Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Niero, Giovanni (2017) Development of analytical methods for phenotypic characterization of antioxidant compounds and antioxidant activity of milk. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Accepted Version
3630Kb

Abstract (english)

Free radicals are unstable and reactive molecules, with one ore more unpaired electrons in the outer orbit and adverse effects on plant, animal, and human cells. In particular free radicals are responsible of lipids peroxidation, proteins oxidative damages, and DNA cleavage, resulting in increased risk of mutation. Antioxidants represent an important defence against these injuries. Vegetable derived foods are known as important sources of dietary antioxidants such as phenols, anthocyanin, tocopherols, tocotrienols, carotenoids, retinol precursors, and ascorbate.
With this background, the aims of this Ph.D. project were: i) to develop and validate analytical methods for quantification of tocopherols, thiols, and total antioxidant activity (TAA) of milk; ii) to describe the phenotypic variation of thiols in milk of dairy and dual-purpose cow breeds; iii) to describe the phenotypic variation of TAA in milk of cow, buffalo, goat, and sheep; iv) to evaluate the feasibility of mid infrared spectroscopy to predict TAA of cow milk; v) to evaluate the effect of skimming and heat treatments on milk tocopherols and TAA.
In the 1st Chapter, a simplified saponification protocol, followed by cheap HPLC method based on methanol elution and sensible fluorescence detection was developed and validated for the quantification of α-tocopherol and γ-tocopherol, in different types of commercial fluid milk. Chromatograms showed two analytical peaks, corresponding to α-T and γ-T. The method was able to detect the adverse effects of skimming and UHT treatment on α-T and γ-T concentrations. The proposed method could be usefully adopted in future for large scale studies, aiming to investigate phenotypic variation of tocopherols in milk.
The 2nd Chapter represent a first contribution to the characterization of low molecular weight thiols in milk of different cattle breeds. Thiols were extracted from the soluble fraction of milk, and following a derivatization protocol they were separated by reverse phase HPLC and detected fluorimetrically. Six thiol species were detected and two of them, glutathione (GSH) and cysteine-glycine (Cys-Gly), were identified and quantified. The average concentration of Cys-Gly in milk was greater than that of GSH, and milk from dual-purpose breeds was richer in thiols than milk from dairy cows.
The 3rd Chapter deals with the development and the validation of a robust and fast spectrophotometric method for the determination of TAA of different types of milk. The method was linear, and highly repeatable and reproducible. Preservative added on raw milk had negligible effects on TAA measurement. The greatest TAA was measured on skimmed pasteurised milk, followed by skimmed UHT milk, raw milk, whole pasteurised milk, and whole UHT milk.
The 4th Chapter is the first contribution to the phenotypic characterization of TAA of bovine milk. This phenotype exhibited an exploitable variability, similar to that of other quality traits. Favourable phenotypic correlations of TAA with fat, protein, and casein percentages were observed, as well as with somatic cell score. Total antioxidant activity of milk increased across lactation. Mid-infrared prediction models developed to predict milk TAA were not enough accurate for analytical purposes.
The 5th Chapter deals with the phenotypic characterization of TAA of buffalo, goat, and sheep milk. Sheep milk showed the greatest TAA. This is probably due to its relatively high content in fat, protein, and casein percentages, that are known as compounds contributing to milk antioxidant capacity. Accordingly, buffalo and goat milk had lower TAA as well as lower fat, protein and casein percentages. Milk TAA was unfavourably correlated with milk yield, but the relationship was significant only for buffalo, whereas protein and casein percentages were positively correlated with TAA of goat milk.

Abstract (italian)

I radicali liberi sono molecole reattive e instabili, con uno o più elettroni spaiati nell'orbitale esterno, con possibili effetti negative a livello di cellule vegetali e animali. In particolare, i radicali liberi sono responsabili della perossidazione dei lipidi, dell'ossidazione delle proteine e del danneggiamento del DNS, che causa un aumento del rischio di mutazioni. Gli antiossidanti rappresentano un'importante difesa contro questi danni. Gli alimenti di origine vegetale sono noti come risorse primarie di antiossidanti, come i fenoli, gli antociani, i tocoferoli, i carotenoidi, i precursori del retinolo e l'ascorbato.
In questo contesto, gli scopi della presente tesi di dottorato sono: i) lo sviluppo e la validazione di metodi analitici per la quantificazione dei tocoferoli, dei tioli e della capacità antiossidante totale nel latte; ii) la descrizione della variazione fenotipica dei tioli in vacche da latte e a duplice attitudine; iii) la descrizione della variabilità della capacità antiossidante totale (TAA) nel latte di vacca, di bufala, pecora e capra; iv) la valutazione della capacità del medio infrarosso nella predizione della TAA del latte vaccino; v) la valutazione dell'effetto della scrematura e del trattamento al calore sulla concentrazione in tocoferoli e sulla TAA.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Cassandro, Martino
Supervisor:De Marchi, Massimo
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE ANIMALI E AGROALIMENTARI
Data di deposito della tesi:11 January 2018
Anno di Pubblicazione:27 October 2017
Key Words:Antiossidanti, latte, capacità antiossidante, vacca, bufala, capra, pecora
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/17 Zootecnica generale e miglioramento genetico
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:10655
Depositato il:16 Nov 2018 09:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Bergamo, P., E. Fedele, L. Iannibelli, and G. Marzillo. 2003. Fat-soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy products. Food Chem. 82:625-631. Cerca con Google

Bouwstra, R. J., R. M. A. Goselink, P. Dobbelaar, M. Nielen, J. R. Newbold, and T. Van Werven. 2008. The relationship between oxidative damage and vitamin E concentration in blood, milk, and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers. J. Dairy Sci. 91:977-987. Cerca con Google

Chauveau-Duriot, B., M. Doreau, P. Nozière, and B. Graulet. 2010. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method. Anal. Bioanal. Chem. 397:777-790. Cerca con Google

Chen, J., H. Lindmark-Månsson, L. Gorton, and B. Åkesson. 2003. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 13:927–935. Cerca con Google

Cichosz, G., H. Czeczot, A. Ambroziak, and M. M. Bielecka. 2017. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 70:165-178. Cerca con Google

Darwish, W. S., Y. Ikenaka, A. E. Morshdy, K. I. Eldesoky, S. Nakayama, H. Mizukawa, and M. Ishizuka. 2016. β-carotene and retinol contents in the meat of herbivorous ungulates with a special reference to their public health importance. J. Vet. Med. Sci. 78:351-354. Cerca con Google

Del Rio, D., A. Rodriguez-Mateos, J. P. Spencer, M. Tognolini, G. Borges, and A. Crozier. 2013. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antiox. Redox Sign. 18:1818-1892. Cerca con Google

Dixit, S., J. P. Fessel, and F. E. Harrison. 2017. Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer’s disease and a novel protective role for ascorbate. Free Radic. Biol. Med. 112:515-523. Cerca con Google

Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82:47-95. Cerca con Google

Duthie, G. G., P. T. Gardner, P. C. Morrice, and D. B. McPhail. 2016. The contribution of dα-tocopherol and dγ-tocopherol to the antioxidant capacity of several edible plant oils. Nat. Sci. 8:41-48. Cerca con Google

Evans, P., and B. Halliwell. 2001. Micronutrients: oxidant/antioxidant status. Br. J. Nutr. 85:67-74. Cerca con Google

Gilbert, D. L. 2000. Fifty years of radical ideas. Ann. N. Y. Acad. Sci. 899:1–14. Cerca con Google

Gupta R. K., and N. Singh. 2013. Morinda citrifolia (Noni) alter oxidative stress marker and antioxidant activity in cervical cancer cell lines. Asian Pac. J. Cancer Prev. 14:4603-6. Cerca con Google

Halliwell, B., and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine. 2nd ed. Oxford University Press Inc., New York, NY. Cerca con Google

Halliwell, B. 2007. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35:1147-50. Cerca con Google

Havemose, M. S., M. R. Weisbjerg, W. L. P. Bredie, H. D. Poulsen, and J. H. Nielsen. 2006. Oxidative stability of milk influenced by fatty acids, antioxidants, and copper derived from feed. J. Dairy Sci. 89:1970-1980. Cerca con Google

Ignarro, L. J., G. Cirino, A. Casini, and C. Napoli. 1999. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34:879-886. Cerca con Google

Jiang, Q. 2014. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radical Biol. Med. 72:76-90. Cerca con Google

Kent, K. D., W. J. Harper, and J. A. Bomser. 2003. Effect of whey protein isolate on intracellular glutathione and oxidant-induced cell death in human prostate epithelial cells. Toxicol. In Vitro. 17:27-33. Cerca con Google

Kitts, D. D., and K. Weiler. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 9:1309-1323. Cerca con Google

Koh, E., K. M. S. Wimalasiri, A. W. Chassy, and A. E. Mitchell. 2009. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Compos. Anal. 22:637-643. Cerca con Google

Kovalev, E. E. 1983. Radiation protection during space flight. Aviat. Space Environ. Med. 54:16-23. Cerca con Google

Liang, L., V. Tremblay-Héber, and M. Subirade. 2011. Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability. Food Chem. 126:821–826. Cerca con Google

Micke, P., K. M. Beeh, and R. Buhl. 2002. Effects of long-term supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. Eur. J. Nutr. 41:12–18. Cerca con Google

Nielsen, J. H., G. Hald, L. Kjeldsen, H. J. Andersen, and H. Østdal. 2001. Oxidation of ascorbate in raw milk induced by enzymes and transition metals. J. Agric. Food Chem. 49:2998-3003. Cerca con Google

Nozière, P., P. Grolier, D. Durand, A. Ferlay, P. Pradel, and B. Martin. 2006. Variations in carotenoids, fat-soluble micronutrients, and color in cows’ plasma and milk following changes in forage and feeding level. J. Dairy Sci. 89:2634-2648. Cerca con Google

Pacher P., J. S. Beckman, and L. Liaudet. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:315-424. Cerca con Google

Pereira, E. P. R., R. N. Cavalcanti, E. A. Esmerino, R. Silva, L. R. M. Guerreiro, R. L. Cunha, H. M. A. Bolini, M. A. Meireles, J. A. F. Faria, and A. G. Cruz. 2016. Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit suisse cheese. J. Dairy Sci. 99:1762–1772. Cerca con Google

Ramful, D., E. Tarnus, O. I. Aruoma, E. Bourdon, and T. Bahorun. 2011. Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Res. Int. 44:2088-2099. Cerca con Google

Rival, S. G., C. G. Boeriu, and H. J. Wichers, 2001. Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem. 49:295–302. Cerca con Google

Robbins, S. L., and R. S. Cotran. 2010. Pathologic Basis of Disease. 8th ed. W. B. Saunders Elsevier, Philadelphia. Cerca con Google

Romeu-Nadal, M., A. I. Castellote, A. Gaya, and M. C. López-Sabater. 2008. Effect of pasteurisation on ascorbic acid, dehydroascorbic acid, tocopherols and fatty acids in pooled mature human milk. Food Chem. 107:434-438. Cerca con Google

Timmers, M. A., M. H. Grace, G. G. Yousef, and M. A. Lila. 2017. Inter-and intra-seasonal changes in anthocyanin accumulation and global metabolite profiling of six blueberry genotypes. J. Food Comp. Anal. 59:105-110. Cerca con Google

Vallverdú-Queralt, A., N. Boix, E. Piqué, J. Gómez-Catalan, A. Medina-Remon, G. Sasot, M. Mercader-Martí, J. M. Llobet, and R. M. Lamuela-Raventos. 2015. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS. Food Chem. 181:146-151. Cerca con Google

Vissers, M. C., A. C. Carr, J. M. Pullar, and S. M. Bozonet. 2013. The bioavailability of vitamin C from kiwifruit. Adv. Food Nutr. Res. 68:125-147. Cerca con Google

Watzl, B., A. Bub, K. Briviba, and G. Rechkemmer. 2003. Supplementation of a low-carotenoid diet with tomato or carrot juice modulates immune functions in healthy men. Ann. Nutr. Metab. 47:255-261. Cerca con Google

Willcox, J. K., S. L. Ash, and G. L. Catignani. 2004. Antioxidants and prevention of chronic disease. Crit. Rev. Food. Sci. Nutr. 44:275-95. Cerca con Google

Zheng, M., and G. Storz. 2000. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol. 59:1-6. Cerca con Google

Zulueta, A., A. Maurizi, A. Frígola, M. J. Esteve, R. Coli, and G. Burini. 2009. Antioxidant capacity of cow milk, whey and deproteinized milk. Int. Dairy J. 19:380-385. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record