesto del progetto MUSIC, è stata sviluppata una procedura di indagine in grado di portare alla definizione di alcune correlazioni preliminari tra parametri di processo, contenuto difettologico e proprietà meccaniche statiche ottenute analizzando sia getti di riferimento sia dimostratori industriali già in produzione.
E' stato dedicato un focus particolare alle possibili applicazioni industriali al fine di restringere il divario tra ricerca accademica e industria.
Nella seconda sezioni si procede alla definizione di un così detto Indice di Penalità basato sulla simulazione FEM e l'analisi frattografica. Esso ha dato correlazioni significative sia con le proprietà meccaniche statiche che a fatica dei getti basandosi sulla posizione dei difetti sulla superficie di frattura e le relative aree proiettate. Il criterio elaborato fornisce buoni risultati anche se non consente di prendere in considerazione la reale morfologia dei difetti (che può essere molto complessa nel caso di difetti irregolari); il principale svantaggio del criterio è il fatto che si tratti di un'applicazione "post-mortem". Tuttavia, il limite potrà essere superato grazie alla vasta diffusione della Tomografia Computerizzata industriale.
La terza sezione della tesi è dedicata principalmente allo studio della microstruttura di getti pressocolati. Sono state utilizzate due leghe secondarie, AlSi12(b) e AlSi12Cu1(Fe), per la produzione dei getti. In entrambi i casi si è riscontrata una notevole disomogeneità della microstruttura, in particolare della morfologia del Si correlabile, in parte, alle differenti risposte meccaniche dei getti allo stato as-cast.
Sono stati quindi condotti trattamenti termici a 350°C per tempi variabili dall'1 alle 8 ore. Sono state quindi condotte prove meccaniche, di durezza e analisi metallografiche al fine di capire l'effetto dei trattamenti termici. Si sono svolte analisi microstrutturali tramite microscopio ottico, SEM, TEM e EBSD.
Sulla base dei risultati ottenuti, la procedura di trattamento termico è stata valutata efficace dal momento che, in primo luogo, non si sono causati blister sulla superficie dei getti o distorsione dei getti. L'evidente miglioramento meccanico sia statico che a fatica è stato determinato dalla dimensione e morfologia dei cristalli di Silicio. A seguito del trattamento termico, si è verificata una modifica del delle particelle di Si e il passaggio da una morfologia interconnessa ad una più frammentata e arrotondata. In termini di risposta meccanica, da una propagazione rapida che porta ad un cedimento drastico dell'area resistente del componente, si è passati ad una rottura meno istantanea per effetto della propagazione della cricca attraverso la matrice duttile di Alluminio.
E' stata valutata e proposta la soluzione migliore in grado di fornire un buon compromesso tra risposta meccanica e costi contenuti.
Sono stati quindi condotti esperimenti preliminari in laboratorio al fine di verificare l'effetto sul Si eutettico di alliganti comuni quali Cu e Fe. Tramite la costruzione di un piccolo stampo in grado di fornire velocità di raffreddamento comparabili a quelle della pressocolata si sono condotti studi sulle due leghe sopracitate. Si è osservato un effetto affinante dovuto al Cu, tuttavia ulteriori analisi sono necessarie per approfondire l'effetto del Fe.
La tesi riguarda perciò una tematica complessa; nel processo di pressocolata sono richieste un numero elevato di azioni consecutive. Questo è il motivo per cui la ricerca condotta ha portato risultati interessati e utili, ma deve allo stesso tempo essere considerata un punto di partenza per ulteriori approfondimenti. Saranno necessarie nel futuro ulteriori analisi ed indagini.

EPrint type:Ph.D. thesis
Tutor:Bonollo, Franco
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:11 January 2018
Anno di Pubblicazione:11 January 2018
Key Words:High pressure die casting; secondary Aluminum alloys; process parameters; defects; mechanical testing; FE analysis; penalization criterion
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/21 Metallurgia
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:10644
Depositato il:08 Nov 2018 11:09
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] PRESS DPT. GIFA 2015: Proc. 13th Int. Foundry Trade Fair, Dusseldorf (2015), Germany, Art. n. 1. Cerca con Google

[2] NADCA: 2016 State of die casting industry, Arlington Heights (2017), IL, USA. Cerca con Google

[3] Otarawanna S., Dahle A.K.: Casting of Aluminum alloys, chapter 6, Fundamentals of aluminium metallurgy, Woodhead Publishing, 2011, pp. 141-154. Cerca con Google

[4] AFS: Aluminum alloys, Engineered casting solutions, 2006, pp. 30-34. Cerca con Google

[5] Ferraro S., Fabrizi A., Timelli G.: Evolution of sludge particles in secondary die-cast Aluminum alloys as function of Fe, Mn and Cr contents, Mater. Chem. Phys., 153 (2015), pp. 168-179. Cerca con Google

[6] Zhu H., Zhang X., Couper M.J., Dahle A.K.: Effect of primary intermetallic particles on surface microstructure and appearance of Aluminum extrusions, Mater. Chem. Phys., 113 (2009), pp. 401-406. Cerca con Google

[7] Yang C.-Y., Lee S.–L., Lee C.-K., Lin J.-C.: Effects of Be and Fe on the mechanical and corrosion behaviors of A357 alloys, Mater. Chem. Phys., 93 (2005), pp. 412-419. Cerca con Google

[8] Ji S., Yang W., Gao F., Watson D., Fan Z.: Effect of iron in Al-Mg-Si-Mn ductile diecast alloys, Light Metals, (2013), pp. 317-321. Cerca con Google

[9] Domkin K., Hattel J.H., Thorborg J.: Modelling of high temperature- and diffusion-controlled die soldering in Aluminum high pressure die casting, J. Mater. Proc. Tech., 209 (2009), pp. 4051-4061. Cerca con Google

[10] Shankar S., Apelian D.: Die soldering: mechanism of the interface reaction between molten Aluminum alloy and tool steel, 33 (2002), pp. 465-476. Cerca con Google

[11] Conserva M.: Stacast project, an update, P&TF, Edimet, 2013. Cerca con Google

[12] Mathers G.: The welding of Aluminum and its alloys, Woodhead Publishing (2002), pp. 236. Cerca con Google

[13] Adamane A.R., Arnberg L., Fiorese E., Timelli G., Bonollo F.: Influence of injection parameters on the porosity and tensile properties of high-pressure die cast AlSi alloys: a review, Int. J. Metalcasting, 9 (2015), pp. 43-53 Cerca con Google

[14] Sahoo M., Smith R.: Mechanical properties of unidirectionally solidifed AlSi autectic alloys, Metal Science, 9 (1975), pp. 217-222. Cerca con Google

[15] Dorum C., Laukli H.I., Hopperstad O.S., Langseth M.: Structural behavior of AlSi Die-castings: experiments and numerical simulations, European J. of Mechanics - A/Solids, 28 (2009), pp. 1-13. Cerca con Google

[16] OEA: Aluminum recycling in Europe: the road to high quality products, (2006). Cerca con Google

[17] Das S.K., Green J.A.S., Kaufman J.G.: The development of recycle-friendly automotive Aluminum alloys, JOM, (2007), pp. 47-51. Cerca con Google

[18] Das S.K., Green J.A.S., Kaufmaan J.G.: Aluminum industry and climate change – assessment and responses, JOM, 62(2), (2010), pp. 27-31. Cerca con Google

[19] Rombach G.: Integrated assessment of primary and secondary Aluminum production, Material for the future: Aluminum production and process, DMG Business Media Limited, Surrey UK, 1998. Cerca con Google

[20] Centro di ricerca di economia industriale e finanza “Guido Carli”: The impact of EU policies on the competitiveness of the EU Aluminum industry: a focus on non-integrated downstream users, Rome IT, 2015. Cerca con Google

[21] International Aluminum Institute, 2017. Cerca con Google

[22] Information on: http://www.custompartner.com/wu/die-casting Vai! Cerca con Google

[23] Butler W.A., Timelli G., Battaglia E., Bonollo F.: Die Casting (Permanent Mold), Materials Science and Materials Engineering, Elsevier (2016), pp. 1-10. Cerca con Google

[24] Casarotto F., Franke J., Franke R.: 6 – High pressure die cast (HPDC) Aluminum alloys for automotive applications, Woodhead Publishing, Rheinfelden Alloys Gmbh & Co. KG, Germany 2012. Cerca con Google

[25] Bacaicoa I., Wicke M., Luetie M., Zeismann F., Brueckner-Foit A., Geisert A., Fehlbier M.: Characterization of casting defects in a Fe-rich Al-Si-Cu alloy by microtomography and finite element analysis, Engineering Fracture Mechanics (2017). Cerca con Google

[26] Yi J.Z., Gao Y.X., Lee P.D., Lindley T.C.: Effect of Fe content on fatigue crack initiation and propagation in a cast Aluminum-Silicon alloy (A356-T6), Mater. Sci.Eng., 286 (2004), pp. 397-407. Cerca con Google

[27] Lumley R.: Fundamentals of Aluminum metallurgy, Woodhead Publishing in Materials, 2011, pp. 843. Cerca con Google

[28] Information on http://www.ducker.com/news-insights/ducker-worldwide-study-aluminum-content-cars-public-summary Vai! Cerca con Google

[29] Campbell J.: Castings, 2nd ed., Butterworth-Heinemann, Bodmin, 2003, pp. 352. Cerca con Google

[30] Bonollo F., Gramegna N., Timelli G.: High Pressure Die Casting: Contradictions and Challenges, JOM, 67 (2015), pp. 901-908. Cerca con Google

[31] Rai J.K., Lajimi A.M., Xirouchakis P.: An intelligent system for predicting HPDC process variable in interactive environment, J. Mater. Proc. Tech., 203 (2008), pp. 72-79. Cerca con Google

[32] Kong L.X., She F.H., Gao W.M., Nahavandi S., Hodgson P.D.: Integrated optimization system for high pressure die casting processes, 201 (2008), pp. 629-634. Cerca con Google

[33] Fiorese E., Bonollo F., Timelli G., Arnberg L., Gariboldi E.: New classification of defects and imperfections for Aluminum alloy castings, Int. J. Met. Cast., 9 (2015), pp. 55-66. Cerca con Google

[34] EN12258-1:2012 European standard for products made from Aluminum and Aluminum alloys, 2012. Cerca con Google

[35] Information on: http://www.stacast-project.org Vai! Cerca con Google

[36] Gariboldi E., Bonollo F., Parona P.: Handbook of Defects in High Pressure Die Casting, 2nd ed., AIM, Milano, 2010. Cerca con Google

[37] CEN/TR 16749:2014 Aluminum and Aluminum alloys – classification of defects and imperfections in high pressure, low pressure and gravity die cast products, 2014, pp. 1-41. Cerca con Google

[38] Herman E.A.: Diecasting dies: designing, NADCA Publ. No ECDS 506, 1985. Cerca con Google

[39] Dour G., Dargusch M.S., Davidson C.J., Nef A.: Development of a non-intrusive heat transfer coefficient gauge and its application to high pressure die casting. Effect of the process parameters, J. Mater. Proc. Tech, 169 (2005), pp. 223-233. Cerca con Google

[40] Cocks D.L., A proposed simple qualitative classification for die-casting defects, Proc. Die-Casting Conference, Montreaux, pp. 19/1-19/15, 1996. Cerca con Google

[41] Campbell J., Hadring R.A.: Casting technology, TALAT 2.0 CD-ROM, EAA, Brussels, 2000. Cerca con Google

[42] Walkington W.G.: Die Casting Defects – Causes and Solutions, NADCA, 1997. Cerca con Google

[43] Paolin S.: Master Thesis, DTG - University of Padova, Vicenza, 2017. Cerca con Google

[44] Pajryd L., Beno T., Carmignato S.: Computed tomography as a tool for examining surface integrity in drilled holes in CFRP composites, Proc. CIRP, 13 (2014), pp. 43-48. Cerca con Google

[45] Battaglia E., Bonollo F., Tonello I., Fiorese E.: Correlations between defect content, mechanical properties and fractographic investigation of AlSi9Cu3(Fe) alloy reference castings, Materials Science Forum, 879 (2017), pp. 193-198. Cerca con Google

[46] Sanna F., Fabrizi A., Ferraro S., Timelli G., Ferro P., Bonollo F.: Metall Ital., 105 (2013), pp. 13-24. Cerca con Google

[47] Wang Q.G., Apelian D., Lados D.: Fatigue behavior of A365-T6 Aluminum cast alloys. Part I. Effect of casting defects, J. Light Metals, 1 (2001), pp. 73-84. Cerca con Google

[48] Lados D.A., Apelian.: Relationships between microstructure and fatigue crack propagation paths in Al-Si-Mg cast alloys, Eng. Fracture Mech., 75 (2008), pp. 821-832. Cerca con Google

[49] Avalle M., Belingardi G., Cavatorta M.P., Doglione R.: Casting defects and fatigue strength of a die cast Aluminum alloy: a comparison between standard specimens and production components, Int. J. Fatigue, 24 (2002), pp. 1-9. Cerca con Google

[50] Gokhale A.M., Patel G.R.: Origins of variability in the fracture-related mechanical properties of a tilt-pour-permanent-mold cast Al-alloy, Scripta Mater., 52 (2005), pp. 237-241. Cerca con Google

[51] Timelli G., Bonollo F.: Quality mapping of Aluminum alloy diecastings, Metal. Sci. Tech., 26 (2008), pp. 2-8. Cerca con Google

[52] Timelli G.: Constitutive and stochastic models to predict the effect of casting defects on the mechanical properties of high pressure die cast AlSi9Cu3(Fe) alloys, Metal. Sci Tech, 28 (2010), pp. 9-17. Cerca con Google

[53] Caceres C.H., Selling B.I.: Casting defects and the tensile proeprties of an Al-Si-Mg alloy, Mat.. Sci Eng. A, 220 (1996), pp. 109-116. Cerca con Google

[54] Skallerud B., Iveland T., Harkegard.: Fatigue life assessment of Aluminum alloys with casting defects, Eng. Frac. Mech., 44 (1993), pp. 857-874. Cerca con Google

[55] Lados D.: PhD Thesis, WPI, Worcester USA, 2004. Cerca con Google

[56] Tiryakioglu M., Campbell J.: Weibull analysis of mechanical data for castings: a guide to the interpretation of probability plots, Met. Mat. Trans. A, 41 (2010), pp. 3121-3129. Cerca con Google

[57] Tiryakiouglu M.: Weibull analysis of mechanical data for castings II: Weibull mixtures and their interpretation, Met. Mat. Trans. A, 46 (2015), pp. 270-280. Cerca con Google

[58] Caceres C.H.: On the effect of macroporosity on the tensile properties of the Al-7%Si-0.4%Mg casting alloy, Scripta Met. Mater, 32 (1995), pp. 1851-1856. Cerca con Google

[59] Surappa M.K., Blank E., Jaquet J.C.: Effect of macro-porosity on the strength and ductility of cast Al-7Si-0.3Mg alloy, Scripta Metal., 20 (1986), pp. 1281-1286. Cerca con Google

[60] Caceres C.H., Selling B.I.: Casting defects and the tensile properties of an Al-Si-Mg alloy, Mat. Sci. Eng. A, 220 (1996), pp. 109-116. Cerca con Google

[61] Lee C.D.: Effects of microporosity on tensile properties of A356 Aluminum alloy, Mat. Sci. Eng. A, 464 (2007), pp. 249-254. Cerca con Google

[62] Gokhale A.M., Patel G.R.: Aluminum 2002, KD Subodh, H.S. Michael ed., Proc. TMS 2002 Automotive alloys and Aluminum sheet symposium, Warrandale, pp. 65-73, 2002. Cerca con Google

[63] Griffith A.A.: The phenomena of rupture and flow in solids, Phil. Trans. Royal Soc. London, Series A, 221 (1921), pp. 163-198. Cerca con Google

[64] Pierce F.T.: Tensile tests for cotton yarns vs “the weakest link”, J. Textile Inst., 17 (1926), pp. T355-T368. Cerca con Google

[65] Weibull W.: A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), pp. 293-297. Cerca con Google

[66] Dai X., Yang X., Campbell J., Wood J.: Influence of oxide film defects generated in filling on mechanical strength of Aluminum alloy castings, Mater. Sci. Tech, 20 (2004), pp. 505-513. Cerca con Google

[67] Yamagata H., Kasprzak W., Aniolek M., Kurita H., Sokolowski J.H.: The effect of average cooling rates on the microstructure of the Al-20%Si high pressure die casting alloy used for monolithic cylinder blocks, J. Mat. Proc. Tech., 203 (2008), pp. 333-341. Cerca con Google

[68] Cho J.I., Kim C.W.: The relationship between dendrite arm spacing and cooling rate of Al-Si casting alloys in high pressure die casting, Int. J. Metalcasting, 8 (2014), pp. 49-55. Cerca con Google

[69] Makhlouf M.M., Guthy H.V.: The Aluminum-silicon eutectic reaction: mechanisms and crystallography, J Light Met., 1 (2001), pp. 199-218. Cerca con Google

[70] Shankar S., Riddle Y.W., Makhlouf M.M.: Nucleation mechanism of the eutectic phases in Aluminum-silicon hypoeutectic alloys, Acta Materialia, 52 (2004), pp. 4447-4460. Cerca con Google

[71] Pedersen L., Arnberg L.: The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys, Met. Mat. Trans. A, 32 (2001), pp. 525-532. Cerca con Google

[72] Wang Q., Yang W.: Methods of enhancing mechanical properties of Aluminum alloy high pressure die castings, US8,636,855 B2, 2014. Cerca con Google

[73] Lumley R.N., O'Donnell R.G., Gunasegaram D.R., Givord M.: International patent application PCT/2005/001909. Cerca con Google

[74] Lumley R.N., O'Donnell R.G., Gunasegaram D.R., Givord M.: Heat treatment of high pressure die castings, Met. Mat. Trans. A, 38 (2007), pp. 2564-2574. Cerca con Google

[75] Lumley R.N., Polmear I.J., Groot H., Ferrier J.: Thermal characteristics of heat-treated Aluminum high pressure die castings, Scripta Materialia, 58 (2008), pp. 1006-1009. Cerca con Google

[76] Lumley R.N., Gunasegaram D.R., Gershenzon M., O'Donnell R.G.: Effect of alloying elements on heat treatment response of Aluminum high pressure die castings, Int. Heat Treat. and Surf. Eng., 4 (2010), pp. 25-32. Cerca con Google

[77] Ibrahim M.F., Elgallad E.M., Valtierra S., Doty H.W. and Samuel F.H.: Metallurgical parameters controlling the eutectic silicon characteristics in Be-treated Al-Si-Mg alloys, Materials, 2016, Vol. 9, pp. 1-17. Cerca con Google

[78] UNI EN1706: Aluminum and Aluminum alloys – Casting – Chemical composition and mechanical properties, European Committee for Standardization, Brussels, 2010. Cerca con Google

[79] Information on http://www.music.eucood.com/intro/body.pe Vai! Cerca con Google

[80] Dai X., Yang X., Campbell J., Wood J.: Effects of runner system design on the mechanical strength of Al-7Si-Mg alloy castings, Mater. Sci Eng., 354 (2003), pp. 315-235. Cerca con Google

[81] Information on http://www.electronics-gmbh.de/ Vai! Cerca con Google

[82] UNI EN12681:2006, Founding – Radiographic examination, European Committee for Standardization, Brussels, 2006. Cerca con Google

[83] ASTM E08-04: Standard test methods for tension testing of metallic materials, ASTM International. Cerca con Google

[84] Timelli G., Fabrizi A., Capuzzi S., Bonollo F., Ferraro S.: The role of Cr additions on Fe-rich compounds on microstructural features and impact toughness of AlSi9Cu3(Fe) diecasting alloys, Mat. Sci. Eng. A, 603 (2014), pp. 58-68. Cerca con Google

[85] ASTM E290-97a: Standard test method for bend testing of materials for ductility, ASTM International. Cerca con Google

[86] Djurdjevic M.B., Vicario I., Huber G.: Review of thermal analysis applications in Aluminum casting plants, Ree. Metal., 50 (2014). Cerca con Google

[87] Rakhmonov J., Timelli G., Bonollo F.: Characterization of the solidification path and microstructure of secondary Al-7Si-3Cu-0.3Mg alloy with Zr, V and Ni additions, Mat. Characterization, 128 (2017), pp. 100-108. Cerca con Google

[88] Rakhmonov J., Timelli G., Bonollo F.: Influence of melt superheat, Sr modifier, and Al-5Ti-1B grain refiner on microstructural evolution of secondary Al-Si-Cu alloys, Met. Mat. Trans. A, 47 (2016), pp. 5510-5521. Cerca con Google

[89] Battaglia E., Bonollo F., Timelli G., Fiorese E., Kral G.: Correlation between process, microstructure and properties in High Pressure Die Casting Aluminum-Silicon alloys, Adv. Mat and Proc. Tech., 3 (2017), pp. 111-124. Cerca con Google

[90] Battaglia E., Bonollo F., Fiorese E., Kral G.: Overview of the correlations between process parameters, microstructure and mechanical properties of Reference castings and industrial demonstrators, Key Eng Mat, 710 (2016), pp. 35-40. Cerca con Google

[91] Battaglia E., Bonollo F., Ferro P.: Experimental damage criterion for static and fatigue life assessment of commercial Aluminum alloy die castings, Met Mat Trans A, 48 (2017), pp. 2574-2583. Cerca con Google

[92] ASTM E0505-01: Standard Reference Radiographs for Inspection of Aluminum and Magnesium Die Castings, ASTM International, 2001. Cerca con Google

[93] Battaglia E., Bonollo F., Ferro P., Cenghialta A., Mazzacavallo G.: Performance analysis of an Aluminum alloy for the production of commercial High Pressure Die Castings, Metall. Ital., 108 (2016), pp. 61-64. Cerca con Google

[94] Battaglia E., Bonollo F., Ferro P., Fabrizi A.: Effect of heat treatment on commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum alloy diecastings, under review Met Mat Trans A Cerca con Google

[95] Campbell J.: Complete Casting Handbook, 2nd ed., Elsevier, Oxford, 2015. Cerca con Google

[96] Ji S. Yang W., Gao F., Watson D., Fan Z.: Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys, Mater Sci Eng A, 564 (2013), pp. 130-139. Cerca con Google

[97] Darlapudi A., McDonald S. D., Terzi S., Prasad A., Felberbaum M., StJohn D.H.: The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology, J of Crystal Growth, 433 (2016), pp. 63-73. Cerca con Google

[98] Manente A., Timelli G.: Optimizing the heat treatment process of cast Aluminum alloys, Recent trends in processing and degradation of Aluminum alloys, www.intechopen.com Vai! Cerca con Google

[99] Greenwood G.W.: The growth of dispersed precipitates in solutions, Acta Metallurgica, 4 (1956), pp. 243-248. Cerca con Google

[100] Hu R., Ogura T., Tezuka H., Sato T., Liu Q.: Dispersoid formation and recrystallization behavior in an Al-Mg-Si-Mn alloy, J. Mater. Sci. Tech., 26 (2010), pp. 237-243. Cerca con Google

[101] Li Y.J., Arnberg L.: Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization, Acta Materialia, 51 (2003), pp. 3415-3428. Cerca con Google

[102] Du Q., Poole W.J., Wells M.A., Parson N.C.: Microstructure evolution during homogenization of Al-Mn-Fe-Si alloys: Modeling and experimental results, 61 (2013), pp. 4961-4973. Cerca con Google

[103] Chen R., Xu Q., Jia Z., Liu B.: Precipitation behavior and hardening effect of Si-containing dispersoids in Al-7Si-Mg alloy during solution treatment, Mater. Des., 90 (2016), pp. 1059-1068. Cerca con Google

[104] Muggerud A.W.F., Mortsell E.A., Li Y., Holmestad R.: Dispersoid strenghtening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures, Mater. Sci. Eng. A, 567 (2013), pp. 21-28. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record