Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bernard, Martino (2018) Analysis and modelling of surface runoff triggering debris flows. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (PhD Thesis Martino Bernard)
13Mb

Abstract (inglese)

In the Dolomites, short-duration and high-intensity rainfalls produce abundant surface runoff in headwater catchments. These discharges often trigger debris flows on the scree slopes placed at the base of rock cliffs. With the aim to quantify the discharges delivered by these headwater catchments and associated rainfalls, we built a measuring facility at the outlet (elevation 1770 m a.s.l.) of a rocky channel incised on the Dimai Peak, near Cortina d'Ampezzo (Belluno province) in the Venetian Dolomites (North Eastern Italian Alps). The channel delivers surface runoff gathered by a small impervious headwater catchment (area ~0.032 km^2, average slope ~320%). The facility consists of a monitoring station equipped with a rain gauge, and trapezoidal-shape waterproof basin, closed by a sharp-crested weir. The recorded rainfalls allow us to verify the features that lead to runoff discharges or mass transport events. In the period 2011-2017, among the measured discharges, about fifteen runoff events were considered as significant. These observations provide a unique opportunity for improving knowledge about the hydrological response of a rocky headwater catchment. The recorded hydrographs show impulsive shapes, with a sudden raise up to the discharge peak, generally followed by a likewise rapidly decreasing tail. Furthermore, the discharges can be used to calibrate and validate hydrological models. We show that the observations can be modelled by means of a distributed hydrological model, assuming that the excess rainfall is accurately evaluated. More specifically, we show that the combination of the Soil Conservation Service Curve-Number (SCS-CN) procedure with constant routing velocities results in an underestimation of the flow peak and a delayed time of peak. Better predictions of the peak of discharge, its timing, and the impulsive shape of the hydrographs could be obtained by coupling the SCS-CN method with a simplification of the Horton equation, and simulating the routing of runoff along the channel network by means of a matched diffusivity kinematic-wave model. The reliability of the method is tested by comparing simulated and observed timings of hyper-concentrated runoff or debris flow triggering in two neighbouring dolomitic watersheds.

Abstract (italiano)

In ambiente dolomitico, gli eventi di precipitazione di tipo convettivo, caratterizzati da brevi durate ed alte intensità, sono in grado di generare abbondanti deflussi superficiali alla base delle pareti rocciose. Questi deflussi incidono i ghiaioni presenti al piede dei bacini di testata e sono spesso responsabili dell'innesco di fenomeni di colata detritica. Con l'obiettivo di stimare le precipitazioni e portate dei deflussi superficiali, abbiamo installato una stazione di monitoraggio alla base del Campanile Dimai (gruppo del Pomagagnon - Dolomiti), nei pressi di Cortina d'Ampezzo (provincia di Belluno). La stazione è dotata di pluviometro e registra i dati di un misuratore di portata costruito in prossimità della sezione di chiusura (quota 1770 m s.l.m.) del canale roccioso inciso sul Campanile Dimai stesso. La struttura consiste in una piccola vasca impermeabilizzata di forma trapezoidale delimitata da uno stramazzo in parete sottile che raccoglie i deflussi generati dalle pareti rocciose del bacino di testata sovrastante (area ~0.032 km^2, pendenza media ~320%). Le precipitazioni registrate nel periodo 2011-2017 hanno permesso di capire quali caratteristiche portano alla formazione di deflusso e/o di trasporto solido nel bacino. Fra i vari idrogrammi registrati, è stato possibile considerarne significativi, sia in termini di valore di picco che di volume defluito, una dozzina. Queste misure sono un'occasione più unica che rara per approfondire la conoscenza riguardo alla risposta idrologica di questo tipo di bacini. Gli idrogrammi mostrano una risposta di tipo impulsivo, con un aumento improvviso del deflusso superficiale fino al valore di picco, seguito generalmente da un'altrettanto rapida decrescita. Queste misure di deflusso, inoltre, permettono di calibrare e validare i modelli idrologici. In questo lavoro, infatti, mostriamo come queste caratteristiche di deflusso possano essere riprodotte usando un modello idrologico distribuito, premesso che la precipitazione efficace venga valutata correttamente. L'utilizzo del metodo Curve Number del Soil Conservation Service (SCS-CN), combinato con la propagazione del deflusso a velocità costante, produce una sottostima del picco di deflusso ed un ritardo nel tempo di picco rispetto a quanto registrato. Per ottenere una riproduzione soddisfacente del valore di picco, del tempo di picco e della forma dell'idrogramma, il metodo SCS-CN deve essere accoppiato con una versione semplificata dell'equazione di Horton per la valutazione del deflusso generato. Inoltre, bisogna utilizzare un modello di onda cinematica, in cui la diffusività numerica è uguagliata a quella idraulica, per la propagazione della portata nel canale. Ad ulteriore conferma dell'affidabilità della metodologia sviluppata, vengono confrontate le tempistiche osservate e simulate per alcuni eventi di colata detritica/flusso iperconcentrato avvenuti in due bacini dolomitici in prossimità del bacino oggetto di studio.

Statistiche Download
Tipo di EPrint:Tesi di dottorato
Relatore:Gregoretti, Carlo
Dottorato (corsi e scuole):Ciclo 30 > Corsi 30 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:12 Gennaio 2018
Anno di Pubblicazione:15 Gennaio 2018
Parole chiave (italiano / inglese):Dolomites, debris flow, sharp-crested weir, hydrological model, SCS-CN, Horton, Muskingum-Cunge, ID threshold
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:10682
Depositato il:09 Nov 2018 09:27
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agnese, C., Baiamonte, G., and Corrao, C. (2001). A simple model of hillslope response for overland flow generation. Hydrological Processes, 15(17):3225– 3238. Cerca con Google

Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73(3-4):247–265. Cerca con Google

Anderson, M. G. and Burt, T. P. (1978). The role of topography in controlling throughflow generation. Earth Surface Processes, 3(4):331–344. Cerca con Google

Armanini, A., Fraccarollo, L., and Rosatti, G. (2009). Two-dimensional simulation of debris flows in erodible channels. Computers and Geosciences, 35(5):993–1006. Cerca con Google

Armento, M. C., Genevois, R., and Tecca, P. R. (2008). Comparison of numerical models of two debris flows in the Cortina d’ Ampezzo area, Dolomites, Italy. Landslides, 5(1):143–150. Cerca con Google

Bacchini, M. and Zannoni, A. (2003). Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy). Natural Hazards and Earth System Science, 3(1/2):71–79. Cerca con Google

Bardou, E., Ancey, C., Bonnard, C., and Vulliet, L. (2003). Classification of debris-flow deposits for hazard assessment in alpine areas. 3th International Conference on Debris-Flow hazards mitigation : mechanics, prediction, and assessment. Cerca con Google

Berger, C., McArdell, B. W., Fritschi, B., and Schlunegger, F. (2010). A novel method for measuring the timing of bed erosion during debris flows and floods. Water Resources Research, 46(2):n/a–n/a. Cerca con Google

Berger, C., McArdell, B. W., and Schlunegger, F. (2011). Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities. Geomorphology, 125(3):421–432. Cerca con Google

Berti, M., Genevois, R., LaHusen, R. G., Simoni, A., and Tecca, P. R. (2000). Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian alps). Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(9):707–715. Cerca con Google

Berti, M., Genevois, R., Simoni, A., and Tecca, P. R. (1999). Field observations of a debris flow event in the Dolomites. Geomorphology, 29:265–274. Cerca con Google

Berti, M. and Simoni, A. (2005). Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2(3):171–182. Cerca con Google

Beven, K. J. (2002). Runoff generation in semi-arid areas. In Bull, L. and Kirkby, M. J., editors, Dryland Rivers: Hydrology and Geomorphology of Semi-arid Channels, chapter 3, pages 57 – 105. Wiley. Cerca con Google

Borga, M., Anagnostou, E. N., Bloschl, G., and Creutin, J.-D. (2010). Flash floods: Observations and analysis of hydro-meteorological controls. Journal of Hydrology, 394(1-2):1–3. Cerca con Google

Botter, G. and Rinaldo, A. (2003). Scale effect on geomorphologic and kinematic dispersion. Water Resources Research, 39(10). Cerca con Google

Bouvier, C., Brunet, P., LeBourgeois, O., Nguyen, S., Borrell, V., Ayral, P.-A., Didon-Lescot, J.-F., Domergue, J.-M., and Grard, N. (2015). Hydrological processes generating flash floods at hillslope scale in a small mountainous Mediterranean catchment. EGU General Assembly 2015. Cerca con Google

Bovis, M. J. and Jakob, M. (1999). The role of debris supply conditions in predicting debris flow activity. Earth Surface Processes and Landforms, 24(11):1039–1054. Cerca con Google

Brayshaw, D. and Hassan, M. A. (2009). Debris flow initiation and sediment recharge in gullies. Geomorphology, 109(3-4):122–131. Cerca con Google

Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., and Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth System Science, 10(3):447–458. Cerca con Google

Caine, N. (1980). The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler. Series A, Physical Geography, 62(1/2):23. Cerca con Google

Cannon, S. H., Gartner, J. E., Rupert, M. G., Michael, J. A., Rea, A. H., and Parrett, C. (2010). Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. Geological Society of America Bulletin, 122(1-2):127–144. Cerca con Google

Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L. (2008). Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology, 96(3-4):250–269. Cerca con Google

Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied Hydrology. McGraw-Hill, New York. Cerca con Google

Coe, J. A. and Godt, J. W. (2003). Estimating debris-flow probability using fan stratigraphy, historic records, and drainage-basin morphology, Interstate 70 highway corridor, central Colorado, U.S.A. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pages 1085–1096. Cerca con Google

Coe, J. A., Kinner, D. A., and Godt, J. W. (2008). Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology, 96(3-4):270–297. Cerca con Google

Costa, J. E. (1984). Physical Geomorphology of Debris Flows. In Developments and Applications of Geomorphology, pages 268–317. Springer Berlin Heidelberg, Berlin, Heidelberg. Cerca con Google

Creutin, J.-D. and Borga, M. (2003). Radar hydrology modifies the monitoring of flash-flood hazard. Hydrological Processes, 17(7):1453–1456. Cerca con Google

Croke, B. and Norton, J. (2004). Regionalisation of Rainfall-Runoff Models. In Pahl-Wostl, C., Schmidt, S., Rizzoli, A., and Jakeman, T., editors, 2nd Biennial Meeting of the International Environmental Modelling and Software Society, number 3, pages 1201–1207, Manno, Switzerland. Cerca con Google

Crosta, G. B. and Frattini, P. (2000). Rainfall thresholds for soil slip and debris flow triggering. In Mugnai, A., Guzzetti, F., and Roth, G., editors, Proceedings of the EGS 2nd Plinius Conference on Mediterranean Storms, number 1, pages 463–488, Siena, Italy. Cerca con Google

Crosta, G. B. and Frattini, P. (2003). Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Science, 3(1/2):81–93. Cerca con Google

Cruden, D. M. and Varnes, D. J. (1996). Landslide types and processes. In Landslides: Investigation and Mitigation Special Report, number 247, chapter 3, pages 36–75. Transportation Research Board. Cerca con Google

Cunge, J. (1969). On The Subject Of A Flood Propagation Computation Method (Musklngum Method). Journal of Hydraulic Research, 7(2):205–230. Cerca con Google

D’Asaro, F. and Grillone, G. (2012). Empirical Investigation of Curve Number Method Parameters in the Mediterranean Area. Journal of Hydrologic Engineering, 17(10):1141–1152. Cerca con Google

Davies, T. R. H. (1988). Debris flow surges: a laboratory investigation. Number 96. Zurich. Cerca con Google

De Paola, F., De Risi, R., Di Crescenzo, G., Giugni, M., Santo, A., and Speranza, G. (2017). Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(1):A4015002. Cerca con Google

Deganutti, A. M. and Tecca, P. R. (2013). The Case Study of Cancia (Dolomites, Italy), a Mountain Village Threatened by a Debris Flow. In Landslide Science and Practice, pages 329–333. Springer Berlin Heidelberg, Berlin, Heidelberg. Cerca con Google

Degetto, M., Gregoretti, C., and Bernard, M. (2015). Comparative analysis of the differences between using LiDAR and contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites. Frontiers in Earth Science, 3(June):1–15. Cerca con Google

Di Lazzaro, M. (2008). Correlation between channel and hillslope lengths and its effects on the hydrologic response. Journal of Hydrology, 362(3-4):260–273. Cerca con Google

D’Odorico, P. and Rigon, R. (2003). Hillslope and channel contributions to the hydrologic response. Water Resources Research, 39(5). Cerca con Google

Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., and Ambenje, P. (2000). Observed variability and trends in extreme climatic events: a brief review. Bulletin of The American Meteorological Society, 81:417–425. Cerca con Google

Ebel, B. A., Loague, K., Dietrich, W. E., Montgomery, D. R., Torres, R., Anderson, S. P., and Giambelluca, T. W. (2007a). Near-surface hydrologic response for steep, unchanneled catchment near Coos Bay, Oregon: 1. Sprinkling experiments. American Journal of Science, 307(4):678–708. Cerca con Google

Ebel, B. A., Loague, K., Vanderkwaak, J. E., Dietrich, W. E., Montgomery, D. R., Torres, R., and Anderson, S. P. (2007b). Near-surface hydrologic response for steep, unchanneled catchment near Coos Bay, Oregon: 2. Physicsbased simulations. American Journal of Science, 307(4):709–748. Cerca con Google

Eli, R. N. and Lamont, S. J. (2010). Curve Numbers and Urban Runoff ModelingApplication Limitations. In Low Impact Development 2010, pages 405–418, Reston, VA. American Society of Civil Engineers. Cerca con Google

Floris, M., D’Alpaos, A., Squarzoni, C., Genevois, R., and Marani, M. (2010). Recent changes in rainfall characteristics and their influence on thresholds for debris flow triggering in the Dolomitic area of Cortina d’Ampezzo, northeastern Italian Alps. Natural Hazards and Earth System Science, 10(3):571– 580. Cerca con Google

Foglia, L., Hill, M. C., Mehl, S. W., and Burlando, P. (2009). Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resources Research, 45:1–18. Cerca con Google

Fowler, H. J. and Kilsby, C. G. (2003). Implications of changes in seasonal and annual extreme rainfall. Geophysical Research Letters, 30(13):1720. Cerca con Google

Frank, F., McArdell, B. W., Huggel, C., and Vieli, A. (2015). The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps. Natural Hazards and Earth System Sciences, 15(11):2569–2583. Cerca con Google

Frei, C. and Schar, C. (2001). Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region. Journal of Climate, 14(7):1568–1584. Cerca con Google

Garbrecht, J., Ogden, F. L., DeBarry, P. A., and Maidment, D. R. (2001). GIS and Distributed Watershed Models. I: Data Coverages and Sources. Journal of Hydrologic Engineering, 6(6):506–514. Cerca con Google

Genevois, R., Tecca, P. R., Berti, M., and Simoni, A. (2000). Pore pressure distribution in the initiation area of a granular debris flow. In Bromhead, E., Dixon, N., and Ibsen, M., editors, Proceedings of the 8th International Symposium on Landslides, pages 615–620, Cardiff, UK. Cerca con Google

Germann, U., Galli, G., Boscacci, M., and Bolliger, M. (2006). Radar precipitation measurement in a mountainous region. Quarterly Journal of the Royal Meteorological Society, 132(618):1669–1692. Cerca con Google

Godt, J. W., Baum, R. L., and Chleborad, A. F. (2006). Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms, 31(1):97–110. Cerca con Google

Godt, J. W. and McKenna, J. P. (2008). Numerical modeling of rainfall thresholds for shallow landsliding in the Seattle, Washington, area. In Baum, R. L., Godt, J. W., and Highland, L. M., editors, Landslides and Engineering Geology of the Seattle, Washington, Area Geological Society of America Reviews in Engineering Geology, volume XX, chapter 07, pages 121–135. Geological Society of America. Cerca con Google

Gregoretti, C., Adams, M. S., Hagen, K., Laigle, D., Li´ebault, F., Degetto, M., Andrich, A., and Tiranti, D. (2012). Forecast System Guidelines Debris Flow. Guidelines for the implementation of Forecast System against debris flow hazard (WP6). Projekt Alpine Space Paramount. Technical report, European Regional Development Fund, Bruxelles. Cerca con Google

Gregoretti, C. and Dalla Fontana, G. (2007). Rainfall threshold for the initiation of debris flows by channel-bed failure in the Dolomites. In Chen, C. and Major, J. J., editors, Debris-flow mitigation: mechanics, prediction and assessment, pages 11–21. Milpress. Cerca con Google

Gregoretti, C. and Dalla Fontana, G. (2008). The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff. Hydrological Processes, 22(13):2248–2263. Cerca con Google

Gregoretti, C., Degetto, M., and B oreggio, M. (2016a). GIS-based cell model for simulating debris flow runout on a fan. Journal of Hydrology, 534:326–340. Cerca con Google

Gregoretti, C., Degetto, M., Bernard, M., Crucil, G., Pimazzoni, A., De Vido, G., Berti, M., Simoni, A., and Lanzoni, S. (2016b). Runoff of small rocky headwater catchments: Field observations and hydrological modeling. Water Resources Research, 52(10):8138–8158. Cerca con Google

Gregoretti, C., Maltauro, A., and Lanzoni, S. (2010). Laboratory Experiments on the Failure of Coarse Homogeneous Sediment Natural Dams on a Sloping Bed. Journal of Hydraulic Engineering, 136(11):868–879. Cerca con Google

Grimaldi, S., Petroselli, A., and Nardi, F. (2012). A parsimonious geomorphological unit hydrograph for rainfallrunoff modelling in small ungauged basins. Hydrological Sciences Journal, 57(1):73–83. Cerca con Google

Grimaldi, S., Petroselli, A., and Romano, N. (2013). Green-Ampt CurveNumber mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrological Processes, 27(8):1253–1264. Cerca con Google

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98(3-4):239–267. Cerca con Google

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5(1):3–17. Cerca con Google

Han, X., Chen, J., Xu, P., and Zhan, J. (2017). A well-balanced numerical scheme for debris flow run-out prediction in Xiaojia Gully considering different hydrological designs. Landslides, (June):1–10. Cerca con Google

Hawkins, R. H., Ward, T. J., Woodward, D. E., and Van Mullem, J. A., editors (2008). Curve Number Hydrology. American Society of Civil Engineers, Reston, VA. Cerca con Google

Hawkins, R. H., Ward, T. J., Woodward, E., and Van Mullem, J. A. (2010). Continuing evolution of rainfall-runoff and the curve number precedent. 2nd Joint Federal Interagency Conference, pages 2–12. Cerca con Google

Horton, R. E. (1938). The interpretation and application of runoff plot experiments with reference to soil erosion problems. In Soil Science Society of America Proceedings, volume 3, pages 340–349. Cerca con Google

Hungr, O., Evans, S. G., Bovis, M. J., and Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7(3):221–238. Cerca con Google

Hungr, O., Leroueil, S., and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2):167–194. Cerca con Google

Hurlimann, M., Abanco, C., Moya, J., and Vilajosana, I. (2014). Results and experiences gathered at the Rebaixader debris-flow monitoring site, Central Pyrenees, Spain. Landslides, 11(6):939–953. Cerca con Google

Hurlimann, M., Copons, R., and Altimir, J. (2006). Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology, 78(34):359–372. Cerca con Google

Hurlimann, M., Rickenmann, D., and Graf, C. (2003). Field and monitoring data of debris-flow events in the Swiss Alps. Canadian Geotechnical Journal, 40(1):161–175. Cerca con Google

Hutchinson, J. N. (1968). Mass movement, pages 688–696. Encyclopedia of Earth Science. Springer Berlin Heidelberg, Dordrecht. Cerca con Google

Hutchinson, J. N. (1989). General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology: Proc 5th International Symposium on. International Journal of Rock Mechanics and Mining . . . . Cerca con Google

Innes, J. L. (1983). Debris flows. Progress in Physical Geography, 7(4):469–501. Cerca con Google

Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3):245. Cerca con Google

Iverson, R. M. (2003). The debris-flow rheology myth. 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pages 303–314. Cerca con Google

Iverson, R. M. (2005). Debris-flow mechanics, pages 105–134. Springer Berlin Heidelberg, Berlin, Heidelberg. Cerca con Google

Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., and Griswold, J. P. (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2):116–121. Cerca con Google

Iverson, R. M. and Vallance, J. W. (2001). New views of granular mass flows. Geology, 29(2):115. Cerca con Google

Jakob, M. (2005). A size classification for debris flows. Engineering Geology, 79(3-4):151–161. Cerca con Google

Jakob, M. and Hungr, O. (2005). Debris-flow Hazards and Related Phenomena. Springer Praxis Books. Springer Berlin Heidelberg, Berlin, Heidelberg. Cerca con Google

Johnson, A. and Rodine, J. (1984). Debris flows. Slope instability, pages 257– 361. Cerca con Google

Julien, P. Y. and Paris, A. (2010). Mean Velocity of Mudflows and Debris Flows. Journal of Hydraulic Engineering, 136(9):676–679. Cerca con Google

Kean, J. W., McCoy, S. W., Tucker, G. E., Staley, D. M., and Coe, J. A. (2013). Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequency. Journal of Geophysical Research: Earth Surface, 118(4):2190–2207. Cerca con Google

Kean, J. W., Staley, D. M., and Cannon, S. H. (2011). In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. Journal of Geophysical Research, 116(F4):F04019. Cerca con Google

Kean, J. W., Staley, D. M., Leeper, R. J., Schmidt, K. M., and Gartner, J. E. (2012). A low-cost method to measure the timing of postfire flash floods and debris flows relative to rainfall. Water Resources Research, 48(5):n/a–n/a. Cerca con Google

Koren, V., Finnerty, B., Schaake, J., Smith, M., Seo, D.-J., and Duan, Q.Y. (1999). Scale dependencies of hydrologic models to spatial variability of precipitation. Journal of Hydrology, 217(3-4):285–302. Cerca con Google

Lange, J., Greenbaum, N., Husary, S., Ghanem, M., Leibundgut, C., and Schick, A. P. (2003). Runoff generation from successive simulated rainfalls on a rocky, semi-arid, Mediterranean hillslope. Hydrological Processes, 17(2):279–296. Cerca con Google

Lanzoni, S., Gregoretti, C., and Stancanelli, L. M. (2017). Coarse-grained debris flow dynamics on erodible beds. Journal of Geophysical Research: Earth Surface, 122(3):592–614. Cerca con Google

Lauterjung, H. and Schmidt, G. (1989). Planning of Water intake structures for irrigation or hydropower. GTZ-Postharvest Project. Cerca con Google

Leopold, L. B. and Maddock, T. J. (1953). The Hydraulic Geomtry of Stream Channels and Some Physiographic Implications. Geological Survey Professional Paper 252, page 57. Cerca con Google

Li, X. Y., Contreras, S., Sole-Benet, A., Cant´on, Y., Domingo, F., Lazaro, R., Lin, H., Van Wesemael, B., and Puigdefabregas, J. (2011). Controls of infiltration-runoff processes in Mediterranean karst rangelands in SE Spain. Catena, 86(2):98–109. Cerca con Google

Lin, X. (1999). Flash floods in arid and semi-arid zones. Technical Report 23, UNESCO, Paris. Cerca con Google

Liu, Y. and Gupta, H. V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Cerca con Google

Mantovani, F., Pasuto, A., and Silvano, S. (2002). Definition of the elements at risk and mitigation measures of the Cancia debris flow (Dolomites, Northeastern Italy). In J. L. van Rooy and C. A. Jermy, editor, Engineering Geology for Developing Countries 9th Congress of the International Association for Engineering Geology and the Environment, number 0, pages 1201–1209, Durban, South Africa. Cerca con Google

Marchi, L. and D’Agostino, V. (2004). Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surface Processes and Landforms, 29(2):207– 220. Cerca con Google

Marchi, L., Dalla Fontana, G., Cavalli, M., and Tagliavini, F. (2008). Rocky Headwaters in the Dolomites, Italy: Field Observations and Topographic Analysis. Artic, Antartic, and Alpine Research, 40(4):685–694. Cerca con Google

Marra, F., Nikolopoulos, E. I., Creutin, J.-D., and Borga, M. (2014). Radar rainfall estimation for the identification of debris-flow occurrence thresholds. Journal of Hydrology, 519:1607–1619. Cerca con Google

Masih, I., Maskey, S., Uhlenbrook, S., and Smakhtin, V. (2011). Assessing the Impact of Areal Precipitation Input on Streamflow Simulations Using the SWAT Model1. JAWRA Journal of the American Water Resources Association, 47(1):179–195. Cerca con Google

McCoy, S. W., Kean, J. W., Coe, J. A., Staley, D. M., Wasklewicz, T. a., and Tucker, G. E. (2010). Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology, 38(8):735–738. Cerca con Google

McDonnell, J. J. and Beven, K. (2014). Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50(6):5342–5350. Cerca con Google

McGuire, L. A., Rengers, F. K., Kean, J. W., and Staley, D. M. (2017). Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame? Geophysical Research Letters, 44(14):7310–7319. Cerca con Google

Montanari, A. and Brath, A. (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40(1). Cerca con Google

Montanari, A. and Toth, E. (2007). Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? Water Resources Research, 43(5). Cerca con Google

Montgomery, D. R. and Foufoula-Georgiou, E. (1993). Channel network source representation using digital elevation models. Water Resources Research, 29(12):3925–3934. Cerca con Google

Moody, J. A., Martin, D. A., Haire, S. L., and Kinner, D. A. (2008). Linking runoff response to burn severity after a wildfire. Hydrological Processes, 22(13):2063–2074. Cerca con Google

Moser, M. and Hohensinn, F. (1983). Geotechnical aspects of soil slips in Alpine regions. Engineering Geology, 19(3):185–211. Cerca con Google

Nikolopoulos, E. I., Destro, E., Maggioni, V., Marra, F., and Borga, M. (2017). Satellite Rainfall Estimates for Debris Flow Prediction: An Evaluation Based on Rainfall AccumulationDuration Thresholds. Journal of Hydrometeorology, 18(8):2207–2214. Cerca con Google

Onda, Y., Tsujimura, M., Fujihara, J.-i., and Ito, J. (2006). Runoff generation mechanisms in high-relief mountainous watersheds with different underlying geology. Journal of Hydrology, 331(3-4):659–673. Cerca con Google

Orlandini, S. and Lamberti, A. (2000). Effect of Wind on Precipitation Intercepted by Steep Mountain Slopes. Journal of Hydrologic Engineering, 5(4):346–354. Cerca con Google

Orlandini, S. and Morlini, I. (2000). Artificial neural network estimation of rainfall intensity from radar observations. Journal of Geophysical Research: Atmospheres, 105(D20):24849–24861. Cerca con Google

Orlandini, S. and Rosso, R. (1996). Diffusion Wave Modeling of Distributed Catchment Dynamics. Journal of Hydrologic Engineering, 1(3):103–113. Cerca con Google

Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., and Guzzetti, F. (2017). Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology, 290(January):39–57. Cerca con Google

Ponce, V. M. (1991). Kinematic Wave Controversy. Journal of Hydraulic Engineering, 117(4):511–525. Cerca con Google

Pudasaini, S. P. (2012). A general two-phase debris flow model. Journal of Geophysical Research, 117(F3):F03010. Cerca con Google

Quinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1):59–79. Cerca con Google

Reid, M. E., LaHusen, R. G., and Iverson, R. M. (1997). Debris-Flow Initiation Experiments Using Diverse Hydrologic Triggers. Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pages 1–11. Cerca con Google

Remaˆıtre, A., Malet, J. P., Maquaire, O., Ancey, C., and Locat, J. (2005). Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin. Earth Surface Processes and Landforms, 30(4):479–488. Cerca con Google

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and Hobley, D. E. J. (2016). Model simulations of flood and debris flow timing in steep catchments after wildfire. Water Resources Research, 52(8):6041–6061. Cerca con Google

Rickenmann, D. (1999). Empirical relationships for debris flows. Natural Hazards, 19(1):47–77. Cerca con Google

Rickenmann, D., Laigle, D., McArdell, B. W., and Hubl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10(2):241–264. Cerca con Google

Rickenmann, D. and Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3):175–189. Cerca con Google

Rinaldo, A., Marani, A., and Rigon, R. (1991). Geomorphological dispersion. Water Resources Research, 27(4):513–525. Cerca con Google

Robinson, J. S., Sivapalan, M., and Snell, J. D. (1995). On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments. Water Resources Research, 31(12):3089– 3101. Cerca con Google

Rodriguez-Iturbe, I. and Valdes, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15(6):1409–1420. Cerca con Google

Saco, P. M. and Kumar, P. (2002a). Kinematic dispersion in stream networks 1. Coupling hydraulic and network geometry. Water Resources Research, 38(11):26–1–26–14. Cerca con Google

Saco, P. M. and Kumar, P. (2002b). Kinematic dispersion in stream networks 2. Scale issues and self-similar network organization. Water Resources Research, 38(11):27–1–27–15. Cerca con Google

Saco, P. M. and Kumar, P. (2004). Kinematic dispersion effects of hillslope velocities. Water Resources Research, 40(1). Cerca con Google

Salciarini, D., Tamagnini, C., Conversini, P., and Rapinesi, S. (2012). Spatially distributed rainfall thresholds for the initiation of shallow landslides. Natural Hazards, 61:229–245. Cerca con Google

Sattler, K., Keiler, M., Zischg, A., and Schrott, L. (2011). On the Connection between Debris Flow Activity and Permafrost Degradation: A Case Study from the Schnalstal, South Tyrolean Alps, Italy. Permafrost and Periglacial Processes, 22(3):254–265. Cerca con Google

Schaefer, J. T. (1990). The Critical Success Index as an Indicator of Warning Skill. Weather and Forecasting, 5(4):570–575. Cerca con Google

Schulz, K., Beven, K., and Huwe, B. (1999). Equifinality and the problem of robust calibration in nitrogen budget simulations. Soil Science Society of America Journal, 63(6):1934–1941. Cerca con Google

Seibert, J. and Beven, K. J. (2009). Gauging the ungauged basin: how many discharge measurements are needed? Hydrology and Earth System Sciences Discussions, 6(2):2275–2299. Cerca con Google

Shannon, J., Richardson, R., and Thornes, J. (2002). Modelling event-based uxes in Ephemeral streams. In Bull, J. and Kirkby, M. J., editors, Dryland Rivers: Hydrology and Geomorphology, pages 129–172. John Wiley, Chichester, UK. Cerca con Google

Sheridan, G. J., Lane, P. N., and Noske, P. J. (2007). Quantification of hillslope runoff and erosion processes before and after wildfire in a wet Eucalyptus forest. Journal of Hydrology, 343(1-2):12–28. Cerca con Google

Sherman, L. R. K. (1932). The relation of hydrographs of runoff to size and character of drainage-basins. Eos, Transactions American Geophysical Union, 13(1):332–339. Cerca con Google

Sillmann, J. and Roeckner, E. (2008). Indices for extreme events in projections of anthropogenic climate change. Climatic Change, 86(1-2):83–104. Cerca con Google

Sivapalan, M. (1993). Linking hydrologic parameterizations across a range of scales: hillslope to catchment to region. In Exchange processes at the land surface for a range of space and time scales. Proc. international symposium, pages 115–123, Yokohama. IAHS; Publication, 212. Cerca con Google

Soil Conservation Service (1972). National Engineering Handbook (NEH4). Technical report, U.S. Department of Agriculture, Washington DC. Cerca con Google

Staley, D. M., Kean, J. W., Cannon, S. H., Schmidt, K. M., and Laber, J. L. (2013). Objective definition of rainfall intensity-duration thresholds for the initiation of post-fire debris flows in southern California. Landslides, 10(5):547–562. Cerca con Google

Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M. (2017). Prediction of spatially explicit rainfall intensityduration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278:149–162. Cerca con Google

Takahashi, T. (2007). Debris Flow: Mechanics, Prediction and Countermeasures. CRC Press. Cerca con Google

Takahashi, T. (2009). A Review of Japanese Debris Flow Research. International Journal of Erosion Control Engineering, 2(1):1–14. Cerca con Google

Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2):309–319. Cerca con Google

Taylor, J. R. (1997). Introduction to Error Analysis the Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, CA, USA, 2nd edition. Cerca con Google

Tecca, P. R., Galgaro, A., Genevois, R., and Deganutti, A. M. (2003). Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy). Hydrological Processes, 17(9):1771–1784. Cerca con Google

Tecca, P. R. and Genevois, R. (2009). Field observations of the June 30, 2001 debris flow at Acquabona (Dolomites, Italy). Landslides, 6(1):39–45. Cerca con Google

Theule, J. I., Liebault, F., Loye, a., Laigle, D., and Jaboyedoff, M. (2012). Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Natural Hazards and Earth System Science, 12(3):731– 749. Cerca con Google

Tiranti, D. and Deangeli, C. (2015). Modeling of debris flow depositional patterns according to the catchment and sediment source area characteristics. Frontiers in Earth Science, 3(March):1–14. Cerca con Google

Turner, A. K. and Schuster, R. L. (1996). Landslides: investigation and mitigation. Number 247. National Academy Press, Washinton. Cerca con Google

Uchida, T., Tromp-van Meerveld, I., and McDonnell, J. J. (2005). The role of lateral pipe flow in hillslope runoff response: an intercomparison of non-linear hillslope response. Journal of Hydrology, 311(1-4):117–133. Cerca con Google

Underwood, S. J., Schultz, M. D., Berti, M., Gregoretti, C., Simoni, A., Mote, T. L., and Saylor, A. M. (2016). Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy. Natural Hazards and Earth System Sciences, 16(2):509–528. Cerca con Google

Varnes, D. J. (1978). Slope movement types and processes. In Schuster, R. L. and Krizek, R. J., editors, Landslides -Analysis and Control Transportation Research Board Special Report, number 176, chapter 2, pages 11–33. National Academy of Science, Washington DC. Cerca con Google

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V., and Sorooshian, S. (2001). A framework for development and application of hydrological models. Hydrology and Earth System Sciences, 5(1):13–26. Cerca con Google

Wagener, T. and Montanari, A. (2011). Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research, 47(6):W06301. Cerca con Google

Wei, Z., Shang, Y., Zhao, Y., Pan, P., and Jiang, Y. (2017). Rainfall threshold for initiation of channelized debris flows in a small catchment based on in-site measurement. Engineering Geology, 217:23–34. Cerca con Google

Wilson, E. (1990). Engineering hydrology. MacMillan, London. Cerca con Google

Wooding, R. (1965). A hydraulic model for the catchment-stream problem: II. Numerical solutions. Journal of Hydrology, 3(3-4):268–282. Cerca con Google

Woolhiser, D. A. and Liggett, J. A. (1967). Unsteady, one-dimensional flow over a plane-The rising hydrograph. Water Resources Research, 3(3):753–771. Cerca con Google

Zoccatelli, D., Borga, M., Viglione, A., Chirico, G. B., and Bloschl, G. (2011). Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 15(12):3767–3783. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record