Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Prando, Valentina (2018) Neuroeffector coupling in the heart: determinants of function and survival of cardiac sympathetic neurons. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 31 October 2020 for intellectual property related reasons.
Visibile to: nobody


Abstract (english)

Rationale: The sympathetic branch of the autonomic nervous system (ANS) operates continuous control on the function and structure of cardiac cells (Bers et al., 2009). In basal conditions, neuronal input to sino-atrial node (SAN) cardiomyocytes (CM) is responsible for the fine regulation of heart rate (HR), and in parallel, it influences the balance between protein synthesis and degradation in working CMs, thus determining the resting cellular trophism (Zaglia et al., 2013). It is also commonly appreciated that sympathetic neurons (SNs) are rapidly activated upon strenuous exercise or emotional stresses characterizing the so-called ‘fight-or-flight’ response, resulting in the recruitment of maximal cardiac performance through positive inotropic and chronotropic effects (Li et al., 2000). While these general mechanisms of regulation of heart physiology are commonly recognized and have been thoroughly investigated in the last decades in both normal and disease conditions (Franzoso et al., 2016), the relationship between the fine anatomy of the myocardial neuronal network and its function, as well as the biophysics of the neuro-effector communication remain largely uncovered.
Purposes: In our initial studies, we used various imaging methods to investigate the morphological aspects of myocardial innervation. Our results demonstrate that the heart of most mammals, including humans, is highly innervated by SN processes, which distribute throughout the different heart regions with a conserved, specie-specific pattern, and display regular varicosities (i.e. active neurotransmitter release sites), which appear in close contact with the target CM membranes. Furthermore, ultrastructural analysis showed that such contacts have features similar to those described for the well-known neuromuscular junction (NMJ), which, remarkably, include the accumulation of mitochondria in the "presynaptic" varicosities (Slater, 2003; Levitan et al., 2015).
This data prompted us to study:
i) the biophysics of neuro-cardiac communication, which was addressed using both in vitro and in vivo models, with the aim to determine the role of direct intercellular contact in the dynamics of neuro-effector coupling;
ii) whether dysfunction in SN mitochondria, as addressed in a newly developed murine model of Optic Atrophy Factor-1 (Opa1) haploinsufficiency (TOH-Opa1+/-), may affect the neurogenic control of the heart.
Results: i) Dynamics of neuro-effector coupling at ‘cardiac sympathetic’ synapses.
The aim of this study has been to investigated the dynamics of SN/cardiomyocyte intercellular signaling communication, both by FRET-based imaging of cAMP in co-cultures, as a readout of cardiac β-AR activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2. We demonstrate that SNs and cardiomyocytes interact at specific sites both in the human and rodent heart, and in co-cultures. Accordingly, neuronal activation elicited intracellular cAMP increases only in directly contacted myocytes and cell-cell coupling utilized a junctional extracellular signaling domain with elevated noradrenaline concentration. In the living mouse, optogenetic activation of cardiac SNs, innervating the sino-atrial node, resulted in the instantaneous chronotropic effect, which shortened the heartbeat interval with single beat precision. The dose of the β-blocker propranolol inhibiting the effect of photoactivation was much higher than that blocking circulating catecholamines, thus indicating that sympathetic neurotransmission in the heart occurs at locally elevated noradrenaline concentration. Our in vitro and in vivo data suggest that the control of cardiac function by SNs, thanks to the establishment of a specific intercellular junctional-site, relies on ‘quasi-synaptic' intercellular communication. The closely juxtaposed membranes of neurons and cardiomyocytes outline an extracellular signaling domain allowing activation of the β-ARs localized within the junctional space high with [NE]. The very small volume of such domain allows a single neuronal action potential to release a [NE] sufficient to trigger detectable cAMP increase in the coupled cardiomyocytes.
ii) Role of the mitochondrial protein Opa1 in the regulation of the cardiac SN physiology.
In the study of neuro-cardiac interactions described above, we were intrigued by the observation that mitochondria accumulated in SN varicosities, and specifically concentrated in the subspace of the presynaptic membrane. Neuronal mitochondria are fundamental for several cellular functions, including neuro-exocytosis, neurotransmitter reuptake and maintenance of neuronal process trophism, but their specific role in cardiac SNs is largely unexplored.
We thus sought to determine whether dysfunctional mitochondria would compromise the neurogenic control of the heart. To this aim, we exploited a murine model generated in our laboratory, characterized by the haploinsufficiency of Opa1 gene (Hoppins et al., 2007), selectively in SNs. Opa1 is a key protein implicated in mitochondrial dynamics, and its deficiency causes an inherited neurodegenerative disease characterized by retinal ganglion cell death known as Autosomal Dominant Optic Atrophy (ADOA), leading to visual loss. Interestingly, ADOA patients also display peripheral neuropathy and cardiac rhythm abnormalities (Spiegel et al., 2016) suggesting the hypothesis that dysfunctional mitochondria may affect not only central but also peripheral neurons, and remarkably, the autonomic neurons innervating the heart (Yu-Wai Man et al., 2016). To address this hypothesis, we focused on cardiac sympathetic innervation in both adult and aged Opa1 haploinsufficient mice (TOH-Opa1+/-) mice, which was studied using morphological and functional assays.
Our data demonstrated that Opa1 haploinsufficiency leads to a decrease in cSN density, which starts in the adulthood but it is also present during ageing. This is accompanied to alterations in cSN distribution patterning and morphology. Cardiac dysinnervation in TOH-Opa1+/- mice results in a significant decrease in heart rate variability and increased propensity to arrhythmias developments. Consistently, we detected decreased SN density in skin biopsies from ADOA patients, which progresses during ageing.
Thus we can conclude that the Opa1 is essential for cSN homeostasis and indicate that its haploinsufficiency leads to cSN degeneration. The cSN dysinnervation causes the dysfunction of the extrinsic control of cardiac rhythm. The mechanisms responsible for Opa1 haploinsufficiency-dependent cSN degeneration will be assessed in vitro, with a focus on the NGF signalling. To translate our findings to the human pathology, we will analyse SN phenotype in skin biopsies from ADOA patients.
Conclusions: Collectively, the data from these two projects, pose the bases for future studies aimed at defining whether a primary alteration in the SN-CM contact contribute to the pathogenesis of several cardiovascular disorders and at clarifying the molecular mechanisms whereby defective mitochondrial dynamics causes SN degeneration.

Abstract (italian)

Razionale: ll sistema nervoso simpatico, componente del sistema nervoso autonomo (ANS), opera un continuo controllo della funzione e sulla struttura delle cellule cardiache. In condizioni basali, l’input neuronale ai cardiomiociti (CMs) del nodo seno-atriale (SAN) è responsabile della regolazione della frequenza cardiaca (HR) e, in parallelo, influenza l'equilibrio tra la sintesi e la degradazione proteica nei CM di lavoro, determinando così il trofismo cellulare (Zaglia et al., 2013). È anche comunemente noto che i neuroni simpatici (SNs) si attivano rapidamente dopo l’ esercizio fisico o dopo stress emozionali che caratterizzano la cosiddetta risposta "fight-or-flight", con conseguente aumento delle prestazioni cardiache massime attraverso effetti inotropici e cronotropici positivi (Li et al., 2000). Mentre questi meccanismi generali di regolazione della fisiologia del cuore sono comunemente riconosciuti e sono stati accuratamente studiati negli ultimi decenni sia nelle condizioni normali che in quelle patologiche (Franzoso et al., 2016), il rapporto tra la fine organizzazione della rete neuronale nel miocardio e la sua funzione, così come la biofisica della comunicazione neuro-cardiaca rimane in gran parte non nota.
Scopo della tesi: Nei nostri studi iniziali, abbiamo utilizzato diversi metodi di imaging per indagare gli aspetti morfologici dell'innervazione del miocardio. I nostri risultati dimostrano che il cuore della maggior parte dei mammiferi, compresi gli esseri umani, è altamente innervato dalle fibre simpatiche, che si distribuiscono nelle varie regioni del cuore con un pattern ben conservato, specie-specifico e mostrano varicosità (ovvero siti di rilascio di neurotrasmettitori attivi) regolari a stretto contatto con le membrane dei CMs target. Inoltre, l'analisi ultrastrutturale ha dimostrato che tali contatti hanno caratteristiche simili a quelle descritte per la nota giunzione neuromuscolare (NMJ), che comprendono tra le altre, l'accumulo di mitocondri nelle varicosità "presinaptiche" (Slater, 2003; Levitan et al., 2015).
Questi dati ci hanno spinto a studiare:
i) la biofisica della comunicazione neurocardiaca, che è stata affrontata con modelli sia in vitro che in vivo, al fine di determinare il ruolo del contatto diretto intercellulare nelle dinamiche di accoppiamento neuro-cardiaco;
ii) se la disfunzione nei mitocondri che si trovano nei SNs, valutata in un modello murino recentemente sviluppato nel laboratorio del mio PhD aploinsufficiente per la proteina Opa1 (Optic Atrophy Factor-1) (TOH-Opa1+/-), possa influenzare il controllo neurogenico del cuore.
Risultati: i) Dinamiche dell'accoppiamento neuro-cardiaco a livello della “sinapsi cardiaca".
Lo scopo di questo studio è stato quello di indagare le dinamiche della comunicazione tra SN/cardiomiociti, sia mediante l'imaging di cAMP in tempo reale nei CMs in co-cultura che esprimono il sensore per la FRET Epac1, per analizzare le risposte dei CMs dopo l'attivazione dei SNs, e in vivo, utilizzando l’optogenetica in topi transgenici con espressione specifica di Channelrhodopsin-2 nei SNs. Abbiamo quindi dimostrato che i SN ed i cardiomiociti interagiscono in siti specifici sia nel cuore umano che nei roditori, sia in vitro nelle co-culture. In particolare, la depolarizzazione dei SNs ha causato un aumento del [cAMP] intracellulare che è stato rilevato solo nei CMs innervati, quindi la comunicazione tra CM e SN avviene in un dominio di segnalazione extracellulare con un’elevata concentrazione di noradrenalina ([NE]). Nel topo in vivo, l'attivazione, tramite l’optogenetica, dei SN cardiaci, che innervano il nodo seno-atriale, ha prodotto un istantaneo aumento della frequenza cardiaca, che ha accorciato l'intervallo tra due battiti con una precisione a singolo battito. La dose del β-bloccante propranololo, utilizzata per inibire l'effetto della fotoattivazione, era molto più alta di quella in grado di bloccare le catecolamine circolanti, indicando così che la neurotrasmissione simpatica nel cuore si verifica a concentrazioni localmente elevate di noradrenalina. I nostri dati in vitro e in vivo suggeriscono che il controllo della funzione cardiaca da parte dei SN, grazie alla creazione di uno specifico sito giunzionale intercellulare, si basa sulla comunicazione intercellulare "quasi-sinaptica". Le membrane strettamente affiancate dei neuroni e cardiomiociti delineano un dominio di segnalazione extracellulare che consente l'attivazione dei β-AR localizzati all'interno dello spazio giunzionale con elevate [NE]. Il volume ristretto di tale dominio consente a un singolo potenziale d'azione neuronale di rilasciare una [NE] sufficiente a innescare l'aumento di cAMP rilevabile nei cardiomiociti accoppiati.
ii) Ruolo della proteina mitocondriale Opa1 nella regolazione della fisiologia dei neuroni simpatici cardiaci.
Nello studio delle interazioni neuro-cardiache descritte in precedenza, siamo stati intrigati dall'osservazione che i mitocondri si accumulavano nelle varicosità dei SNs e specificamente si concentravano nello spazio attorno alla membrana presinaptica. I mitocondri nei neuroni sono fondamentali per molte funzioni cellulari, tra cui la neuro-esocitosi, il recupero del neurotrasmettitore ed il mantenimento del trofismo del processo neuronale, ma il loro ruolo specifico nei SN cardiaci è in gran parte inesplorato. Abbiamo quindi cercato di determinare se mitocondri disfunzionali compromettessero il controllo neurogenico del cuore. A questo scopo, abbiamo sfruttato un modello murino generato nel nostro laboratorio, caratterizzato dall’ aploinsufficienza del gene che codifica per la proteina Optic Atrophy Factor-1 (Opa1) (Hoppins et al., 2007), selettivamente nei SNs. Opa1 è una proteina chiave implicata nelle dinamiche mitocondriali e la sua carenza causa una malattia neurodegenerativa ereditaria caratterizzata dalla morte delle cellule ganglionari retiniche, nota come Atrofia ottica autosomica dominante (ADOA), con conseguente perdita visiva. È interessante notare che i pazienti affetti da ADOA presentano anche neuropatia periferica e anomalie del ritmo cardiaco (Spiegel et al., 2016), suggerendo l'ipotesi che i mitocondri disfunzionali possono influenzare non solo i neuroni centrali ma anche periferici e, in modo notevole, i neuroni autonomici che innervano il cuore (Yu-Wai Man et al., 2016). Per indagare questa ipotesi, ci siamo concentrati sull'innervazione simpatica cardiaca sia nei topi aploinsufficienti per Opa1 (TOH-Opa1+/-) adulti che vecchi, utilizzando saggi morfologici e funzionali. I nostri dati hanno dimostrato che l'aploinsufficienza di Opa1 porta ad una diminuzione della densità di SN cardiaci, che inizia nell'età adulta ma è anche presente durante l'invecchiamento. Questo è accompagnato da alterazioni nella morfologia e della distribuzione dei SN. La disinnervazione cardiaca nei topi TOH-Opa1+/- determina una significativa riduzione della variabilità della frequenza cardiaca e una maggiore propensione allo sviluppo di aritmie. Coerentemente, abbiamo rilevato una diminuzione della densità dei SN nelle biopsie cutanee ottenute da pazienti con ADOA, che progredisce durante l'invecchiamento. Quindi possiamo concludere che Opa1 è essenziale per l'omeostasi dei SN e indica che la sua aploinsufficienza porta alla loro degenerazione. Tale disinnervazione inoltre causa la disfunzione del controllo estrinseco del ritmo cardiaco. I meccanismi responsabili della degenerazione dei SN aploinsufficienti per Opa1 verranno valutati in vitro, con un focus sulla segnalazione mediata dall’ NGF. Per tradurre i nostri risultati nella patologia umana, analizzeremo il fenotipo dei SN nelle biopsie cutanee ottenute dai pazienti con ADOA.
Conclusioni: Complessivamente, i dati di questi due progetti forniscono le basi per studi futuri finalizzati a definire se un' alterazione primaria nel contatto tra SN-CM contribuisca alla patogenesi di diversi disturbi cardiovascolari e al chiarimento dei meccanismi molecolari in cui un difetto nelle dinamiche mitocondriali possa provocare la degenerazione dei neuroni simpatici che innervano il cuore.

EPrint type:Ph.D. thesis
Tutor:Mongillo, Marco
Supervisor:Zaglia , Tania
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE BIOMEDICHE SPERIMENTALI
Data di deposito della tesi:12 January 2018
Anno di Pubblicazione:2018
Key Words:Sympathetic neurons; Opa1; mitochondria; neuro-cardiac junction
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/46 Scienze tecniche di medicina di laboratorio
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche
Codice ID:10690
Depositato il:14 Nov 2018 13:22
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abilez O.J., Wong J., Prakash R., Deisseroth K., Zarins C.K., Kuhl E. Multiscale computational models for optogenetic control of cardiac function. Biophys J. 2011; 101:1326-1334. Cerca con Google

2. Akashi Y.J., Nef H.M., Lyon A.R. Epidemiology and pathophysiology of Takotsubo syndrome, Nature reviews, Cardiology. 2015;12:387–397. Cerca con Google

3. Akepati V.R., Müller E.C., Otto A., Strauss H.M., Portwich M., Alexander C.J. Characterization of OPA1 isoforms isolated from mouse tissues. Neurochem.2008;106(1):372-83. Cerca con Google

4. Alexander C., Votruba M., Pesch U.E., Thiselton D.L., Mayer S., Moore A., Rodriguez M., Kellner U., Leo-Kottler B., Auburger G., Bhattacharya S.S. and Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet.2000;26:211-215. Cerca con Google

5. Allen M.D. and Zhang J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun. 2006;348:716-721. Cerca con Google

6. Amati-Bonneau P., Milea D., Bonneau D., Chevrollier A.,Ferré M., Guillet V., Gueguen N., Loiseau D., Pou de Crescenzo M-A., Verny C., Procaccio V., Lenaers G. and Reynier P. OPA1- associated disorders: Phenotypes and pathophysiology. The international Journal of Biochemistry and Cell Biology. 2009;41:1855-1865. Cerca con Google

7. Anand R., Wai T., Baker M.J., Kladt N., Schauss A.C., Rugarli E., Langer T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014;204:919-929. Cerca con Google

8. Anderson M.J. and Cohen M.W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol.1977;268(3):757-73. Cerca con Google

9. Angeli S., Befera N., Peyrat J-M., Calabrese E., Johnson G.A. and Constantinides C. A high-resolution cardiovascular magnetic resonance diffusion tensor map from ex-vivo C57BL/6 murine hearts. J Cardiovasc Magn Reson.2014;16:77. Cerca con Google

10. Anversa P., Ricci R. and Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol.1986;7:1140-1149. Cerca con Google

11. Antzelevitch C., Sicouri S., Litovsky S.H., Lukas A., Krishnan S.C., Di Diego J.M., Gintant G.A. and Liu D.W. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res.1991;69:1427-1449. Cerca con Google

12. Arrenberg A.B., Stainier D.Y., Baie, H. and Huisken J. Optogenetic control of cardiac function. Science.2010;330:971-974. Cerca con Google

13. Baehr L. M., Tunzi M. and Bodine, S. C. Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol.2014;5:69. Cerca con Google

14. Baker A.J. Adrenergic signaling in heart failure: a balance of toxic and protective effects. Arch. Eur. J. Physiol. 2014;466:1139–1150. Cerca con Google

15. Baluk P. and Fujiwara T. Direct visualization by scanning electron microscopy of the preganglionic innervation and synapses on the true surfaces of neurons in the frog heart. Neurosci Lett. 1984;51:265–270. Cerca con Google

16. Bandyopadhyay U., Sridhar S., Kaushik S., Kiffin R. and Cuervo A. M. Identification of regulators of chaperone-mediated autophagy. Mol Cell.2010;39:535-547. Cerca con Google

17. Banghart M., Borges K., Isacoff E., Trauner D. and Kramer R.H. Light-activated ion channels for remote control of neuronal firing. Nat Neurosci.2004;7:1381-1386. Cerca con Google

18. Baskin K.K., Rodriguez M.R., Kansara S., Chen W., Carranza S., Frazier O.H., Glass D.J., Taegtmeyer H. MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. J Mol Cell Cardiol.2014; 72:168-176. Cerca con Google

19. Basser P.J., Mattiello J. and LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259-267. Cerca con Google

20. Bear M.F., Connors B.W. and Paradiso M.A. Chemicali control of the brain and behaviour. In: Neuroscience, Exploring the brain, 3rd ed. Philadelphia, Penn: Lippincott Williams and Wilkins, 2007; ch. 15. Cerca con Google

21. Becker A.E. and De Wit A.P. Mitral valve apparatus. A spectrum of normality relevant to mitral valve prolapse. Br Heart J.1979;42:680-689. Cerca con Google

22. Belenguer P., Pellegrini L. The dynamin GTPase OPA1: More than mitochondria?. Biochimica at Biophysica Acta.2013;1833:176-183. Cerca con Google

23. Bennett M.R., Gibson W.G. and Robinson J. Probabilistic secretion of quanta: spontaneous release at active zones of varicosities, boutons, and endplates. Biophysical journal.1995;69;42-56. Cerca con Google

24. Bernardi P. and Azzone G.F. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem.1981;256(14):7187-92. Cerca con Google

25. Bernstein D., Faiardo G., Zhao M, Urashima T, Powers J, Berry G, Kobilka BK. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol.2005;289:H2441-2449. Cerca con Google

26. Bers D.M. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 2008;70:23-49. Cerca con Google

27. Bers D.M. and Despa S. Na/K-ATPase--an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc Med.2009;19:111. Cerca con Google

28. Bertholet A.M., Millet A.M.E., Guillermin O., Daloyan M., Davezac N., Miquel M.C. and Belenguer P. OPA1 loss of function affects in vitro neuronal maturation. Brain.2013;136:1518-1533. Cerca con Google

29. Bierl M.A., Isaacson L.G. Increased NGF proforms in aged sympathetic neurons and their targets, Neurobiol. Aging.2007;28:122–134. Cerca con Google

30. Bodine S.C. Latres E., Baumhueter S., Lai V.K., Nunez L., Clarke B.A., Poueymirou W.T., Panaro F.J., Na E., Dharmarajan K., Pan Z.Q., Valenzuela D.M., DeChiara T.M., Stitt T.N., Yancopoulos G.D., Glass D.J. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704-1708. Cerca con Google

31. Boyden E.S., Zhang F., Bamberg E., Nagel G. and Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience.2005;8:1263-1268. Cerca con Google

32. Boyle P.M., Williams J.C., Ambrosi C.M., Entcheva E. and Trayanova N.A. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat Commun. 2013;4:2370. Cerca con Google

33. Boyle P.M., Karathanos T.V., Entcheva E. and Trayanova N.A. Computational modeling of cardiac optogenetics: Methodology overview & review of findings from simulations. Comput Biol Med. 2015; 65:200-208. Cerca con Google

34. Brodin L., Bakeeva L. and Shupliakov O. Presynaptic mitochondria and the temporal pattern of neurotransmitter release. The royal Society.1999;354:365-372. Cerca con Google

35. Bruegmann T., Malan D., Hesse M., Beiert T., Fuegemann C.J., Fleischmann B.K., Sasse P. Optogenetic control of heart muscle in vitro and in vivo. Nat Methods. 2010;7:897-900. Cerca con Google

36. Brutsaert D.L. The endocardium. Annu Rev Physiol. 1989;51:263-273. Cerca con Google

37. Bucciantini, M. Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature.2002;416:507-511. Cerca con Google

38. Busskamp V., Picaud S., Sahel J.A., Roska B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 2012; 19(2):169-75. Cerca con Google

39. Carnio S., LoVerso F., Baraibar M.A., Longa E.,. Khan M.M, Maffei M., Reischl M., Canepari M., Loefler S., Kern H., Blaauw B., Friguet B., Bottinelli R., Rudolf R., Sandri M. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014;8:1509–1521. Cerca con Google

40. Carrier L., Schlossarek S., Willis M. S. and Eschenhagen T. The ubiquitinproteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res. 2010;85:330-338. Cerca con Google

41. Chao de la Barca J.M., Prunier-Mirebeau D., Amati-Bonneau P., Ferré M., Sarzi E., Bris C., Leruez S., Chevrollier A., Desquiret-Dumas V., Gueguen N., Verny C., Hamel C., Miléa D., Procaccio V., Bonneau D., Lenaers G., Reynier P. OPA1-related disorders: Diversity of clinical expression, modes of inheritance and pathophysiology. Neurobiol Dis. 2016;90:20-6. Cerca con Google

42. Chen H. and Chan D. C. Critical dependence of neurons on mitochondrial dynamics. Curr. Opin. In Cell Biology.2006.18;453-459. Cerca con Google

43. Chen L.S., Zhou S., Fishbein M.C., Chen P.S. New perspectives on the role of the autonomic nervous system in the genesis of arrhythmias. J. Cardiovasc. Electrophysiol.2007;18:123-7. Cerca con Google

44. Chen P.S., Chen L.S., Cao J-M., Sharifi B., Karagueuzian H. S. and Fishbein M. C. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovascular Research.2001;50:409-416. Cerca con Google

45. Choate J.K., Klemm M. and Hirst G.D. Sympathetic and parasympathetic neuromuscular junctions in the guinea-pig sino-atrial node. Journal of the autonomic nervous system.1993;44:1-15. Cerca con Google

46. Cho D.H., Nakamura T., Lipton S.A. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci.2010;67(20):3435-47. Cerca con Google

47. Chow L.T., Chow S.S, Anderson R.H., Gosling J.A. Autonomic innervation of the human cardiac conduction system: changes from infancy to senility—an immuno- histochemical and histochemical analysis. Anat. Rec. 2001; 264:169–182. Cerca con Google

48. Chruscinski A.J., Rohrer D.K., Schauble E., Desai K.H., Bernstein D., Kobilka B.K. Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem.1999;274: 16694-16700. Cerca con Google

49. Chu H.Y., Atherton J.F., Wokosin D., Surmeier D.J., Bevan M.D. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron. 2015;85:364–376. Cerca con Google

50. Cipolat S., Rudka T., Hartmann D., Costa V., Serneels L.,Craessaerts K., Metzger K., Frezza C., Annaert W., D'Adamio L., Derks C., Dejaegere T., Pellegrini L., D'Hooge R., Scorrano L., De Strooper B. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126:163-175. Cerca con Google

51. Clapham D.E. and Neer E.J. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol.2007;37:167-203. Cerca con Google

52. Clarke B. A. Drujan D., Willis M.S., Murphy L.O., Corpina R.A., Burova E., Rakhilin S.V., Stitt T.N., Patterson C., Latres E., Glass D.J. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab.2007;6:376-385. Cerca con Google

53. Cogliati S., Frezza C., Soriano M.E.,Varanita T.,Quintana-Cabrera R.M.,Cipolat S., Costa V., Casarin A., Gomes L.C., Perales-Clemente E., Salviati L., Fernandez-Silva P., Enriquez J. A. and Scorrano L. Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency. Cell.2013;155(1):160–171. Cerca con Google

54. Cui G., Jun S.B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M. and Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature.2013;494:238–242. Cerca con Google

55. Cunningham J. G. Textbook of veterinary physiology. (Saunders, 2002). Cerca con Google

56. D'Herde K., De Prest B., Mussche S., Schotte P., Beyaert R., Van Coster R., Roels F. Ultrastructural localization of cytochrome c in apoptosis demonstrates mitochondrial heterogeneity. Cell Death Differ. 2000;7:331–337. Cerca con Google

57. Danial N.N. and Korsmeyer S.J. Cell death: critical control points Cell. 2004;116: 205–219. Cerca con Google

58. Dargemont, C. and Ossareh-Nazari, B. Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways. Biochim Biophys Acta. 2012; 1823:138-144. Cerca con Google

59. Deisseroth K. Optogenetics. Nat Methods. 2011;8:26-29. Cerca con Google

60. Delettre C., Lenaers G., Griffoin J.M., Gigarel N., Lorenzo C., Belenguer P., Pelloquin L., Grosgeorge J., Turc-Carel C., Perret E., Astarie-Dequeker C., Lasquellec L., Arnaud B., Ducommun B., Kaplan J. and Hamel C.P. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 2000; 26: 207-210. Cerca con Google

61. Delettre C., Lenaers G., Pelloquin L., Belenguer P., Hamel C.P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab. 2002;75(2):97-107. Cerca con Google

62. DiFrancesco D. The role of the funny current in pacemaker activity. Circulation research.2010;106:434-446. Cerca con Google

63. Dimmer K.S. and Scorrano L. (De)constructing mitochondria: what for?. Physiology (Bethesda). 2006;21:233-41. Cerca con Google

64. Dutta D., Calvani R., Bernabei R., Leeuwenburgh C., Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ. Res.2012;110:1125-1138. Cerca con Google

65. El-Armouche A. and Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev.2009;14: 225-241. Cerca con Google

66. Evellin S., Mongillo M., Terrin A., Lissandron V., Zaccolo M. Measuring dynamic changes in cAMP using fluorescence resonance energy transfer. Methods Mol. Biol. 2004;284:259–270. Cerca con Google

67. Exner N., Lutz A.K., Haass C. and Winklhofer K. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences EMBO J. 2012;31(14):3038-62. Cerca con Google

68. Fabiato A. and Fabiato F. Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature.1979;281:146-148. Cerca con Google

69. Fernández-Silva P., Enriquez J.A., Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol.2003;88(1):41-56. Cerca con Google

70. Ferre M., Amati-Bonneau P., Tourmen Y., Malthiery Y., Reynier P. eOPA1: an online database for OPA1 mutations. Hum Mutat.2005;25:423-428. Cerca con Google

71. Ferre M., Bonneau D., Milea D., Chevrollier A., Verny C., Dollfus H., Ayuso C., Defoort S., Vignal C., Zanlonghi X., Charlin J.F., Kaplan J., Odent S., Hamel C.P., Procaccio V., Reynier P., Amati-Bonneau P. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1mutations. Hum Mutat. 2009;30:e692–705. Cerca con Google

72. Florea V.G. and Cohn J.N. The autonomic nervous system and heart failure. Circulation research.2014;114:1815-1826. Cerca con Google

73. Franke W.W., Borrmann C.M., Grund C. and Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol.2006;85:69-82. Cerca con Google

74. Franzoso M., Zaglia T. and Mongillo M. Putting together the clues of the everlasting neuro-cardiac liaison. Biochimica et biophysica acta.2016;863(7 Pt B):1904-15. Cerca con Google

75. Freeman S. Biological Scienze. 2nd Edition. Pearson Prentice Hall. 2005 Cerca con Google

76. Frescas D. and Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer.2008;8:438-449. Cerca con Google

77. Frey N., Katus H.A., Olson E.N. and Hill J.A. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109:1580-1589. Cerca con Google

78. Frezza C., Cipolat S., Martins de B.O., Micaroni M., Beznoussenko G.V., Rudka T., Bartoli D., Polishuck R.S., Danial N.N., De S.B. and Scorrano L. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell.2006;126:177-189. Cerca con Google

79. Fuhrmann N., Alavi M.V., Bitoun P., Woernle S., Auburger G., Leo-Kottler B. Genomic rearrangements in OPA1 are frequent in patients with autosomal dominant optic atrophy. Journal of Medical Genetics.2009;46:136–144. Cerca con Google

80. Fukuda K., Kanazawa H., Aizawa Y., Ardell J.L. and Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res.2015;116:2005-2019. Cerca con Google

81. Fülöp L., Szanda G., Enyedi B., Várnai P., Spät A. The effect of OPA1 on mitochondrial Ca2+ signaling. PLoS One.2011;6(9):e25199. Cerca con Google

82. Furshpan E.J., Landis S.C., Matsumoto S.G., Potter D.D. Synaptic functions in rat sympathetic neurons in microcultures. I. Secretion of norepinephrine and acetylcholine. J Neurosci.1986;6(4):1061-79. Cerca con Google

83. Gallo G. and Letourneau P.C. Axon guidance: GTPases help axons reach their targets. Curr Biol.1998;29:8(3):R80-2. Cerca con Google

84. Gibbons C.H., Illigens B.M., Wang N., Freeman R. Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve. 2010;42(1):112-9. Cerca con Google

85. Glajch K.E., Kelver D.A., Hegeman D.J., Cui Q., Xenias H.S., Augustine E.C., Hernandez V.M., Verma N., Huang T.Y., Luo M., Justice N.J., Chan C.S. Npas1+pallidal neurons target striatal projection neurons. J Neurosci.2016; 36:5472–5488. Cerca con Google

86. Glass D.J. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol.2003;5:87-90. Cerca con Google

87. Glebova N.O. and Ginty D.D., Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci. 2004;24:743–751. Cerca con Google

88. Glickman M.H. and Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev.2002;82:373-428. Cerca con Google

89. Gomes M.D., Lecker S.H., Jagoe R.T., Navon A. and Goldberg A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 2001;98:14440-14445. Cerca con Google

90. Grazia, A. in Anatomy and physiology Ch. 20, 486-8332. Cerca con Google

91. Gros D., Jarry-Guichard T., Ten Velde I., de Maziere A., van Kempen M.J., Davoust J., Briand J.P., Moorman A.F., Jongsma H.J. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res.1994;74:839-851. Cerca con Google

92. Guyton A.C. and Hall J.E. Textbook of Medical Physiology. 11th edition. Philadelphia, Penn: Elsevier/Saunders,2006. Cerca con Google

93. Hall C.N., Klein-Flügge M.C., Howarth C. and Attwell D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 2012;32:8940–8951. Cerca con Google

94. Hanson J. and Huxley H.E. Structural basis of the cross-striations in muscle. Nature.1953;172:530-532. Cerca con Google

95. Harris J.J., Jolivet R. and Attwell D. Synaptic energy use and supply. Neuron. 2012;75: 762–777. Cerca con Google

96. Hasan W. Autonomic cardiac innervations and adult plasticity. Organogenesis.2013;9(3):176-193. Cerca con Google

97. Hasking G.J., Esler M.D., Jennings G.L., Burton D., Johns J.A., Korner P.I. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity, Circulation. 1986; 73:615–621. Cerca con Google

98. Healy L.J., Jiang Y. and Hsu E.W. Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:74. Cerca con Google

99. Hegemann P. and Nagel G. From channelrhodopsins to optogenetics. EMBO Mol Med. 2013;5:173-176. Cerca con Google

100. Heredia M., del P., Delgado C., Pereira L., Perrier R., Richard S., Vassort G., Bénitah J.P., Gómez A.M. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J Mol Cell Cardiol. 2005;38(1):205-12. Cerca con Google

101. Herlan M., Vogel F., Bornhovd C., Neupert W., Reichert A.S. Processing of MGM1 by the rhomboid-type protease PCP1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem. 2003; 278:27781-27788. Cerca con Google

102. Herzog H., Hort Y.J., Ball H.J., Hayes G., Shine J., Selbie L.A. Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc Natl Acad Sci USA.1992;89(13):5794-8. Cerca con Google

103. Hofmann B., Maybeck V., Eick S., Meffert S., Ingebrandt S., Wood P., Bamberg E., Offenhäusser A. Light induced stimulation and delay of cardiac activity. Lab Chip. 2010;10:2588-2596. Cerca con Google

104. Hoppins S., Lackner L., Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem.2007;76:751–80. Cerca con Google

105. Howe M.W. and Dombeck D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature. 2016;535(7613):505-10. Cerca con Google

106. Hoyt R.H., Cohen M.L. and Saffitz J.E. Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ Res.1989;64:563-574. Cerca con Google

107. Hudson G., Amati-Bonneau P., Blakely E.L., Stewart J.D., He L., Schaefer A. M., Griffiths P.G., Ahlqvist K., Suomalainen A., Reynier P., McFarland R., Turnbull D.M., Chinnery P.F. and Taylor R.W. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain.2008;131:329-337. Cerca con Google

108. Ieda M., Kanazawa H., Kimura K., Hattori F., Ieda Y., Taniguchi M., Lee J-K, Matsumura K., Tomita Y., Miyoshi S., Shimoda K., Makino S., Sano M., Kodama I., Ogawa S. and Fukuda K. Sema3a maintains normal heart rhythm through sympathetic innervations patterning. Nature Medicine.2007;5(13):604-612. Cerca con Google

109. Ishihara N., Fujita Y., Oka T., Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006;25: 2966-2977. Cerca con Google

110. Ishihara N., Eura Y., Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci.2004;117:6535-46. Cerca con Google

111. James D.I., Parone P.A., Mattenberger Y., Martinou J.C. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem.2003;278:36373–9 Cerca con Google

112. Jansen A.S., Nguyen X.V., Karpitskiy V., Mettenleiter T.C. and Loewy A.D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science (New York, NY).1995; 270: 644-646. Cerca con Google

113. Jia Z., Valiunas V., Lu Z., Bien H., Liu H., Wang H.Z., Rosati B., Brink P.R., Cohen I.S., Entcheva E. Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol. 2011;4:753-760. Cerca con Google

114. Jiang, Y., Pandya, K., Smithies, O. & Hsu, E. W. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med.2004;52:453-460. Cerca con Google

115. Jung T., Catalgol B. and Grune T. The proteasomal system. Mol Aspects Med. 2009;30(4):191-296. Cerca con Google

116. Karbowski M., Arnoult D., Chen H., Chan D.C., Smith C.L., Youle R.J. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis.J Cell Biol.2004;164(4):493-9. Cerca con Google

117. Katz A. M. Physiology of the Heart. Lippincott Williams & Wilkins.2011 Cerca con Google

118. Kaye D. and Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovascular research.2005;66:256-264. Cerca con Google

119. Kedar, V., McDonough H., Arya R., Li H.H., Rockman H.A., Patterson C. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A.2004;101:18135-18140. Cerca con Google

120. Kim M.S., Shutov L.P., Gnanasekaran A., Lin Z., Rysted J.E., Ulrich J.D., Usachev Y.M. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway. J Biol Chem. 2014;289(45):31349-60. Cerca con Google

121. Kimura K., Ieda M., Kanazawa H., Yagi T., Tsunoda M., Ninomiya S., Kurosawa H., Yoshimi K., Mochizuki H., Yamazaki K., Ogawa S., Fukuda K.. Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy, Circ. Res. 2007;100:1755–1764. Cerca con Google

122. Kimura K., Ieda M. and Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res.2012;110:325-336. Cerca con Google

123. Kirchhoff S. Kim J-S., Hagendorff A., Tho ̈nnissen E., Kru ̈ger O., Lamers W.H., Willecke K. Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice. Circ Res.2000;87:399-405. Cerca con Google

124. Kjer B., Eiberg H., Kjer P., Rosenberg T. Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol Scand. 1996;74(1):3-7. Cerca con Google

125. Klarenbeek J., Goedhart J., van Batenburg A., Groenewald D. and Jalink K. Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One.2015;10:e0122513. Cerca con Google

126. Klionsky D. J. The molecular machinery of autophagy: unanswered questions. J Cell Sci.2005;118:7-18. Cerca con Google

127. Koshiba T., Detmer S.A., Kaiser J.T., Chen H., McCaffery J.M. and Chan D.C. Structural basis of mitochondrial tethering by mitofusin complexes. Science.2004;305:858-862. Cerca con Google

128. Kurtz T.W., Griffin K.A., Bidani A.K., Davisson R.L., Hall J.E. Recommendations for blood pressure measurement in humans and experimental animals: part 2: blood pressure measurement in experimental animals: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Arterioscler Thromb Vasc Biol. 2005b; 25:e22–33. Cerca con Google

129. Kuruvilla R., Zweifel L.S., Glebova N.O., Lonze B.E., Valdez G., Ye H., Ginty D.D. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell. 2004;118:243-255. Cerca con Google

130. Lakatta E.G. Deficient neuroendocrine regulation of the cardiovascular system with advancing age in healthy humans. Circulation.1993;87:631–636. Cerca con Google

131. Landis S.C. Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc Natl Acad Sci U S A.1976;73(11):4220-4. Cerca con Google

132. Lenaz G., D’Aurelio M., Pich M.M., Genova M.L., Ventura B., Bovina C., Formiggini G., Castelli Parenti G. Mitochondrial bioenergetics in aging. BBA.2000;1459;397-404. Cerca con Google

133. Levitan I and Kaczmarek L. "Intercellular communication". The Neuron: Cell and Molecular Biology (4th ed.). New York, NY: Oxford Univerty Press.2015:153–328. Cerca con Google

134. Levi-Montalcini R. and Angeletti P.U. Nerve growth factor. Physiol. Rev.1968;48(3):534-69 Cerca con Google

135. Levy M.N. and Martin P.J. Physiology and Pathology of the heart: Autonomic neuronal control of cardiac function. Springer (2nd edition).1989:361-379. Cerca con Google

136. Lewin G.R. and Barde Y.A. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289-317. Cerca con Google

137. Li L., Desantiago J., Chu G., Kranias E.G., Bers D.M. Phosphorylation of phospholamban and troponin I in beta-adrenergic-induced acceleration of cardiac relaxation. Am J Physiol Heart Circ Physiol.2000;278:H769–H779 Cerca con Google

138. Li H.H. Kedar V., Zhang C., McDonough H., Arya R., Wang D.Z., Patterson C. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 2004;114:1058-1071. Cerca con Google

139. Li H.H., Willis M.S., Lockyer P., Miller N., McDonough H., Glass D.J., Patterson C. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest.2007;117: 3211-3223. Cerca con Google

140. Lima S.Q. and Miesenbock G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell. 2005;121:141-152. Cerca con Google

141. Lindberg J., Usoskin D., Bengtsson H., Gustafsson A., Kylberg A., Soderstrom S., Ebendal T. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis.2004;40(2):67. Cerca con Google

142. Liskova P., Ulmanova O., Tesina P., Melsova H., Diblik P., Hansikova H., Tesarova M., Votruba M. Novel OPA1 missense mutation in a family with optic atrophy and severe widespread neurological disorder. Acta Ophthalmol. 2013;91:e225–31. Cerca con Google

143. Liu D.W., Gintant G.A. and Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72:671-687. Cerca con Google

144. Liu J., Dobrzynski H., Yanni J., Boyett M.R. and Lei M. Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovascular research.2007;73:729-738. Cerca con Google

145. Lockhart S.T., Turrigiano G.G. and Birren S.J. Nerva Growth Factor Modulates Synaptic Transmission between Sympathetic Neurons and Cardiac Myocytes. The Journal of Neuroscience.1997;17(24):9573-9582. Cerca con Google

146. Lodi R., Tonon C., Valentino M.L., Iotti S., Clementi V., Malucelli E., Barboni P., Longanesi L., Schimpf S., Wissinger B., Baruzzi A., Barbiroli B., Carelli V. Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann Neurol. 2004;56(5):719-23. Cerca con Google

147. Lombardi F., Malliani A., Pagani M. and Cerutti S. Heart rate variability and its sympatho-vagal modulation. Cardiovascular research.1996;32:208-216. Cerca con Google

148. Luttrell, L. M. Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol.2006;332:3-49. Cerca con Google

149. Lyon A.R., Rees P.S., Prasad S.,. Poole-Wilson P.A, Harding S.E. Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to ex- plain catecholamine-induced acute myocardial stunning. Nat. Clin. Pract. Cardiovasc. 2008;5:22–29. Cerca con Google

150. Maejima Y., Usui S., Zhai P., Takamura M., Kaneko S., Zablocki D., Yokota M., Isobe M., Sadoshima J. Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A. Circ Heart Fail.2014;7:479-490. Cerca con Google

151. Mattson M.P., Gleichmann M., Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60(5):748-766. Cerca con Google

152. Martinelli P., Rugarli E.I. Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta. 2010;1797:1-10. Cerca con Google

153. Massey, A. C., Zhang, C. & Cuervo, A. M. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol.2006;73:205-235. Cerca con Google

154. Matsuda, W., Furuta, T., Nakamura, K.C., Hioki, H., Fujiyama, F., Arai, R. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci.2009;29:444–453. Cerca con Google

155. McLeland C.B., Rodriguez J. and Stern S.T. Autophagy monitoring assay: qualitative analysis of MAP LC3-I to II conversion by immunoblot. Methods Mol Biol.2011;697:199-206. Cerca con Google

156. Miguelez C., Morin S., Martinez A., Goillandeau M., Bezard E., Bioulac B., Baufreton J. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. J Physiol. 2012. 590:5861–5875. Cerca con Google

157. Miller G. Optogenetics. Shining new light on neural circuits. Science.2006; 314:1674- 1676. Cerca con Google

158. Miquerol L. Moreno-Rascon N., Beyer S., Dupays L., Meilhac S.M., Buckingham M.E., Franco D., Kelly R.G. Biphasic development of the mammalian ventricular conduction system. Circ Res. 2010;107:153-161. Cerca con Google

159. Mitchell G.A.G. The innervation of the heart. Br Heart J.1953;15:159-171. Cerca con Google

160. Mongillo M. and Marks A.R. Models of heart failure progression: Ca2+ dysregulation. Drug Discovery Today: Disease Models. 2007;4(4):191-196. Cerca con Google

161. Morris R.L. and Hollenbeck P.J. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci.1993; Cerca con Google

104(3):917–927. Cerca con Google

162. Morselli E., Galluzzi L., Kepp O., Criollo A., Maiuri M.C., Tavernarakis N., Madeo F., Kroemer G. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging (Albany NY).2009;1:961-970. Cerca con Google

163. Moseley M.E., de Crespigny A.J., Roberts T.P., Kozniewska E. and Kucharczyk J. Early detection of regional cerebral ischemia using high-speed MRI. Stroke.1993;24:I60-65. Cerca con Google

164. Muhlfeld C., Papadakis T., Krasteva G., Nyengaard J.R., Hahn U. and Kummer W. An unbiased stereological method for efficiently quantifying the innervation of the heart and other organs based on total length estimations. J Appl Physiol.2010;108:1402–1409. Cerca con Google

165. Myeku N. and Figueiredo-Pereira M.E. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem.2011;286:22426-22440. Cerca con Google

166. Myles R.C., Wang L., Kang C., Bers D.M. and Ripplinger C.M. Local -adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ Res.2012;110:1454-1464. Cerca con Google

167. Nagel G., Szellas T., Huhn W., Kateriya S., Adeishvili N., Berthold P., Ollig D., Hegemann P., Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100:13940-13945. Cerca con Google

168. Nasca A., Rizza T., Doimo M., Legati A., Ciolfi A., Diodato D., Calderan C., Carrara G., Lamantea E., Aiello C., Di Nottia M., Niceta M., Lamperti C., Ardissone A., Bianchi-Marzoli S., Iarossi G., Bertini E., Moroni I., Tartaglia M., Salviati L., Carrozzo R., Ghezzi D. Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with OPA1mutations. Orphanet J Rare Dis. 2017;12;12(1):89. Cerca con Google

169. Nave B. T., Ouwens M., Withers D.J., Alessi D.R. and Shepherd P.R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427-431. Cerca con Google

170. Nikolaev V.O., Bunemann M., Hein L., Hannawacker A. and Lohse M.J. Novel single chain cAMP sensors for receptor-induced signal propagation. The Journal of biological chemistry.2004;279: 37215-37218. Cerca con Google

171. Ogawa S., Barnett J.V., Sen L., Galper J.B., Smith T.W. and Marsh J.D. Direct contact between sympathetic neurons and ratmcardiac myocytes in vitro increases expression of functional calcium channels. J Clin Invest. 1992;89:1085–1093. Cerca con Google

172. Oh Y., Cho G.S., Li Z., Hong I., Zhu R., Kim M.J., Kim Y.J., Tampakakis E., Tung L., Huganir R., Dong X., Kwon C. and Lee G. Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell stem cell.2016;19:95-106. Cerca con Google

173. Okabe S., Kim H.D., Miwa A., Kuriu T., Okado H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat. Neurosci. 1999;2(9):804-11. Cerca con Google

174. Olichon A., Baricault L., Gas N., Guillou E., Valette A., Belenguer P. and Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem.2003;278:7743-7746. Cerca con Google

175. Opie L. H. Heart physiology, from cell to circulation. (Lippincott Williams and Wilkins, 2004). Cerca con Google

176. Pauza D.H., Rysevaite K., Inokaitis H., Jokubauskas M., Pauza A.G., Brack K.E. and Pauziene N. Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy. J Mol Cell Cardiol. 2014;75:188–197. Cerca con Google

177. Pesch U.E., LeoKottler B.,Mayer S., Jurklies B.,Kellner U., ApfelstedtSylla E., Zrenner E., Alexander C., Wissinger B. OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum Mol Genet. 2001;10:1359-1368. Cerca con Google

178. Peters N.S. New insights into myocardial arrhythmogenesis: distribution of gapjunctional coupling in normal, ischaemic and hypertrophied human hearts. Clin Sci.1996;90:447-452. Cerca con Google

179. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. Cerca con Google

180. Piquereau J., Caffin F., Novotova M., Prola A., Garnier A., Mateo P., Fortin D., Huynh L.H., Nicolas V. , Alavi M.V., Brenner C., Ventura-Clapier R., Veksler V. and Joubert F. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovascular Research.2012;94:408-417. Cerca con Google

181. Powell S.R. The ubiquitin-proteasome system in cardiac physiology and pathology. Am J Physiol Heart Circ Physiol. 2006;291:H1-H19. Cerca con Google

182. Priori, S. G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J., Elliott P.M., Fitzsimons D., Hatala R., Hindricks G., Kirchhof P., Kjeldsen K., Kuck K.H., Hernandez-Madrid A., Nikolaou N., Norekvål T.M., Spaulding C., Van Veldhuisen D.J. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;17(2):108-70. Cerca con Google

183. Protas L. and Robinson R.B. Neuropeptide Y contributes to innervation-dependent increase in I(Ca, L) via ventricular Y2 receptors. Am J Physiol.1999;277: H940-946. Cerca con Google

184. Protas L., Barbuti A., Qu J., Rybin V.O., Palmiter R.D., Steinberg S.F., Robinson R.B. Neuropeptide Y is an essential in vivo developmental regulator of cardiac ICa, L. Circ Res. 2003;93(10):972-9. Cerca con Google

185. Randall WC, Szentivanyi M, Pace JB, Wechsler JS, Kaye MP. Patterns of sympathetic nerve projections onto the canine heart. Circ Res. 1968;22: 315–323. Cerca con Google

186. Richards M., Lomas O., Jalink K., Ford K.L., Vaughan-Jones R.D., Lefkimmiatis K., and Swietach P. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res. 2016;110:395–407. Cerca con Google

187. Rizzuto R., Bernardi P. and Pozzan T. Mitochondria as all-round players of the calcium game. J. Physiol. 2000;529(1):37–47. Cerca con Google

188. Rochais F., Vandecasteele G., Lefebvre F., Lugnier C., Lum H., Mazet J.L., Cooper D.M. and Fischmeister R. Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. The Journal of biological chemistry.2004;279: 52095-52105. Cerca con Google

189. Robertson G.P. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev. 2005;24:273-285. Cerca con Google

190. Rubart M. and Zipes D.P. Mechanisms of sudden cardiac death. Journal of Clinical Investigation.2005;115(9):2305-15. Cerca con Google

191. Sahu R. Kaushik S., Clement C.C., Cannizzo E.S., Scharf B., Follenzi A., Potolicchio I., Nieves E., Cuervo A.M., Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev Cell.2011;20:131-139. Cerca con Google

192. Sanders T.H., Jaeger D. Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis. 2016;95:225–237. Cerca con Google

193. Sandri M., Sandri C., Gilbert A., Skurk C., Calabria E., Picard A., Walsh K., Schiaffino S., Lecker S.H., Goldberg A.L. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117:399-412. Cerca con Google

194. Sandri M. and Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol. 2014;71:3-10. Cerca con Google

195. Sands G.B., Smaill B.H. and LeGrice I.J. Virtual sectioning of cardiac tissue relative to fiber orientation. Conf Proc IEEE Eng Med Biol Soc.2008;226-229. Cerca con Google

196. Sarzi E., Angebault C., Seveno M., Gueguen N., Chaix B., Bielicki G., Boddaert N., Mausset-Bonnefont A-L., Cazevieille C., Rigau V., Renou J-P., wang J.J., Delettre C., Brabet P., Puel J-L., Hamel C.P., Reynier P. and Lenaers G. The Human OPA1del TTAGN Mutation induces premature age-related systemic neurodegenration in mouse. Brain. A Journal of Neurolgy.2012;135:3599-3613. Cerca con Google

197. Scepanovic D. ´ A model of sinoatrial node cell regulation by the autonomic nervous system. Thesis (PhD), Massachusetts Institute of Technology. 2011. http://hdl.handle.net/1721.1/68457. Vai! Cerca con Google

198. Schapira A.H.V. Mitochondrial disorders. Current Opinion in Neurology. 2000;13(5):527-32. Cerca con Google

199. Schmitt B. Fedarava K, Falkenberg J, Rothaus K, Bodhey NK, Reischauer C, Kozerke S., Schnackenburg B., Westermann D., Lunkenheimer P.P., Anderson R.H., Berger F. and Kuehne T. Three-dimensional alignment of the aggregated myocytes in the normal and hypertrophic murine heart. J Appl Physiol. 2009;107:921-927. Cerca con Google

200. Seals D.R., Esler M.D., Human ageing and the sympathoadrenal system, J. Physiol. 2000;528:407–417. Cerca con Google

201. Sharma N., Deppmann C.D., Harrington A.W., St Hillaire C., Chen Z.Y., Lee F.S., Ginty D.D. Long-distance control of synapse assembly by target-derived NGF. Neuron. 2010;67(3):422-34. Cerca con Google

202. Shcherbakova O.G., Hurt C.M., Xiang Y., Dell'Acqua M.L., Zhang Q., Tsien R.W., Kobilka B.K. Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. J Cell Biol.2007;176(4):521-33. Cerca con Google

203. Shen M.J. and Zipes D.P. Role of the autonomic nervous system in modulating cardiac arrhythmias, Circulation research.2014;114:1004-1021. Cerca con Google

204. Slater C.R. Structural determinants of the reliability of synaptic transmission at the vertebrate neuromuscular junction. J Neurocytol.2003;32: 505-522. Cerca con Google

205. Smirnova E., Griparic L., Shurland D.L., van der Bliek A.M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245-56. Cerca con Google

206. Spiegel R., Saada A., Flannery P.J., Burté F., Soiferman D., Khayat M., Eisner V., Vladovski E., Taylor R.W., Bindoff L.A., Shaag A., Mandel H., Schuler-Furman O., Shalev S.A., Elpeleg O., Yu-Wai-Man P. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J Med Genet.2016;53(2):127-31. Cerca con Google

207. Stieber J., Herrmann S., Feil S., Loster J., Feil R., Biel M., Hofmann F and Ludwig A. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proceedings of the National Academy of Sciences of the United States of America.2003;100:15235-15240. Cerca con Google

208. Thaemert J.C. Fine structure of neuromuscular relationships in mouse heart. 1969;163(4):575–585. Cerca con Google

209. Tritsch N.X., Ding J.B., Sabatini B.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;490:262–266. Cerca con Google

210. Van Stee E.W. Autonomic innervation of the heart. Environ Health Perspect. 1978;26:151-8. Cerca con Google

211. Van Kempen M. J. Vermeulen J.L., Moorman A.F., Gros D., Paul D.L., Lamers W.H. Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res.1996;32:886-900. Cerca con Google

212. Veeraraghavan R., Poelzing S. and Gourdie R.G. Intercellular electrical communication in the heart: a new, active role for the intercalated disk. Cell Commun Adhes.2014;21:161-167. Cerca con Google

213. Volgraf M., Gorostiza P., Numano R., Kramer R.H., Isacoff E.Y., Trauner D. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol. 2006;2:47-52. Cerca con Google

214. Votruba M., Moore A.T., Bhattacharya S.S. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J Med Genet. 1998;35(10):793-800. Cerca con Google

215. Weidmann S. Cardiac muscle: the functional significance of the intercalated disks. Ann N Y Acad Sci.1966;137:540-542. Cerca con Google

216. Weingart R. The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of sheep and calf myocardium. J Physiol.1974; 240:741-762. Cerca con Google

217. Wengrowski A.M., Wang X., Tapa S., Posnack N.G., Mendelowitz D. and Kay M.W. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovascular research. 2015;105:143-150. Cerca con Google

218. Willis M.S. and Patterson C. Into the heart: the emerging role of the ubiquitinproteasome system. J Mol Cell Cardiol. 2006;41:567-579. Cerca con Google

219. Willis M.S., Ike C., Li L., Wang D.Z., Glass D.J., Patterson C. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res.2007;100:456-459. Cerca con Google

220. Willis, M. S. Rojas M., Li L., Selzman C.H., Tang R.H., Stansfield W.E., Rodriguez J.E., Glass D.J., Patterson C. Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol.2009a;296:H997-H1006. Cerca con Google

221. Willis, M. S. et al. Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res.2009b;105:80-88. Cerca con Google

222. Wingerd K.L., Goodman N.L., Tresser J.W., Smail M.M., Leu S.T., Rohan S.J., Pring J.L., Jackson D.Y., Clegg D.O. Alpha 4 integrins and vascular cell adhesion molecule-1 play a role in sympathetic innervation of the heart. J. Neurosci. 2002;22:10772–10780. Cerca con Google

223. Wong J., Abilez O.J. and Kuhl E. Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems. J Mech Phys Solids. 2012;60:1158-1178. Cerca con Google

224. Woods R.I., Sir Lindor Brown F.R.S. The innervation of the frog’s heart I. An examination of the autonomic postganglionic nerve fibres and a comparison of autonomic and sensory ganglion cells. Pro. of the Roy. Soc. Lond. B. 1970;176: 43-54. Cerca con Google

225. Xie Y., Sato D., Garfinkel A., Qu Z. and Weiss J. N. So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys J.2010;99:1408-1415. Cerca con Google

226. Yu D.Y., Cringle S.J., Balaratnasingam C., Morgan W.H., Yu P.K., Su E.N. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res. 2013;36:217-46. Cerca con Google

227. Yu-Wai-Man P., Griffiths P.G., Gorman G.S., Lourenco C.M., Wright A. F., Auer-Grumbach M., Toscano A., Musumeci O., Valentino M.L., Caporali L., Lamperti C., Tallaksen C.M., Duffey P., Miller J., Whittaker R.G., Baker M.R., Jackson M.J., Clarke M.P., Dhillon B., Czermin B., Stewart J.D., Hudson G., Reynier P., Bonneau D., Marques W. jr., Lenaers G., McFarland R., Taylor R.W., turnbull D.M., Votruba M., Zeviani M., Carelli V., Bindoff L.A., Horvath R., Amati-Bonneau P. and Chinnery P.F. Multi-system neurological disease is common in patients with OPA1 mutations. Brain.2010;133:771-786. Cerca con Google

228. Yu-Wai-Man P., Votruba M., Burté F., La Morgia C., Barboni P.and Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789-806 Cerca con Google

229. Zaccolo M. and Pozzan T. (2002). Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science (New York, NY).2002; 295:1711-1715. Cerca con Google

230. Zaglia T., Milan G., Franzoso M., Bertaggia E., Pianca N., Piasentini E., Voltarelli V.A., Chiavegato D., Brum P.C., Glass D.J., Schiaffino S., Sandri M. and Mongillo M. Cardiac sympathetic neurons provide trophic signal to the heart via β2-adrenoceptor-dependent regulation of proteolysis. Cardiovascular Research.2013;97:240-250. Cerca con Google

231. Zaglia T. Milan G., Ruhs A., Franzoso M., Bertaggia E., Pianca N., Carpi A., Carullo P., Pesce P., Sacerdoti D., Sarais C., Catalucci D., Krüger M., Mongillo M., Sandri M. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. J Clin Invest. 2014;124:2410-2424. Cerca con Google

232. Zaglia T., Pianca N., Borile G., Da Broi F., Richter C., Campione M., Lehnart S.E., Luther S., Corrado D., Miquerol L. snd Mongillo M. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proceedings of the National Academy of Sciences of the United States of America.2015;112:E4495-4504. Cerca con Google

233. Zaglia T., Di Bona A., Chioato T., Basso C., Ausoni S. and Mongillo M. Optimized protocol for immunostaining of experimental GFP-expressing and human hearts. Histochem Cell Biol.2016;146(4):407-19. Cerca con Google

234. Zalk R. Clarke O. B., des Georges A., Grassucci R.A., Reiken S., Mancia F., Hendrickson W.A., Frank J., Marks A.R. Structure of a mammalian ryanodine receptor. Nature.2015;517:44-49. Cerca con Google

235. Zanna C., Ghelli A., Porcelli A.M., Karbowski M., Youle R.J., Schimpf S., Wissinger B., Pinti M., Cossarizza A., Vidoni S., Valentino M.L., Rugolo M., Carelli V. OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain. 2008;131:352-367, 2008. Cerca con Google

236. Zhang F., Wang L.P., Brauner M., Liewald J.F., Kay K., Watzke N., Wood P.G., Bamberg E., Nagel G., Gottschalk A. and Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature.2007;446:633-639. Cerca con Google

237. Zhang F., Vierock J., Yizhar O., Fenno L.E., Tsunoda S., Kianianmomeni A., Prigge M., Berndt A., Cushman J., Polle J., Magnuson J., Hegemann P., Deisseroth K. The microbial opsin family of optogenetic tools. Cell. 2011;147: 1446-1457. Cerca con Google

238. Zhao S., Cunha C., Zhang F., Liu Q., Gloss B., Deisseroth K., Augustine G.J., Feng G. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 2008; 36:141-154. Cerca con Google

239. Zhou S., Chen L.S., Miyauchi Y., Miyauchi M., Kar S., Kangavari S., Fishbein M.C., Sharifi B. and Chen P.S. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95:76–83. Cerca con Google

240. Zipes D.P., Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system. Cleve Clin J Med. 2008;75(2):S94-96. Cerca con Google

241. Zipes D.P. Antiarrhythmic therapy in 2014: contemporary approaches to treating arrhythmias. Nat. Rev. Cardiol. 2015;12:68-9. Cerca con Google

242. Züchner S., Vorgerd M., Sindern E., Schröder J.M. The novel neurofilament light (NEFL) mutation Glu397Lys is associated with a clinically and morphologically heterogeneous type of Charcot-Marie-Tooth neuropathy. Neuromuscul Disord.2004;14(2):147-57. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record