Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Desole, Giovanna (2018) Comparative analysis of Zika virus and other Flavivirus infection in human neural cells. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
21Mb

Abstract (italian or english)

Background: Zika virus (ZIKV), West Nile virus (WNV) and dengue virus (DENV) are mosquito-borne flaviviruses that generally cause mild or asymptomatic disease in humans. However, ZIKV infection has been associated with fetal microcephaly and Guillain-Barrè syndrome in adults; WNV infection may evolve to severe neuroinvasive disease in the elderly and immunocompromised subjects; DENV may rarely cause neurological complications in infected individuals. In addition, another emerging mosquito-borne flavivirus, Usutu virus (USUV), which may cause fatal neuroinvasive disease in different bird species, has been recently shown to infect humans but its pathogenicity is unknown.
Aim of the study: In the context of the recent outbreak of ZIKV in the Americas and the increasing evidences of an association between ZIKV infection and the occurrence of fetal microcephaly, aim of this study was to investigate the effect of ZIKV infection in human neural cells in comparison with other flavivirus infections. To this aim, ZIKV infectivity, replication kinetics, cytopathic effect (CPE), and induction of innate antiviral responses were investigated in human induced pluripotent stem cells (hiPSCs), hiPSCs-derived neural stem cells (NSCs) and neurons and compared with other flaviviruses, i.e., WNV, DENV and USUV.
Methods: NSCs and neurons were differentiated from hiPSCs. hiPSCs, NSCs, and neurons were infected with isolates of ZIKV Asian lineage (KU853013), WNV lineage 2 (KF179640), DENV serotype 2, and USUV Europe lineage 1 (AY453411). Time course experiments were performed to evaluate viral load by qRT-PCR and TCID50, expression of host genes involved in antiviral innate immunity by qRT-PCR, expression of cell differentiation markers by IF and qRT-PCR, cell viability and cell death by flow cytometry. The impact of ZIKV on embryogenesis and neurogenesis was evaluated by infection of hiPSCs and NSCs during neural differentiation and embryo body formation.
Results: ZIKV infected and replicated efficiently in NSCs, neurons and hiPSCs. Infection led to typical CPE and cell death by apoptosis. ZIKV infection of hiPSCs, NSCs, and neurons induced the expression of innate immune response genes, especially the cellular pattern recognition receptor (PRR) IFH1 gene (MDA5), IFN-induced protein with tetratricopeptide repeats 1 (IFIT1) and 2 (IFIT2). Infected embryoid bodies were massively destroyed by ZIKV infection and infected hiPSCs and NSCs died before ending the neural differentiation process. ZIKV replication efficiency in NSCs was significantly higher than that of DENV-2 and USUV, but lower than that of WNV. In particular, WNV replicated more efficiently, induced more cell death and higher levels of antiviral gene expression than ZIKV in NSCs, neurons and hiPSCs. The induction of innate immune response genes in NSCs after infection with ZIKV and DENV-2 infection was milder than after infection with WNV and USUV, in agreement with the adaptation of these viruses to the human host and their ability to shut down the antiviral response.
Conclusion: ZIKV infects and replicates efficiently in NSCs and induces cell death abrogating neural development, although less efficiently than WNV. Because of the similarities between flaviviruses in their interactions with host neural cells, it is conceivable that infection of other human cells, such as those involved in the extablishment of the blood-placenta barrier, are crucial for ZIKV-induced damage of the fetal brain.

Abstract (a different language)

Presupposti dello studio: Zika virus (ZIKV), West Nile virus (WNV), dengue virus (DENV) e Usutu virus (USUV) sono trasmessi da zanzare ed appartengono al genere Flavivirus della famiglia Flaviviridae. L’infezione da ZIKV è associata a microcefalia fetale e sindrome di Guillan-Barrè; WNV può causare una grave sindrome neuroinvasiva nell’anziano e nei soggetti immunocompromessi; l’infezione da DENV raramente si associa a complicazioni neurologiche; USUV può causare una sindrome neuroinvasiva fatale in diverse specie di uccelli, è stato dimostrato che può infettare pure l’uomo, ma la sua patogenicità resta ancora da chiarire.
Scopo: Alla luce della recente epidemia di ZIKV in America e di una probabile associazione tra l’infezione da ZIKV e lo sviluppo di microcefalia fetale, lo scopo di questo studio è stato confrontare l’infezione da ZIKV sulle cellule neurali umane con l’infezione da WNV, DENV e USUV. A tal fine, la cinetica di replicazione, l’effetto citopatico e l’immunità innata indotta dall’infezione virale sono state analizzate in cellule staminali pluripotenti indotte (hiPSCs), cellule staminali neurali derivate da iPSCs e neuroni.
Materiali e metodi: Le NSCs ed i neuroni sono stati differenziati da hiPSCs. I diversi tipi cellulari sono stati infettati con l’isolato di ZIKV lignaggio asiatico (KU853013), WNV lignaggio 2 (KF179640), DENV sierotipo 2 e USUV lignaggio 1 europeo (AY453411). La carica virale è stata valutata a diversi tempi dall’infezione mediante qRT-PCR e TCID50, il livello di espressione dei geni coinvolti nell’immunità innata è stato analizzato mediante qRT-PCR e l’espressione dei markers di differenziamento cellulare mediante IF e qRT-PCR, la sopravvivenza cellulare e l’apoptosi mediante il saggio MTT e analisi dell’attivazione di caspasi-3. L’impatto dell’infezione da ZIKV sull’embriogenesi e la neurogenesi è stato valutato infettando le hiPSCs e le NSCs durante il differenziamento neurale e durante la formazione dei corpi embrioidi.
Risultati: ZIKV era in grado di infettare e replicare efficientemente nelle NSCs, nei neuroni e nelle hiPSCs, causando un tipico effetto citopatico e morte cellulare per apoptosi. L’infezione ha indotto un significativo aumento dell’espressione dei geni dell’immunità innata, in particolare dei geni MDA5 (the cellular pattern recognition receptor (PRR) IFH1 gene), IFIT1 (IFN-induced protein with tetratricopeptide repeats 1) e IFIT2. I corpi embrioidi sono stati distrutti dal virus e le hiPSCs e le NSCs infettate sono morte prima di completare il differenziamento neurale. L’efficienza di replicazione di ZIKV nelle NSCs era maggiore rispetto a quella di DENV-2 e USUV, ma minore rispetto al WNV. Infatti, WNV replicava in modo più efficiente, induceva una maggiore morte cellulare e stimolava una più elevata risposta antivirale rispetto a ZIKV nei diversi tipi cellulari. Conclusione: ZIKV infetta e replica nelle NSCs, inducendo morte cellulare e impedendo lo sviluppo neurale, ma in modo meno efficiente rispetto al WNV. E’ probabile quindi che l’infezione di altri tipi cellulari sia determinante per il danno al sistema nervoso fetale indotto in modo specifico da ZIKV.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Barzon, Luisa
Supervisor:Trevisan, Marta
Ph.D. course:Ciclo 30 > Corsi 30 > MEDICINA MOLECOLARE
Data di deposito della tesi:12 January 2018
Anno di Pubblicazione:12 January 2018
Key Words:Flavivirus, neurotropismo/neurotropism, cellule staminali neurali/neural stem cells
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/07 Microbiologia e microbiologia clinica
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina Molecolare
Codice ID:10674
Depositato il:14 Nov 2018 14:04
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Hubalek, Z., Rudolf, I., Nowotny, N. Arboviruses Pathogenic for Domestic and Wild Animals. Advances in Virus Research 2014; 89:201-75. Cerca con Google

2. Go, Y.Y., Balasuriya, UBR., Lee, C. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res. 2014. 3(1):58-77. Cerca con Google

3. Hernandez, R., Brown, D.T., Paredes, A. Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv Virol. 2014;2014:259382. Cerca con Google

4. Lequime, S., Lambrechts L. Vertical transmission of arboviruses in mosquitoes: A historical perspective. Infect. Genet. Evol. 2014, http://dx.doi.org/10.1016/j.meegid.2014.07.025. Vai! Cerca con Google

5. Huang, Y.J., Higgs, S., Horne, K.M., Vanlandingham, D.L.. Flavivirus-mosquito interactions.Viruses. 2014. 6(11):4703-30. doi: 10.3390/v6114703. Cerca con Google

6. Holbrook, M.R.. Historical Perspectives on Flavivirus Research. 2017; 30;9(5). pii: E97. doi: 10.3390/v9050097. Cerca con Google

7. Petterson, J.H., Fiz-Palacios, O..Dating the origin of the genus Flavivirus in the light of Beringian biogeography. J. Gen. Virol. 2014. 95, 1969-1982. Cerca con Google

8. Cleaton, N., Koopmans, M., Reimerink, J., et al. Come fly with me: Review of clinically important arboviruses for global travellers. Journal of Clinical Virology. 2012. 55: 191-203. Cerca con Google

9. Gould, E.A., Solomon, T. Pathogenic flaviviruses. Lancet. 2008. 371:500–9. Cerca con Google

10. Ye, J., Zhu, B., Fu, Z.F., et al.. Immune evasion strategies of flavivureses. Vaccine. 2013. 461-471. Cerca con Google

11. Villordo, S.M., Carballeda, J.M., Filomatori, C.V., Gamarnik, A.V.. RNA structure duplications and Flavivirus host adaptation. Trends Microbiol. 2016. 24(4): 270–283. doi:10.1016/j.tim.2016.01.002. Cerca con Google

12. Beck, C., Jimenez-Clavero, M.A., Leblond, A., et al.. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. Int. J. Environ. Res. Public Health 2013, 10, 6049-6083. Cerca con Google

13. Yan-Jang, S. Huang. et al.. Flavivirus-mosquito interactions. Viruses. 2014 Nov; 6(11): 4703–4730. doi: 10.3390/v6114703. Cerca con Google

14. Sirohi, D., et al..The 3.8 Å resolution cryo-EM structure of Zika virus. Science. 2016. 352 (6284): 467–470. Cerca con Google

15. Wang, A., Thurmond, S., Islas, L., Hui, K., Hai, R.. Zika virus genome biology and molecular pathogenesis. Emerg. Microbes Infect. 2017. 6(3): e13. doi: 10.1038/emi.2016.141 Cerca con Google

16. Faye, O., Freire, C., Iamarino, A., et al.. Molecular Evolution of Zika Virus during Its Emergence in the 20th Century. PLoS Neglected Tropical Diseases. 2014. 8 (1): e2636. Cerca con Google

17. Pierson, T.C., Diamond, M.S.. Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2012;2:168–75. Cerca con Google

18. Blitvich, B.J., Firth, A.E. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015; 7:1927–1959. Cerca con Google

19. Yu, L., Nomaguchi, M., Padmanabhan, R., Markoff, L.. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 374 (1): 170–85. Cerca con Google

20. Murray, C.L., Jones, C.T., Rice, C.M.. Architects of assembly: roles of Flaviviridae non- structural proteins in virion morphogenesis. Nat. Rev. Microbiol. 2008: 6: 699-708. Cerca con Google

21. Mackenzie, J.S., Gubler, D.J.& Petersen L.R.. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 2004;10(12 Suppl):S98-109 Cerca con Google

22. Pierson, T.C., Diamond, M.S. Flaviviruses. In: Knipe DM, Howley PM, editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2013. p. 747–94. Cerca con Google

23. Martìn-Acebes, M.A, Vàzquez-Calvo, Á., Saiz, J.C.. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Progress in Lipid Research. 2016. 64: 123-137. https://doi.org/10.1016/j.plipres.2016.09.005 Vai! Cerca con Google

24. Perera-Lecoin, M., Meertens, L., Carnec, X., Amara, A. Flavivirus entry receptors: an up- date. Virus 2013;6:69–88.
 Cerca con Google

25. Amara, A., Mercer, J..Viral apoptotic mimicry. Nat Rev Microbiol. 2015. 13:461–9. Cerca con Google

26. Cruz-Oliveira, C., Freire, J.M., Conceicao, T.M., Higa, L.M., Castanho, M.A., Da Poian, A.T.. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev.2015. 39:155–70.
 Cerca con Google

27. Zhu, Y.Z., Xu, Q.Q., Wu, D.G., Ren, H., Zhao, P., Lao, W.G., et al. Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol. 2012.86:13407–22.
 Cerca con Google

28. Kalia, M., Khasa, R., Sharma, M., Nain, M., Vrati, S.. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol. 2013.87:148–62.
 Cerca con Google

29. Van der Schaar, H.M., Rust, M.J., Chen, C., Van der Ende-Metselaar, H., Wilschut, J., Zhuang, X., et al. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 2008. 4, e1000244.
 Cerca con Google

30. MacKenzie, J.M., Westaway, E.G. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol .2001. 75:10787–10799. PubMed: 11602720 Cerca con Google

31. Li, L., Lok, S.M., Yu, I.M., Zhang, Y., Kuhn, R.J., Chen, J., Rossmann, M.G. The flavivirus precursor membrane- envelope protein complex: Structure and maturation. Science. 2008. 319:1830–1834. PubMed: 18369147 Cerca con Google

32. Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G.. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005. 3:13–22. PubMed: 15608696 Cerca con Google

33. Tang, H.; Hammack, C.; Ogden, SC.; Wen, Z.; Qian, X.; Li, Y.; et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 2016;18:587–90.
 Cerca con Google

34. O’Leary, DR.; Kuhn, S.; Kniss, KL.; Hinckley, AF.; Rasmussen, SA.; Pape, WJ., et al. Birth outcomes following West Nile Virus infection of pregnant women in the United States: 2003-2004. Pediatrics 2006;117:e537–45. Cerca con Google

35. Chaturvedi, UC.; Mathur, A.; Chandra, A.; Das, SK.; Tandon, HO.; Singh, UK. Transplacental infection with Japanese encephalitis virus. J Infect Dis 1980;141:712–5.
 Cerca con Google

36. Schuler-Faccini, L.; Ribeiro, EM.; Feitosa, IML.; Horovitz, DDG.; Cavalcanti, DP.; Pessoa, A.; et al. Possible association between Zika virus infection and microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep 2016; 5:59–62.
 Cerca con Google

37. Oehler, E.; Watrin, L.; Larre, P.; Leparc-Goffart, I.; Lastere, S.; Valour, F.; et al. Zika virus infection complicated by Guillain-Barre syndrome–case report, French Polynesia, December 2013. Euro Surveill 2014:19.
 Cerca con Google

38. Lazear, HM.; Diamond, MS. Zika virus: new clinical syndromes and its emergence in the Western Hemisphere. J Virol 2016;90:4864–75.
 Cerca con Google

39. Verma, S.; Kumar, M.; Gurjav, U.;Lum, S.; Nerurkar, VR. Reversal of West Nile virus-induced blood– brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology. 2010; 397:130–138. Cerca con Google

40. Samuel, MA.; Wang, H.; Siddharthan, V.; Morrey, JD.; Diamond, MS. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci USA. 2007; 104:17140–17145. Cerca con Google

41. Suen, W.; Prow, N.; Hall, R.; Bielefeldt-Ohmann, H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014;6:2796–825.
 Cerca con Google

42. Chan-Tack, KM.; Forrest, G. West Nile virus meningoencephalitis and acute flaccid paralysis after infliximab treatment. J Rheumatol 2006;33:191–2. Cerca con Google

43. Misra, UK.; Kalita, J. Overview: Japanese encephalitis. Prog Neurobiol 2010;91:108–20 Cerca con Google

44. Carteaux, G.; Maquart, M.; Bedet, A.; Contou, D.; Brugières, P.; Fourati, S. et al. Zika virus associated with meningoencephalitis. N Engl J Med 2016;374:1595–6. Cerca con Google

45. Schwartz, DA. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch Gynecol Obstet 2017: 295, 1361-1368. Cerca con Google

46. Sheridan, MA.; Yunusov, D.; Balaraman, V.; Alexenko, AP; Yabe, S.; Verjovski- Almeida, S. et al. Vulnerability of primitive human placental trophoblast to Zika virus. Proc Natl Acad Sci U S A 2017;114:E1587–96. Cerca con Google

47. Gromowski, GD.; Firestone, C-Y.; Whitehead, SS. Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J Virol 2015;89:6328–37. Cerca con Google

48. Chambers, TJ.; Diamond, MS. Pathogenesis of flavivirus encephalitis. Adv Virus Res 2003;60:273–342. Cerca con Google

49. Pokidysheva, E., Zhang, Y.; Battisti, AJ. et al. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell. 2006; 124: 485-493 
 Cerca con Google

50. Lee, E.; Leang, SK.; Davidson, A. et al. Both E protein glycans adversely affect 
dengue virus infectivity but are beneficial for virion release. J Virol 2010; 84: 5171–5180. 
 Cerca con Google

51. Beasley, DWC.; Whiteman, MC.; Zhang, S. et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 2005; 79: 8339–8347. Cerca con Google

52. Haddow, A. D., Schuh, A. J., Yasuda, C. Y., Kasper, M. R., Heang, V., Huy, R., et al.. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl. Trop. Dis. 2012. 6:e1477. doi: 10.1371/journal.pntd. 0001477 Cerca con Google

53. Kuno, G., Chang, GJ. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007. 152:687– 696. http://dx.doi.org/10.1007/s00705-006-0903-z. Vai! Cerca con Google

54. Berthet, N., Nakouné, E., Kamgang, B., Selekon, B., Descorps-Declère, S., Gessain, A., Manuguerra, J.C., Kazanji, M. Molecular characterization of three Zika flaviviruses obtained from sylvatic mosquitoes in the Central African Republic. Vector Borne Zoonotic Dis. 2014.14:862– 865. http: //dx.doi.org/10.1089/vbz.2014.1607. Cerca con Google

55. Lanciotti, R.S., Kosoy, O.L., Laven, J.J., Velez, J.O., Lambert, A.J., Johnson, A.J., Stanfield, S.M., Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008. 14:1232–1239. http://dx.doi.org/10.3201/eid1408.080287. Vai! Cerca con Google

56. Vandenbogaert, M., Cao-Lormeau, V-M., Diancourt, L., Thiberge, J-M., Sall, A., Kwasiborski, A., Musso, D., Desprès, P., Manuguerra, J-C., Caro, V.. Full-length genome sequencing and analysis of 3 ZIKV strains on an Ion Torrent PGM sequencer, abstr 22.133. 63rd Am Soc Trop Med Hyg (ASTMH) Meet, New Orleans, LA, 2 to 6 November 2014. Cerca con Google

57. Lanciotti, R.S., Lambert, A.J., Holodniy, M., Saavedra, S., del Carmen Castillo Signor, L.. Phylogeny of Zika virus in Western Hemisphere, 2015. Emerg Infect Dis http://dx.doi.org/10.3201/eid2205 .160065. Vai! Cerca con Google

58. Zanluca, Camila., Melo, Vanessa Campos Andrade de., Mosimann, Ana Luiza Pamplona., et al. First report of autochthonous transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz. 2015. 110 (4): 569–572. Cerca con Google

59. Li, Y., He, L., He, R. L., and Yau, S. S.Zika and Flaviviruses phylogeny based on the alignment-free natural vector method. DNA Cell Biol.2017 36, 109–116. doi: 10.1089/dna.2016.3532 Cerca con Google

60. Gong, Z., Gao, Y., and Han, G. Z. Zika virus: two or three lineages? Trends Microbiol.2016 24, 521–522. doi: 10.1016/j.tim.2016.05.002 Cerca con Google

61. Vorou, R.. Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently. Int. J. Infect. Dis. 2016. 48, 85–90. doi: 10.1016/j.ijid.2016.05.014 Cerca con Google

62. Diallo, D., Sall, A. A., Diagne, C. T., Faye, O., Faye, O., Ba, Y., et al.. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS ONE. 2014. 9:e109442. doi: 10.1371/journal.pone.0109442 Cerca con Google

63. Faye, O., Faye, O., Diallo, D., Diallo, M., Weidmann, M., and Sall, A. A. Quantitative real-time PCR detection of Zika virus and evaluation with field- caught mosquitoes. Virol. J. 2013. 10:311. doi: 10.1186/1743-422x-10-311 Cerca con Google

64. Hayes, E.B. Zika virus outside Africa. Emerg Infect Dis. 2009.15:1347–50. http://dx.doi.org/10.3201/eid1509.090442 Vai! Cerca con Google

65. Grard, G., Caron, M., Mombo, I.M., Nkoghe, D., Mboui, Ondo S.,
Jiolle, D., et al. Zika virus in Gabon (Central Africa)—2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014. 8:e2681. http://dx.doi.org/10.1371/journal.pntd.0002681 Vai! Cerca con Google

66. McCrae, A.W.,Kirya, B.G..YellowfeverandZikavirusepizooticsand enzootics in Uganda. Trans R Soc Trop Med Hyg. 1982. 76:552–562. http://dx .doi.org/10.1016/0035-9203(82)90161-4. Vai! Cerca con Google

67. Dick, G.W., Kitchen, S.F., Haddow, A.J..Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952. 46:509 –520. Cerca con Google

68. Marchette, N.J., Garcia, R., Rudnick, A.. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg . 1969. 18:411– 415 Cerca con Google

69. Duffy, M. R., Chen, T. H., Hancock, W. T., Powers, A. M., Kool, J. L., Lanciotti, R. S., et al..Zika virus outbreak on yap island, federated states of micronesia. N. Engl. J. Med. 2009. 360, 2536–2543. doi: 10.1056/NEJMoa0805715 Cerca con Google

70. Ledermann, J. P., Guillaumot, L., Yug, L., Saweyog, S. C., Tided, M., Machieng, P., et al. Aedes hensilli as a potential vector of Chikungunya and Zika viruses. PLoS Negl. Trop. Dis. 2014. 8:e3188. doi: 10.1371/journal.pntd.00 03188 Cerca con Google

71. Richard, V., Paoaafaite, T., and Cao-Lormeau, V. M.. Vector competence of French polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus. PLoS Negl. Trop. Dis. 2016. 10:e0005024. doi: 10.1371/journal.pntd.0005024 Cerca con Google

72. Gardner, L.M., Chen, N., Sarkar, S..Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect. 2016 16: 00176-6. Cerca con Google

73. Ferreira-de-Brito, A., Ribeiro, I. P., Miranda, R. M., Fernandes, R. S., Campos, S. S., Silva, K. A., et al. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz. 2016. 111, 655–658. doi: 10.1590/0074-02760160332 Cerca con Google

74. Chan, Jasper F.W., Choi, Garnet K.Y., Yip, Cyril C.Y., et al.. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. Journal of Infection. 2016. 72 (5): 507. Cerca con Google

75. Hills, SL., Russell, K, Hennessey, M, et al.. Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing Transmission — Continental United States, 2016. MMWR. Morbidity and Mortality Weekly Report, 2016. 65 (8). Cerca con Google

76. Moreira, J., Peixoto, T. M., Siqueira, A. M., and Lamas, C. C..Sexually acquired Zika virus: a systematic review. Clin. Microbiol. Infect. 2017. 23, 296–305. doi: 10.1016/j.cmi.2016.12.027 Cerca con Google

77. Musso, D., Roche, C., Robin, E., Nhan, T., Teissier, A., and Cao-Lormeau, V. M..Potential sexual transmission of Zika virus. Emerg. Infect. Dis.2015. 21, 359–361. doi: 10.3201/eid2102.141363 Cerca con Google

78. Matheron, S., d’Ortenzio, E., Leparc-Goffart, I., Hubert, B., de Lamballerie, X., and Yazdanpanah, Y.. Long-lasting persistence of Zika virus in semen. Clin. Infect. Dis. 2016 63:1264. doi: 10.1093/cid/ciw509 Cerca con Google

79. Barzon, L., Pacenti, M., Franchin, E., Lavezzo, E., Trevisan, M., Sgarabotto, D., Palù, G. Infection dynamics in a traveller with persistent shedding of Zika virus RNA in semen for six months after returning from Haiti to Italy, January 2016.Euro Surveill. 2016. 21(32). doi: 10.2807/1560-7917.ES.2016.21.32.30316 Cerca con Google

80. Nicastri E, Castilletti C, Liuzzi G et al. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro Surveill 2016; 21: 30314. Cerca con Google

81. Prisant, N., Bujan, L., Benichou, H., Hayot, P. H., Pavili, L., Lurel, S., et al.. Zika virus in the female genital tract. Lancet Infect. Dis. 2016. 16, 1000–1001. doi: 10.1016/s1473-3099(16)30193-1 Cerca con Google

82. Prisant, N., Breurec, S., Moriniere, C., Bujan, L., and Joguet, G. Zika virus genital tract shedding in infected women of childbearing age. Clin. Infect. Dis. 2017. 64, 107–109. doi: 10.1093/cid/ciw669 Cerca con Google

83. Murray, K. O., Gorchakov, R., Carlson, A. R., Berry, R., Lai, L., Natrajan, M., et al. Prolonged detection of Zika virus in vaginal secretions and whole blood. Emerg. Infect. Dis.2017. 23, 99–101. doi: 10.3201/eid2301.161394 Cerca con Google

84. Gourinat, A.C., O’Connor, O., Calvez, E., Goarant, C., Dupont-Rouzeyrol, M. Detection of Zika virus in urine. Emerg Infect Dis. 2015. 21:84 – 86. http://dx.doi.org/10.3201/eid2101.140894. Vai! Cerca con Google

85. Musso, D., Roche, C., Nhan, T.X., Robin, E., Teissier, A., Cao-Lormeau, V.M..Detection of Zika virus in saliva. J Clin Virol. 2015. 68:53–55. http://dx .doi.org/10.1016/j.jcv.2015.04.021. Vai! Cerca con Google

86. Barzon, L., Pacenti, M., Berto, A., Sinigaglia, A., Franchin, E., Lavezzo, E., Brugnaro, P., Palù, G.. Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Euro Surveill. 2016;21(10):30159. doi: 10.2807/1560-7917.ES.2016.21.10.30159 Cerca con Google

87. Bonaldo, M.C., et al.. Isolation of Infective Zika Virus from Urine and Saliva of Patients in Brazil. PLoS Negl Trop Dis. 2016. 10(6):e0004816. doi: 10.1371/journal.pntd.0004816. eCollection 2016 Jun. Cerca con Google

88. Brasil, P., Pereira, J.P., Raja Gabaglia, C., et al.Zika Virus Infection in Pregnant Women in Rio de Janeiro – Preliminary Report. New England Journal of Medicine 2016 Cerca con Google

89. Mlakar, J., Korva, M., Tul, N., Popovic , M., Poljsak-Prijatelj, M., Mraz, J., Kolenc, M., Resman Rus, K., Vesnaver Vipotnik, T., Fabjan Vodusek, V., et al. Zika virus associated with microcephaly. N. Engl. J. Med. 2016. 374, 951–958. Cerca con Google

90. Naing, Z.W., Scott, G.M., Shand, A., Hamilton, S.T., van Zuylen, W.J., Basha, J., Hall, B., Craig, M.E., Rawlinson, W.D..Congenital cytomegalovirus infection in pregnancy: a review of prevalence, clinical features, diagnosis and prevention. Aust N Z J Obstet Gynaecol . 2016. 56:9 –18. http://dx.doi.org /10.1111/ajo.12408. Vai! Cerca con Google

91. Banatvala, J.E., Brown, D.W..Rubella. Lancet. 2004. 363:1127–1137. http: //dx.doi.org/10.1016/S0140-6736(04)15897-2. Cerca con Google

92. Basurko, C., Carles, G., Youssef, M., Guindi, W.E..Maternal and foetal consequences of dengue fever during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2009. 147:29 –32. http://dx.doi.org/10.1016/j.ejogrb.2009.06.028 Vai! Cerca con Google

93. Tan, P.C., Rajasingam, G., Devi, S., Omar, S.Z..Dengue infection in pregnancy: prevalence, vertical transmission, and pregnancy outcome. Obstet Gynecol. 2008. 111:1111–1117. http://dx.doi.org/10.1097/AOG.0b013e31816a49fc. Vai! Cerca con Google

94. Stewart, R.D., Bryant, S.N., Sheffield, J.S..West Nile virus infection in pregnancy. Case Rep Infect Dis . 2013. 2013:351872 Cerca con Google

95. Paisley, J.E., Hinckley, A.F., O’Leary, D.R., Kramer, W.C., Lanciotti, R.S., Campbell, G.L., Hayes, E.B..West Nile virus infection among pregnant women in a northern Colorado community, 2003 to 2004. Pediatrics. 2006. 117:814 – 820. http://dx.doi.org/10.1542/peds.2005-1187. Vai! Cerca con Google

96. Besnard, M., Lastere, S., Teissier, A. et al.Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill. 2014. 19 (13): 20751 Cerca con Google

97. Dupont-Rouzeyrol, M., Biron, A., O’Connor, O., Huguon, E., and Descloux, E. Infectious Zika viral particles in breastmilk. Lancet. 2016. 387, 1051. doi: 10.1016/s0140-6736(16)00624-3 Cerca con Google

98. Centers for Disease Control and Prevention. Possible West Nile virus transmission to an infant through breast-feeding—Michigan, 2002. 
MMWR Morb Mortal Wkly Rep. 2002. 51:877– 878. Cerca con Google

99. Barthel, A., Gourinat, A.C., Cazorla, C., Joubert, C., Dupont-Rouzeyrol, M., Descloux, E. Breast milk as a possible route of vertical transmission of dengue virus? Clin Infect Dis. 2013. 57:415– 417. http://dx.doi.org/10.1093 /cid/cit227. Vai! Cerca con Google

100. Franchini, M.; Velati, C. Blood safety and zoonotic emerging pathogens: now it's the turn of Zika virus!. Blood Transfusion. 2016. (14): 93–94. Cerca con Google

101. Guillaume, Theiry. Zika virus-associated Guillain–Barré syndrome: a warning for critical care physicians. Intensive Care Medicine. 2016. 1–2. Cerca con Google

102. Barjas-Castro, M.L., Angerami, R., Cunha, M., et al.Probable transfusion-transmitted Zika virus in Brazil. Transfusion. 2016 Cerca con Google

103. Vasquez, Amber M., Sapiano, Mathew R.P.. Basavaraju, Sridhar V.. et al. Survey of Blood Collection Centers and Implementation of Guidance for Prevention of Transfusion-Transmitted Zika Virus Infection — Puerto Rico, 2016. MMWR. Morbidity and Mortality Weekly Report. 2016. 65 (14): 375–378. Cerca con Google

104. MacNamara, F.N. Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1954. 48 (2): 139–145. Cerca con Google

105. Simpson, D.I.H. Zika virus infection in man. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1964. 58 (4): 339–348. Cerca con Google

106. Olson, J. G., Ksiazek, T. G. Zika virus, a cause of fever in Central Java, Indonesia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1981. 75(3): 389–393. Cerca con Google

107. Baden, Lindsey R., Petersen, Lyle R., Jamieson, Denise J., Powers, Ann M., Honein, Margaret A. Zika Virus. New England Journal of Medicine. 2016. 374 (16): 1552–1563. Cerca con Google

108. Musso, D.,Nilles, E.J., Cao-Lormeau, V.-M.Rapid spread of emerging Zika virus in the Pacific area. Clinical Microbiology and Infection. 2014. 20 (10): 595–6. Cerca con Google

109. Roth, A., Mercier, A., Lepers, C., Hoy, D., Duituturaga, S., Benyon, E., Guillaumot, L., Souarès, Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections – an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012 -2014. Eurosurveillance. 2014. 19 (41): 20929 Cerca con Google

110. Besnard, M., Eyrolle-Guignot, D., Guillemette-Artur, P., et al.. Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia. Euro Surveill. 2016. 21(13). Cerca con Google

111. Gatherer, D., Kohl, A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. Journal of General Virology. 2015. 97(2): 269–273. Cerca con Google

112. Calvet, G.A., Filippis, A.M., Mendonca, M.C., et al. First detection of autochthonous Zika virus transmission in a HIV-infected patient in Rio de Janeiro, Brazil. J Clin Virol. 2015. 74: 1-3 Cerca con Google

113. Zammarchi, L, Stella, G., Mantella, A., et al. Zika virus infections imported to Italy: Clinical, immunological and virological findings, and public health implications. Journal of Clinical Virology. 2015 63: 32–35. Cerca con Google

114. Sarmiento-Ospina, A., Vásquez-Serna, H., Jimenez-Canizales, C.E., et al. Zika virus associated deaths in Colombia. Lancet Infect Dis. 2016. 16: 30006-8 Cerca con Google

115. Enfissi, A., Codrington, J., Roosblad, J., et al. Zika virus genome from the Americas. Lancet. 2016. 387: 227-8 Cerca con Google

116. Venturi, G., Zammarchi, L., Fortuna, C., et al. An autochthonous case of Zika due to possible sexual transmission, Florence, Italy, 2014. Euro Surveill. 2016. 21 (8). Cerca con Google

117. Sikka, V., Chattu, V.K., Popli, R.K., et al.The emergence of zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint Working Group (JWG). Journal of Global Infectious Diseases. 2016. 8 (1): 3–15. Cerca con Google

118. Rosen, Meghan. Rapid spread of Zika virus in the Americas raises alarm. Science News (Society for Science and the Public). 2016. 189 (4): 16. Cerca con Google

119. Heang, Vireak., Yasuda, Chadwick Y., Sovann, Ly., et al. Zika Virus Infection, Cambodia, 2010. Emerging Infectious Diseases. 2012. 18 (2): 349–351 Cerca con Google

120. Ahmad, S. S., Amin, T. N., and Ustianowski, A. Zika virus: management of infection and risk. BMJ. 2016. 352:i1062. doi: 10.1136/bmj.i1062 Cerca con Google

121. Aubry, M., Teissier, A., Huart, M., Merceron, S., Vanhomwegen, J., Roche, C., et al. Zika virus seroprevalence, French Polynesia, 2014-2015. Emerg. Infect. Dis. 2017. 23, 669–672. doi: 10.3201/eid2304.161549 Cerca con Google

122. Chen, Lin H., Hamer, Davidson H.Zika Virus: Rapid Spread in the Western Hemisphere. Annals of Internal Medicine.2016 Cerca con Google

123. Paploski, I. A., Prates, A. P., Cardoso, C. W., Kikuti, M., Silva, M. M., Waller, L. A., et al. Time lags between exanthematous illness attributed to Zika virus, Guillain-Barre syndrome, and microcephaly, Salvador, Brazil. Emerg. Infect. Dis. 2016. 22, 1438–1444. doi: 10.3201/eid2208.160496 Cerca con Google

124. Leis, A. A., and Stokic, D. S. Neuromuscular manifestations of west nile virus infection. Front. Neurol. 2012. 3:37. doi: 10.3389/fneur.2012.00037 Cerca con Google

125. Verma, R., Sahu, R., and Holla, V..Neurological manifestations of dengue infection: a review. J. Neurol. Sci. 2014. 346, 26–34. doi: 10.1016/j.jns.2014. 08.044 Cerca con Google

126. Ravi, V., Taly, A. B., Shankar, S. K., Shenoy, P. K., Desai, A., Nagaraja, D., et al. Association of Japanese encephalitis virus infection with Guillain-Barre syndrome in endemic areas of south India. Acta Neurol. Scand. 1994. 90, 67–72. doi: 10.1111/j.1600-0404.1994.tb02681.x Cerca con Google

127. Cao-Lormeau, V.M., Blake, A., Mons, S. et al.Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016. pii: S0140-6736(16): 00562-6. Cerca con Google

128. Mécharles, S., Herrmann, C., Poullain, P., et al. Acute myelitis due to Zika virus infection. Lancet. 2016. pii: S0140-6736(16): 00644-9. Cerca con Google

129. Cauchemez, S., Besnard, M., Bompard, P., et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet.2016. pii: S0140-6736(16): 00651-6. Cerca con Google

130. Driggers, R.W., Ho, C.Y., Korhonen, E.M., et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med. 2016. Cerca con Google

131. Oliveira, Melo AS, Malinger, G., Ximenes, R., et al. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol. 2016 47: 6-7. Cerca con Google

132. de Paula Freitas, B., de Oliveira, Dias J., Prazeres, J., et al. Ocular findings in infants with microcephaly associated with presumed zika virus congenital infection in salvador, brazil. JAMA Ophthalmology. 2016 Cerca con Google

133. Sarno, Manoel., et al.Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLOS Negl Trop Dis. 2016. 10 (2): e0004517. Cerca con Google

134. Dick, G. W. Zika virus. II. Pathogenicity and physical properties. Trans. R. Soc. Trop. Med. Hyg. 1952. 46, 521–534. doi: 10.1016/0035-9203(52)90043-6 Cerca con Google

135. Bell, T. M., Field, E. J., and Narang, H. K.. Zika virus infection of the central nervous system of mice. Arch. Gesamte Virusforsch. 1971. 35, 183–193. doi: 10.1007/BF01249709 Cerca con Google

136. Souza, B. S., Sampaio, G. L., Pereira, C. S., Campos, G. S., Sardi, S. I., Freitas, L. A., et al.. Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Sci. Rep. 2016. 6:39775. doi: 10.1038/srep39775 Cerca con Google

137. Garcez, P. P., Loiola, E. C., Madeiro da Costa, R., Higa, L. M., Trindade, P., Delvecchio, R., et al.. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016. 352, 816–818. doi: 10.1126/science.aaf6116 Cerca con Google

138. Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L., Guimaraes, K. P., et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016. 534, 267–271. doi: 10.1038/nature18296 Cerca con Google

139. Retallack, H., Di Lullo, E., Arias, C., Knopp, K. A., Laurie, M. T., Sandoval- Espinosa, C., et al.. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. U.S.A. 2016. 113, 14408–14413. doi: 10.1073/pnas.1618029113 Cerca con Google

140. Onorati, M., Li, Z., Liu, F., Sousa, A. M., Nakagawa, N., Li, M., et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 2016. 16, 2576–2592. doi: 10.1016/ j.celrep.2016.08.038 Cerca con Google

141. Liang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S. S., Lee, S. A., et al. Zika Virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016. 19, 663–671. doi: 10.1016/j.stem.2016.07.019 Cerca con Google

142. Hanners, N. W., Eitson, J. L., Usui, N., Richardson, R. B., Wexler, E. M., Konopka, G., et al.. Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic e ects. Cell Rep. 2016. 15, 2315–2322. doi: 10.1016/j.celrep.2016.05.075 Cerca con Google

143. Gabriel, E., Ramani, A., Karow, U., Gottardo, M., Natarajan, K., Gooi, L. M., et al.. Recent Zika Virus isolates induce premature di erentiation of neural progenitors in human brain organoids. Cell Stem Cell. 2017. 20, 397–406.e5. doi: 10.1016/j.stem.2016.12.005 Cerca con Google

144. Wells, M. F., Salick, M. R., Wiskow, O., Ho, D. J., Worringer, K. A., Ihry, R. J., et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cell Stem Cell. 2016. 19, 703–708. doi: 10.1016/j.stem.2016.11.011 Cerca con Google

145. Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016. 165, 1238–1254. doi: 10.1016/j.cell.2016.04.032 Cerca con Google

146. Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 2016. 19, 258–265. doi: 10.1016/j.stem.2016.04.014 Cerca con Google

147. Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., and Sasai, Y.. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. USA. 2013 110, 20284–20289. Cerca con Google

148. Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A.. Cerebral organoids model human brain development and microcephaly. Nature. 2013. 501, 373–379. Cerca con Google

149. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., Amen- duni, M., Szekely, A., Palejev, D., Wilson, M., et al.. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015. 162, 375–390. Cerca con Google

150. Pasca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, J.Y., O’Rourke, N.A., Nguyen, K.D., et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods. 2015. 12, 671–678. Cerca con Google

151. Rasmussen, S.A., Jamieson, D.J., Honein, M.A., and Petersen, L.R.. Zika virus and birth defects—reviewing the evidence for causality. N. Engl. J. Med. 2016. 374, 1981–1987. Cerca con Google

152. Zhang, F., Hammack, C., Ogden, S.C., Cheng, Y., Lee, E.M., Wen, Z., Qian, X., Nguyen, H.N., Li, Y., Yao, B., et al.. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res. 2016a 44, 8610–8620. Cerca con Google

153. Barrows, N.J., Campos, R.K., Powell, S.T., Prasanth, K.R., Schott-Lerner, G., Soto-Acosta, R., Galarza-Mun ̃ oz, G., McGrath, E.L., Urrabaz-Garza, R., Gao, J., et al.. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016. 20, 259–270 Cerca con Google

154. Xu, M., Lee, E.M., Wen, Z., Cheng, Y., Huang, W.K., Qian, X., Tcw, J., Kouznet- sova, J., Ogden, S.C., Hammack, C., et al.. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 2016.22, 1101–1107. Cerca con Google

155. Hamel, R., Ferraris, P., Wichit, S., Diop, F., Talignani, L., Pompon, J., et al.. African and Asian Zika virus strains di erentially induce early antiviral responses in primary human astrocytes. Infect. Genet. Evol. 2017. 49, 134–137. doi: 10.1016/j.meegid.2017.01.015 Cerca con Google

156. Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., Neyret, A., Luplertlop, N., et al. Biology of Zika virus infection in human skin cells. J. Virol. 2015. 89, 8880–8896. doi: 10.1128/jvi.00354-15 Cerca con Google

157. Nowakowski, T.J., Pollen, A.A., Di Lullo, E., Sandoval-Espinosa, C., Bershteyn, M., and Kriegstein, A.R.. Expression analysis highlights AXL as a candi- date Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016. 18, 591–596. Cerca con Google

158. Meertens, L., Labeau, A., Dejarnac, O., Cipriani, S., Sinigaglia, L., Bonnet- Madin, L., et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep. 2017. 18, 324–333. doi: 10.1016/j. celrep.2016.12.045 Cerca con Google

159. Liu, S., DeLalio, L. J., Isakson, B. E., and Wang, T. T.. AXL-mediated productive infection of human endothelial cells by Zika virus. Circ. Res. 2016. 119, 1183–1189. doi: 10.1161/circresaha.116.309866 Cerca con Google

160. Tabata, T., Petitt, M., Puerta-Guardo, H., Michlmayr, D., Wang, C., Fang-Hoo- ver, J., Harris, E., and Pereira, L.. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe. 2016. 20, 155–166. Cerca con Google

161. Meertens, L., Carnec, X., Lecoin, M.P., Ramdasi, R., Guivel-Benhassine, F., Lew, E., Lemke, G., Schwartz, O., and Amara, A.. The TIM and TAM Families of Phosphatidylserine Receptors Mediate Dengue Virus Entry. Cell Host Microbe. 2012. 12, 544–557. Cerca con Google

162. Bhattacharyya, S., Zago ́ rska, A., Lew, E.D., Shres- tha, B., Rothlin, C.V., Naughton, J., Diamond, M.S., Lemke, G., and Young, J.A. Enveloped Viruses Disable Innate Immune Responses in Dendritic Cells by Direct Activation of TAM Receptors. Cell Host Microbe. 2013. 14, 136–147. Cerca con Google

163. Miner, J.J., Daniels, B.P., Shrestha, B., Proenca- Modena, J.L., Lew, E.D., Lazear, H.M., Gorman, M.J., Lemke, G., Klein, R.S., and Diamond, M.S. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat. Med.2015. 21, 1464–1472. Cerca con Google

164. Lum, F. M., Low, D. K., Fan, Y., Tan, J. J., Lee, B., Chan, J. K., et al.. Zika virus infects human fetal brain microglia and induces inflammation. Clin. Infect. Dis. 2017. 64, 914–920. doi: 10.1093/cid/ciw878 Cerca con Google

165. Frumence, E., Roche, M., Krejbich-Trotot, P., El-Kalamouni, C., Nativel, B., Rondeau, P., et al.. The south pacific epidemic strain of Zika virus replicates e ciently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction. Virology. 2016. 493, 217–226. doi: 10.1016/j.virol. 2016.03.006 Cerca con Google

166. Tiwari, S. K., Dang, J., Qin, Y., Lichinchi, G., Bansal, V., and Rana, T. M.. Zika virus infection reprograms global transcription of host cells to allow sustained infection. Emerg. Microbes Infect.2017. 6, e24. doi: 10.1038/emi.2017.9 Cerca con Google

167. Yockey, L.J., Varela, L., Rakib, T., Khoury-Hanold, W., Fink, S.L., Stutz, B., Szi- geti-Buck, K., Van den Pol, A., Lindenbach, B.D., Horvath, T.L., and Iwasaki, A.Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell. 2016. 166, 1247–1256.e4. Cerca con Google

168. Wu, K.Y., Zuo, G.L., Li, X.F., Ye, Q., Deng, Y.Q., Huang, X.Y., Cao, W.C., Qin, C.F., and Luo, Z.G.. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res.2016. 26, 645–654. Cerca con Google

169. Li, C., Xu, D., Ye, Q., Hong, S., Jiang, Y., Liu, X., Zhang, N., Shi, L., Qin, C.F., and Xu, Z.. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 2016 a.19, 120–126. Cerca con Google

170. Ghouzzi, V.E., Bianchi, F.T., Molineris, I., Mounce, B.C., Berto, G.E., Rak, M., Lebon, S., Aubry, L., Tocco, C., Gai, M., et al. ZIKA virus elicits P53 acti- vation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death Dis. 2016. 7, e2440 Cerca con Google

171. Grant, A., Ponia, S.S., Tripathi, S., Balasubramaniam, V., Miorin, L., Souris- seau, M., Schwarz, M.C., Sa ́ nchez-Seco, M.P., Evans, M.J., Best, S.M., and Garcı ́a-Sastre, A. Zika virus targets human STAT2 to inhibit type I inter- feron signaling. Cell Host Microbe. 2016. 19, 882–890. Cerca con Google

172. Aliota, M. T., Caine, E. A., Walker, E. C., Larkin, K. E., Camacho, E., and Osorio, J. E.. Characterization of lethal zika virus infection in AG129 Mice. PLoS Negl. Trop. Dis. 2016. 10:e0004682. doi: 10.1371/journal.pntd. 0004682 Cerca con Google

173. Zmurko, J., Marques, R. E., Schols, D., Verbeken, E., Kaptein, S. J., and Neyts, J. The viral polymerase inhibitor 7-Deaza-2’-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis. 2016. 10:e0004695. doi: 10.1371/journal.pntd.0004695 Cerca con Google

174. Julander, J. G., Siddharthan, V., Evans, J., Taylor, R., Tolbert, K., Apuli, C., et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2017.137, 14–22. doi: 10.1016/j.antiviral.2016.11.003 Cerca con Google

175. Rossi, S. L., Tesh, R. B., Azar, S. R., Muruato, A. E., Hanley, K. A., Auguste, A. J., et al.. Characterization of a novel murine model to study Zika virus. Am. J. Trop. Med. Hyg. 2016. 94, 1362–1369. doi: 10.4269/ajtmh.16-0111 Cerca con Google

176. Lazear, H. M., Govero, J., Smith, A. M., Platt, D. J., Fernandez, E., Miner, J. J., et al.. A mouse model of Zika virus pathogenesis. Cell Host Microbe. 2016. 19, 720–730. doi: 10.1016/j.chom.2016.03.010 Cerca con Google

177. Li, H., Saucedo-Cuevas, L., Regla-Nava, J. A., Chai, G., Sheets, N., Tang, W., et al.. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell. 2016. 19, 593–598. doi: 10.1016/j.stem.2016. 08.005 Cerca con Google

178. Dowall, S. D., Graham, V. A., Rayner, E., Atkinson, B., Hall, G., Watson, R. J., et al. A susceptible mouse model for Zika virus infection. PLoS Negl. Trop. Dis. 2016. 10:e0004658. doi: 10.1371/journal.pntd.0004658 Cerca con Google

179. Fernandes, N. C., Nogueira, J. S., Ressio, R. A., Cirqueira, C. S., Kimura, L. M., Fernandes, K. R., et al.. Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp. Toxicol. Pathol. 2017. 69, 63–71. doi: 10.1016/j.etp.2016.11.004 Cerca con Google

180. Huang, W. C., Abraham, R., Shim, B. S., Choe, H., and Page, D. T. Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Sci. Rep. 2016.6:34793. doi: 10.1038/srep34793 Cerca con Google

181. Shao, Q., Herrlinger, S., Yang, S. L., Lai, F., Moore, J. M., Brindley, M. A., et al.. Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development. 2016. 143, 4127–4136. doi: 10.1242/dev.143768 Cerca con Google

182. Miner, J. J., Cao, B., Govero, J., Smith, A. M., Fernandez, E., Cabrera, O. H., et al.. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell. 2016. 165, 1081–1091. doi: 10.1016/j.cell.2016.05.008 Cerca con Google

183. Ma, W., Li, S., Ma, S., Jia, L., Zhang, F., Zhang, Y., et al.. Zika virus causes testis damage and leads to male infertility in mice. Cell. 2016. 167, 1511.e10–1524.e10. doi: 10.1016/j.cell.2016.11.016 Cerca con Google

184. Beasley, DW.. Recent advances in the molecular biology of west nile virus. Curr Mol Med. 2005. 5:835-850. Cerca con Google

185. Bondre VP., Jadi Rs., Mishra C., et al.. West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 2007; 88:875-884.
 Cerca con Google

186. Donadieu E., Bahuon C., Lowenski S., et al. Differential virulence and pathogenesis of West Nile viruses. Viruses. 2013, 5(11): 2856-2880 Cerca con Google

187. May FJ., Davis CT., Tesh RB., et al.. Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol,2011. 85:2964-2974. Cerca con Google

188. Papa A., Bakonyi T., Xanthopoulou K., et al.. Genetic characterization of West Nile virus lineage 2, Greece, 2010. Emerg Infect Dis. 2011.1:920-2. Cerca con Google

189. Di Sabatino D., Bruno R., Sauro R., et al. Epidemiology of West Nile Disease in Europe and in the Mediterranean Basin from 2009 to 2013. BioMed Research International .2014. Vol. 2014, Article ID 907852, 10 pages. Cerca con Google

190. Marka A., Diamantidis A., Papa A., et al.. West Nile virus state of the art report of MALWEST project. Int J Environ Res Health. 2013. 10, 6534-6610. Cerca con Google

191. Vazquez A., Sanchez-Seco MP., Ruiz S., et al. Putative new Lineage of West Nile virus, Spain. Emerg Infect Dis. 2010. 16, 549-552. Cerca con Google

192. Lanciotti RS., Roehrig JT., Deubel V., et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999. 286, 233-2337 Cerca con Google

193. Lanciotti RS., Ebel GD., Deubel V., et al.. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 2002.298: 96-105. Cerca con Google

194. Bakonyi T., Ivanics E., Erdelyi K., et al. Lineage 1 and 2 strains of encephalic West Nile virus, central Europe. Emerg Infect Dis.2006. 12:618-623. Cerca con Google

195. Bakonyi T., Hubalek Z., Rudolf I., et al. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis. 2005. 11:225-31. Cerca con Google

196. Bagnarelli P., Marinelli K., Trotta D., et al. Human case of autochthonous West Nile virus lineage 2 infection in Italy, September 2011. Euro Surveill .2011. 43:1-4. Cerca con Google

197. Magurano F., Remoli ME., Baggieri M., et al. Circulation of West Nile virus lineage 1 and 2 during an outbreak in Italy. Clin Microbiol Infect. 2012. 18(12):E545-E547. Cerca con Google

198. Barzon L., Pacenti M., Franchin E., et al.. The complex epidemiological scenario of West Nile virus in Italy. Int J Environ Res Public Health. 2013a.10: 4669- 4689. Cerca con Google

199. Gray TJ., Webb CE. A review of the epidemiological and clinical aspects of West Nile virus. International Journal of General Medicine, 2014. 7, 193-203. Cerca con Google

200. Smithburn K.C., Hughes T.P., et al. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg. 1940. 20:471-92. Cerca con Google

201. Hubalek Z., Halouzka J. West nile fever – A reemerging mosquito-borne viral disease in Europe. Emerging Infect. Dis. 1999. 5, 643-650. Cerca con Google

202. Bernkopf H., Levine S., Nerson R. Isolation of West Nile virus in Israel. J Infect Dis.1953. 93 (3):207-218. Cerca con Google

203. Melnick JL., Paul JR., Riordan JT., et al. Isolation from human sera in Egypt of a virus apparently identical to West Nile virus. Proc Soc Exp Biol Med.1951. 77:661-665 Cerca con Google

204. Hayes CG. West Nile virus: Uganda, 1937, to New York city, 1999. Ann N Y Acad Sci.2001.951:25-37. Cerca con Google

205. Jupp, P. G. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann. N. Y. Acad. Sci. 1951:143–152. Cerca con Google

206. Platonov AE.West Nile encephalitis in Russia 1999–2001. Were we ready? Are we ready? In: White DJ., Morse DL., editors. West Nile virus detection, surveillance, and control. V ol. 951. New Y ork: New Y ork Academy of Sciences. 2001. pp. 102–116. Cerca con Google

207. Nash D., Mostashari F., Fine A., et al. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med. 2001. 344:1807-1814 Cerca con Google

208. Marfin AA., Gubler DJ.West Nile encephalitis: an emerging disease in the United States. Clin Infect Dis. 2001. 33:1713-1719. Cerca con Google

209. Giladi M., Metzkor-Cotter E., Martin DA., et al.West Nile encephalitis in Israel, 1999: the New York connection. Emerg Infect Dis 2001. 7:659–661. Cerca con Google

210. De Filette M., Ulbert S., Diamond M. Recent progress in West Nile virus diagnosis and vaccination. Veterinary Research. 2012. 43:16. Cerca con Google

211. Campbell GL., Ceianu CS., Savage HM., et al. Epidemic West Nile encephalitis in Romania: Waiting for history to repeat itself. Ann N Y Acad Sci.2001, 951: 94-101 Cerca con Google

212. Triki H., Murri S., Le Guenno B., et al.West Nile viral meningo- encephalitis in Tunisia. Med Trop (Mars.) 2001. 61: 487-490. Cerca con Google

213. Brown A., Bolisetty S., Whelan P., et al. Reappearance of human cases due to Murray Valley encephalitis virus and Kunjin virus in central Australia after an absence of 26 years. Commun Dis Intell. 2002. 26: 39-44. Cerca con Google

214. Calistri P., Giovannini A., Hubalek Z., et al. Epidemiology of west nile in europe and in the mediterranean basin. Open Virol J. 2010. 4: 29-37. Cerca con Google

215. Bakonyi T., Ferenczi E., Erdelyi K., et al. Explosive spread of neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet Microbiol. 2013, 165: 61-70. Cerca con Google

216. Rizzo C., Salcuni P., Nikoletti L., et al. Epidemiological surveillance of West Nile neuroinvasive diseases in Italy, 2008 to 2011. Eur Surveill. 2012. 17. Cerca con Google

217. CDC 2013. West Nile virus disease cases reported to CDC by State and year, 1999- 2012. Available online: http://www.cdc.gov/westnile/resources/pdfs/cummulative/99_2012_cummulativeHu manCases.pdf. (accessed on 30 October 2013). Vai! Cerca con Google

218. Pauvolid-Correa A., Morales MA., Levis S., et al. Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal. Mem Inst Oswaldo Cruz. 2011; 106(4):467-474. Cerca con Google

219. Autorino GL., Battisti A., Deubel V., et al.West Nile virus epidemic in horses, Tuscany region, Italy. Emerg Infect Dis. 2002, 8: 1372-1378. Cerca con Google

220. Rossini G., Cavrini F., Pierro A., et al. First human case of West Nile virus neuroinvasive infection in Italy, September 2008 – case report. Euro Surveill .2008.13, 13 Cerca con Google

221. Barzon, L.; Squarzon L., Cattai M., et al. West Nile virus infection in Veneto region, Italy, 2008-2009. Euro Surveill 2009, 14. Cerca con Google

222. Macini P., Squintani G., Finarelli AC., et al. Detection of West Nile virus infection in horses, Italy, September 2008. Euro Surveill.2008. 13. Cerca con Google

223. Rossini G., Carletti F., Bordi L., et al. Phylogenetic analysis of West Nile virus isolates, Italy, 2008-2009. Emerg Infect Dis. 2011, 17: 903-906. Cerca con Google

224. Capobianchi MR., Sambri V., Castilletti C., et al.Retrospective screening of solid organ donors in Italy, 2009, reveals unpredicted circulation of West Nile virus. Euro Surveill .2010.15. Cerca con Google

225. Calzolari M., Gaibani P., Bellini R., et al. Mosquito, birds and human surveillance of West Nile virus and Usutu viruses in Emilia-Romagna Region (Italy) in 2010. PLoS One. 2012, 7 Cerca con Google

226. Barzon L., Pacenti M., Franchin E., et al. Clinical and virological findings in the ongoing outbreaks of West Nile virus Livenza strain in northern Italy, July to September 2012. Euro Surveill .2012, 17. Cerca con Google

227. Barzon L., Pacenti M., Franchin E., et al. Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013. Euro Surveill. 2013, 18. Cerca con Google

228. Hayes EB., Komar N., Nasci RS., et al. Epidemiology and transmission dynamics of West Nile virus disease. Emerging Infect Dis. 2005, 11, 1167-1173. Cerca con Google

229. Rossi SL., Ross TM., Evans JD. West Nile virus. Clin Lab Med. 2010 March; 30(1):47-65. Cerca con Google

230. Colpitts TM., Conway MJ., Montgomery RR., et al. West Nile virus: Biology, transmission, and human infection. Clin. Microbiol. Rev. 2012. 25(4):635. Doi:10.1128/CMR.00045-12.
 Cerca con Google

231. Martin-Acebes MA. And Saiz JC. West Nile virus: a re-emerging pathogen revisited. World J Virol.2012 April 12;1(2):51-70. Cerca con Google

232. Brault AC. Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility. Vet Res 2009; 40:43 Cerca con Google

233. Zeller HG. And Schuffenecker I.West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbial Infect Dis. 2004. 23: 147-156. Cerca con Google

234. Francis RO., Strauss D., Williams JD., et al.West Nile virus infection in blood donors in the New York area during the 2010 seasonal epidemic. Transfusion. 2012, 52:174-182. Cerca con Google

235. Iwamoto M., Jernigan DB., Guasch A., et al. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003; 348: 2196-2203.
 Cerca con Google

236. CDC. 2002. Intrauterine West Nile virus infection_New York 2002. MMWR 2002, 51:1135-1136. Cerca con Google

237. Hinckley AF., O’Leary DR., Hayes EB. Transmission of West Nile virus through breast milk seems to be rare. Pediatrics 2007, 119, 666-671.
 Cerca con Google

238. Hayes EB., O’Leary DR.West Nile virus infection: a pediatric perspective. 2004; 113: 1375-1381. Cerca con Google

239. Kelley, RE., Berger, JR., Kelley, BP. West Nile virus meningo-encephalitis: possible sexual transmission. J La State Med Soc. 2016. 168 (1): 21-2. Epub 2016 Feb 15. Cerca con Google

240. Samuel MA. and Diamond MS. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol. 2006, 80: 9349-9360. Cerca con Google

241. Lim PY, Behr MJ, Chadwick CM, et al. Keratinocytes are cell targets of West Nile virus in vivo. J. Virol. 2011. 85:5197–5201. Cerca con Google

242. Johnston LJ., Halliday GM., King NJ. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol. 2000. 114: 560-568. Cerca con Google

243. Bai, F. et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J. Infect. Dis. 2010, 202: 1804–1812. Cerca con Google

244. Samuel, M. A. et al.PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol.. 2006, 80: 7009–7019. Cerca con Google

245. Sejvar JJ. Clinical manifestation and outcomes of West Nile virus infection. Viruses. 2014, 6: 606-623. Cerca con Google

246. Emig, M.; Apple, D.J. Severe West Nile virus disease in healthy adults. Clin. Infect. Dis. 2004, 38, 289–292. Cerca con Google

247. Watson, J.T.; Pertel, P.E.; Jones, R.C.; et al. Clinical characteristics and functional outcomes of West Nile Fever. Ann. Intern. Med. 2004, 141, 360–365. Cerca con Google

248. Campbell GL., Marfin AA., Lanciotti RS., et al. West Nile virus. Lancet Infect Dis. 2002 Sep; 2(9):519-29. Cerca con Google

249. O’Leary DR., Marfin AA., Montgomery Sp., et al. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 2004, 4: 61-70. Cerca con Google

250. Pardridge, W.M. Brain metabolism: A perspective from the blood-brain barrier. Physiol. Rev. 1983. 63, 1481–1535. Cerca con Google

251. Johnston RT., Mims CA.Pathogenesis of viral infections of the nervous system. New Engl J Med. 1968, 278:23-30.
 Cerca con Google

252. Diamond, M. S., Shrestha, B., Mehlhop, E., et al. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol. 2003, 16, 259–278. Cerca con Google

253. Wang, T. et al.Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 2004. 10, 1366–1373. Cerca con Google

254. Wang, P. et al.Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J. Virol. 2008, 82, 8978–8985 Cerca con Google

255. Garcia-Tapia, D.; Loiacono, C.M.; Kleiboeker, S.B. Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 2006, 110, 229–244
 Cerca con Google

256. Suthar MS., Diamond SM., Gale M. Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 2013 Feb; 11(2):115-28. Cerca con Google

257. Lim JK., Louie CY., Glaser C., et al. Genetic deficienty of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. JID. 2008, 197: 262-265.
 Cerca con Google

258. Sips GJ., Wilschut J., Smit JM. Neuroinvasive flavivirus infections. Rev Med Virol. 2012, 22: 69-87. Cerca con Google

259. Cho H., Diamond MS. Immune responses to West Nile virus infection in the Central Nervous System. Viruses 2012, 4, 3812-3830 Cerca con Google

260. Hunsperger, E.A.; Roehrig, J.T. Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J. Neurovirol. 2006, 12, 129–139. Cerca con Google

261. Kramer-Hämmerle, S.; Rothenaigner, I.; Wolff, H.; et al. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res. 2005, 111, 194–213. Cerca con Google

262. Verma, S.; Lo, Y.; Chapagain, M.; Lum, S.; et al.West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology. 2009, 385, 425–433. Cerca con Google

263. Diamond, M. S., Mehlhop E., Oliphant T., et al.The host immunologic response to West Nile encephalitis virus. Frontiers in Bioscience 2009, 14: 3024- 3040. Cerca con Google

264. Wu SJ., et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med. 2000 6:816-820. Cerca con Google

265. Lim PY., Louie KL., Styer LM., et al. Viral pathogenesis in mice is similar for West Nile virus derived from mosquito and mammalian cells. Virology .2010.400: 93- 103 Cerca con Google

266. Fredericksen BL.The neuroimmune response to West Nile virus. J Neurovirol. 2014, 20(2):113-121.
 Cerca con Google

267. Lim MS., Koraka P., Osterhaus A., et al. West Nile virus: Immunity and Pathogenesis. Viruses. 2011, 3, 811-828. Cerca con Google

268. Lopes H., Redig P., Glaser A., et al. Clinical findings, lesions, and viral antigen distribution in great gray owls (Strix nebulosa) and barred owls (Strix varia) with spontaneous West Nile virus infection. Avian Dis. 2007.51:140–145 Cerca con Google

269. Van Marle G., Antony J., Ostermann H., et al.West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol.2008. 81:10933–10949
 Cerca con Google

270. Hussmann KL., Samuel MA., Kim KS., et al. Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. J Virol. 2013. 87:2814–2822
 Cerca con Google

271. Cheeran MC., Hu S., Sheng WS., et al. Differential responses of human brain cells to West Nile virus infection. J Neurovirol. 2005. 11:512–524
 Cerca con Google

272. Suthar, M. S. et al. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog.2010. 6, e1000757 Cerca con Google

273. Jensen S., Thomsen R. Sensing of RNA viruses: a reviwe of innate immune receptors involved in recognizing RNA virus invasion. Journal of Virology. 2012, 2900-2010. Cerca con Google

274. Kato H, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005. 23:19–28
 Cerca con Google

275. Quicke KM., Suthar MS. The innate immune playbook for restricting West Nile virus infection. Viruses. 2013, 5: 2643-2658 Cerca con Google

276. Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G. & Gale, M. Jr. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J. Virol. 2008. 82, 609–616. Cerca con Google

277. Takeuchi O. and Akira S. Innate immunity to virus infection. Immunological reviews.2009. 227: 75-86. Cerca con Google

278. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science. 2003. 301, 640–643 Cerca con Google

279. Daffis S., Samuel MA., Suthar MS., et al. Toll-like receptor 3 has a protective role against West Nile virus infection. J. Virol. 2008, 82, 10349–10358. Cerca con Google

280. Szretter KJ., Daffis S., Patel J., et al. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J. Virol. 2010. 84, 12125–12138.
 Cerca con Google

281. Ramos, H. J. et al. IL-1β signaling promotes CNS- intrinsic immune control of West Nile virus infection. PLoS Pathog.2012. 8, e1003039 Cerca con Google

282. Sato M., et al. Distinct and essential roles of transcription factors IRF‐3 and IRF‐7 in response to viruses for IFN-α/β gene induction. Immunity.2000. 13, 539–548. Cerca con Google

283. Honda K., et al.IRF‐7 is the master regulator of type‐I interferon-dependent immune responses. Nature. 2005. 434, 772–777 (2005). Cerca con Google

284. Zanotto, P.M., Gould, E.A., Gao, G.F., Harvey, P.H. & Holmes, E.C. Population dynamics of flaviviruses revealed by molecular phylogenetics. Proc. Natl. Acad. Sci. USA. 1996. 93, 548–553. Cerca con Google

285. Rico-Hesse, R. Microevolution and virulence of dengue viruses. Adv Virus Res. 2003. 59, 315-341 Cerca con Google

286. Holmes EC. Molecular epidemiology and evolution of emerging infectious diseases. Brit Mel Bull. 1998. 54:533e543. Cerca con Google

287. Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1999. 174(2), 479-493. Cerca con Google

288. Mustafa, M.S., Rasotagi, V., Jain, S., Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Armed Forces Medical Services (AFMS). 2015. 71, 67-70 Cerca con Google

289. Normile, D. Surprising new dengue virus throws a spanner in disease control efforts. Science. 2013. 342:415. Cerca con Google

290. Hammon, W.M. et al. New hemorrhagic fevers of children in the Philippines and Thailand. Trans. Assoc. Am. Physicians. 1960. 73, 140–155 Cerca con Google

291. World Health Organization WHO. Dengue and severe dengue. 2015. http://www. who.int/mediacentre/factsheets/fs117/en/. Accessed 11 Jun 2015. Vai! Cerca con Google

292. Kutsuna, S., Kato, Y., Moi, M.L., Kotaki, A., Ota, M., Shinohara, K., et al. Autochthonous dengue fever, Tokyo, Japan, 2014. Emerg Infect Dis. 2015. 21:517–20. Cerca con Google

293. Bhatt, S., Gething, PW., Brady, O.J., Messina, JP., Farlow, AW., Moyes, CL., et al. The global distribution and burden of dengue. Nature. 2013. 496:504–7. Cerca con Google

294. Rush, B. An account of the bilious remitting fever. As it appeared in philadelphia, in the summer and autumn of the year 1780. The American Journal of Medicine. 1951.11(5), 546-550 Cerca con Google

295. Halstead. Dengue : Overview and History. In S. Halstead (Ed.), Dengue. London: Imperial College Press.2008 Cerca con Google

296. Sabin, A. B. Research on dengue during World War II. Am J Trop Med Hyg. 1952. 1(1), 30-50. Cerca con Google

297. Guzman, A., & Isturiz, R. E. Update on the global spread of dengue. Int J Antimicrob Agents. 2010. 36 Suppl 1, S40-42. doi: 10.1016/j.ijantimicag.2010.06.018 Cerca con Google

298. Sim, S. and Hibberd, ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biology. 2016. 17:38 DOI 10.1186/s13059-016-0907-2 Cerca con Google

299. Higa, Y. Dengue Vectors and their spatial distribution. Tropical Medicine and Health. 2011 39(4), 17-27 Cerca con Google

300. Scott, T. W., & Takken, W.Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012,28(3), 114-121. doi: 10.1016/j.pt.2012.01.001 Cerca con Google

301. Powell , J. a. T., WJ. History of domestication and spread of Aedes aegypti - A Review. Mem Inst Oswaldo Cruz. 2013. 108, 11-17. doi: 10.1590/0074-0276130395 Cerca con Google

302. WHO. Comprehensive Guideline for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. New delhi: World Health Organization, Regional Office for South-East Asia.2011 Cerca con Google

303. Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004.18(3), 215-227. doi: 10.1111/j.0269-283X.2004.00513.x Cerca con Google

304. Carvalho, R. G., Lourenco-de-Oliveira, R., & Braga, I. A. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz. 2014. 109(6), 787-796. Cerca con Google

305. Roche, B., Léger, L., L’Ambert, G., Lacour, G., Foussadier, R., Besnard, G., Fontenille, D.The Spread of Aedes albopictus in Metropolitan France: Contribution of Environmental Drivers and Human Activities and Predictions for a Near Future. PLoS One. 2015. 10(5), e0125600. doi: 10.1371/journal.pone.0125600 Cerca con Google

306. Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., Hay, S. I.The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus .Elite 2015.(Vol. 4). doi: 10.7554/eLife.08347 Cerca con Google

307. Paupy, C., Delatte, H., Bagny, L., Corbel, V., & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2004. 11(14-15), 1177-1185. doi: 10.1016/j.micinf.2009.05.005 Cerca con Google

308. Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., Chen, X.G. Urbanization Increases <italic>Aedes albopictus</italic> Larval Habitats and Accelerates Mosquito Development and Survivorship. PLoS Negl Trop Dis. 2014. 8(11), e3301. doi: 10.1371/journal.pntd.0003301 Cerca con Google

309. Schaffner, F., Vazeille, M., Kaufmann, C., Failloux, A-B, Mathis, A. Vector competence of Aedes japonicus for chikungunya and dengue viruses. Eur Mosq Bull.2011.29:141–2. Cerca con Google

310. Moore, P.R., Johnson, P.H., Smith, G.A., Ritchie, S.A., Van Den Hurk, A.F. Infection and dissemination of dengue virus type 2 in Aedes aegypti, Aedes albopictus, and Aedes scutellaris from the Torres Strait, Australia. J Am Mosq Control Assoc. 2007. 23:383–8. doi:10.2987/5598.1 Cerca con Google

311. Rosen, L., Rozeboom, L.E., Sweet, B.H., Sabin, A.B.. The transmission of dengue by Aedes polynesiensis marks. Am J Trop Med Hyg. 1954. 3:878–82. Cerca con Google

312. Yacoub, S., Mongkolsapaya, J., & Screaton, G. The pathogenesis of dengue. Curr Opin Infect Dis. 2013. 26(3), 284-289. doi:10.1097/QCO.0b013e32835fb938
 Cerca con Google

313. Kurane, I. & Ennis, F.A. Immunopathogenesis of dengue virus infections, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 273–290 (CAB 
International, London, 1997) 
 Cerca con Google

314. Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev.1998. 11, 480–496. 
 Cerca con Google

315. Murthy,JM. Neurological complication of dengue infection. Neurology India. 2010; 58: 581–584. DOI: 10.4103/0028-3886. 68654 Cerca con Google

316. Varatharaj, A. Encephalitis in the clinical spectrum of dengue infection. Neurology India.2010; 58: 585–591. DOI: 10.4103/ 0028-3886.68655 Cerca con Google

317. Gulati, S., Maheshwari, A. Atypical manifestations of dengue. Tropical Medicine & International Health. 2007; 12: 1087–1095. DOI: 10.1111/j.1365-3156.2007.01891. 
 Cerca con Google

318. Yauch, L.E., Shresta, S. Mouse models of dengue virus infection and disease. Antiviral Research. 2008; 80: 87–93. DOI: 10.1016/j. antiviral.2008.06.010 Cerca con Google

319. Chaturvedi, U.C., Dhawan, R., Khanna, M., et al. Breakdown of the blood–brain barrier during dengue virus infection of mice. Journal of General Virology. 1991.72(Pt 4): 859–866. Cerca con Google

320. Miagostovich. M.P., Ramos, R.G., Nicol, A.F., et al. Retrospective study on dengue fatal cases. Clinical Neuropathology.1997.16: 204–208.
 Cerca con Google

321. Jan, J.T., Chen, B.H., Ma, S.H., et al. Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachido- nic acid, superoxide anion, and NF- kappaB are sequentially involved. Journal of Virology. 2000; 74: 8680–8691. Cerca con Google

322. Sanchez-Burgos, G., Hernandez-Pando, R., Campbell, IL., et al. Cytokine production in brain of mice experimentally infected with dengue virus. Neuroreport. 2004; 15: 37–42. Cerca con Google

323. An, J., Zhou, D.S., Kawasaki, K., et al. The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Archiv.2003.442: 472–481. DOI: 10.1007/s00428- 003-0785-3 Cerca con Google

324. Kurane, I., Innis, B. L., Nimmannitya, S., Nisalak, A., Meager, A. & Ennis, F. A.High levels of interferon alpha in the sera of children with dengue virus infection. Am J Trop Med Hyg. 1993. 48, 222-9. Cerca con Google

325. Diamond, M. S., Roberts, T. G., Edgil, D., Lu, B., Ernst, J. & Harris, E. Modulation of Dengue Virus Infection in Human Cells by Alpha, Beta, and Gamma Interferons. Journal of Virology. 2000. 74, 4957-4966.
 Cerca con Google

326. Espada-murao, L. A. & Morita, K. 2011. Dengue and soluble mediators of the innate immune system. Trop Med Health, 39, 53-62.
 Cerca con Google

327. Kurane, I., Innis, B. L., Nisalak, A., Hoke, C., Nimmannitya, S., Meager, A. & Ennis, F. A. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. J Clin Invest. 1989. 83, 506-13. Cerca con Google

328. Surasombatpattana, P., Hamel, R., Patramool, S., Luplertlop, N., Thomas, F., Despres, P., Briant, L., Yssel, H. & Misse, D. Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infect Genet Evol. 2011.11, 1664- 73. Cerca con Google

329. Dalrymple, N. A. & Mackow, E. R. Endothelial cells elicit immune- enhancing responses to dengue virus infection. J Virol. 2012.86, 6408-15. Cerca con Google

330. Noisakran, S., Onlamoon, N., Songprakhon, P., Hsiao, HM., Chokephaibulkit, K., Perng, GC. Cells in Dengue Virus Infection In Vivo. Advances in virology. 2010. Volume 2010. doi:10.1155/2010/164878 Cerca con Google

331. Limon-Flores, A.Y., Perez-Tapia, M., Estrada-Garcia, I. et al. Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. International Journal of Experimental Pathology. 2005. vol. 86, no. 5, pp. 323–334. Cerca con Google

332. Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A. et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. Journal of Experimental Medicine.2003. vol. 197, no. 7, pp. 823–829. Cerca con Google

333. Wang, J.P., Liu, P., Latz, E.,Golenbock, D.T.,Finberg, R.W. 
and Libraty, D.H.Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. Journal of Immunology. 2006. vol. 177, no. 10, pp. 7114–7121.
 Cerca con Google

334. P. Sun, P., Fernandez, S., Marovich, M.A. et al. Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology. 2009. vol. 383, no. 2, pp. 207–215. Cerca con Google

335. Miller, J.L., DeWet, B.J.M., Martinez-Pomares, L. et al..The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathogens. 2008. vol. 4, article e17 Cerca con Google

336. Nightingale, Z.D., Patkar, C. and Rothman, A.L.Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus. Journal of Leukocyte Biology. 2008. vol. 84, no. 4, pp. 1028– 1038. Cerca con Google

337. Marovich, M., Grouard-Vogel, G., Louder, M. et al. Human dendritic cells as targets of dengue virus infection. Journal of Invest Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record