Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Lentola, Andrea (2018) Systemic insecticides, their degradation products and metabolites in the environment. Quantification methodologies in environmental samples relevant for toxicological and ecotoxicological studies. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
3177Kb

Abstract (english)

Systemic insecticides are widely used for pests control and their success is due to their ability of protect the whole plant from roots to the upper leaf. In particular, seeds coating technique is very popular and it is applied to many crops (e.g. corn). However, the use of high amount of Active Ingridient (AI) for seeds coating is causing concern about negative effects to non-target animals. Pollinators insects are exposed to contaminated pollen and nectar, but also herbivore insects are exposed through contaminated leaf. In addition, these insecticides can leach from fields and contaminate wild plants or waterbodies. Therefore, also aquatic species are exposed to insecticides pollution and vertebrates like birds and small mammals could be exposed through coated seeds, seedling and insects.

The aim of this study was to develop an UHPLC-HRMS method for the identification of insecticides and their degradation production in corn guttation drops. Particular attention was posed to metabolites, because few information are available in the literature about their presence in relevant matrix for eco-toxicological studies. In addition, some metabolites may have greater toxicity if compared with their parent compounds. In particular, neonicotinoids imine metabolites are characterised by an inversion of selectivity between insects and mammals. Therefore, they can be more toxic for mammals if compared to the neonicotinoids AI.

Several metabolites were identify in corn guttation and an extraction procedure based on QuEChERS strategy coupled with a target UHPLC-MS2 method was developed and validated for the quantification of these compounds in corn leaf. High concentration of neonicotinoids thiamethoxam and thiacloprid were observed in corn seedling. In addition, high concentration of the thiamethoxam metabolite clothianidn was observed. Concerning the carbamate methiocarb, the AI was observed only at low concentration, but its metabolites were present at ug/g level. Particularly interesting was the presence of methiocarb sulfoxide, because this metabolite is more toxic of the parent compounds for some species.

In conclusion, guttation analysis with UHPLC-HRMS is a powerful technique in order to assess the presence of insecticides metabolites in plants treated with systemic AI. However, UHPLC-MS2 still provide better performance for quantitative analysis, in particular for complex matrices as corn leaf. Therefore, HRMS and MS2 are complementary technique useful to provide levels of contamination and exposure.

Abstract (italian)

Systemic insecticides are widely used for pests control and their success is due to their ability of protect the whole plant from roots to the upper leaf. In particular, seeds coating technique is very popular and it is applied to many crops (e.g. corn). However, the use of high amount of Active Ingridient (AI) for seeds coating is causing concern about negative effects to non-target animals. Pollinators insects are exposed to contaminated pollen and nectar, but also herbivore insects are exposed through contaminated leaf. In addition, these insecticides can leach from fields and contaminate wild plants or waterbodies. Therefore, also aquatic species are exposed to insecticides pollution and vertebrates like birds and small mammals could be exposed through coated seeds, seedling and insects.

The aim of this study was to develop an UHPLC-HRMS method for the identification of insecticides and their degradation production in corn guttation drops. Particular attention was posed to metabolites, because few information are available in the literature about their presence in relevant matrix for eco-toxicological studies. In addition, some metabolites may have greater toxicity if compared with their parent compounds. In particular, neonicotinoids imine metabolites are characterised by an inversion of selectivity between insects and mammals. Therefore, they can be more toxic for mammals if compared to the neonicotinoids AI.

Several metabolites were identify in corn guttation and an extraction procedure based on QuEChERS strategy coupled with a target UHPLC-MS2 method was developed and validated for the quantification of these compounds in corn leaf. High concentration of neonicotinoids thiamethoxam and thiacloprid were observed in corn seedling. In addition, high concentration of the thiamethoxam metabolite clothianidn was observed. Concerning the carbamate methiocarb, the AI was observed only at low concentration, but its metabolites were present at ug/g level. Particularly interesting was the presence of methiocarb sulfoxide, because this metabolite is more toxic of the parent compounds for some species.

In conclusion, guttation analysis with UHPLC-HRMS is a powerful technique in order to assess the presence of insecticides metabolites in plants treated with systemic AI. However, UHPLC-MS2 still provide better performance for quantitative analysis, in particular for complex matrices as corn leaf. Therefore, HRMS and MS2 are complementary technique useful to provide levels of contamination and exposure.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Tapparo, Andrea
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE MOLECOLARI
Data di deposito della tesi:12 January 2018
Anno di Pubblicazione:12 January 2018
Key Words:HRMS UHPLC insecticides
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/12 Chimica dell'ambiente e dei beni culturali
Area 03 - Scienze chimiche > CHIM/01 Chimica analitica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:10698
Depositato il:26 Oct 2018 10:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aajoud Asmae, Raveton Muriel, Azrou-Isghi Dalila, Tissut Michel, and Ravanel Patrick (2008), “How Can the Fipronil Insecticide Access Phloem?”, Journal of Agricultural and Food Chemistry, 56, 10, pp. 3732-3737, issn: 0021-8561, doi:10.1021/jf800043h. Cerca con Google

ACTARA® 25 WG, Syngenta Crop Protection (2016), Syngenta Italia, https://www.syngenta.it/prodotti/protezione-delle-colture/insetticidi/actara-25-wg (visited on 12/07/2017). Vai! Cerca con Google

Alford Adam and Krupke Christian H. (2017), “Translocation of the neonicotinoidseed treatment clothianidin in maize”, PLOS ONE, 12, 3 (Mar. 10, 2017), e0173836, issn: 1932-6203, doi: 10.1371/journal.pone.0173836. Cerca con Google

Anastassiades Michelangelo, Lehotay Steven J., Stajnbaher Darinka, and Schenck Frank J. (2003), “Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce”, Journal of AOAC International, 86, 2 (Apr. 2003), pp. 412-431, issn: 1060-3271. Cerca con Google

Anderson J. C., Dubetz C., and Palace V. P. (2015), “Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects”, Science of The Total Environment, 505 (Supplement C Feb. 1, 2015), pp. 409-422, issn: 0048-9697, doi: 10.1016/j.scitotenv.2014.09.090. Cerca con Google

Balfour Nicholas, Al Toufailia Hasan, Scandian Luciano, Blanchard Héloïse, Jesse Matthew, Carreck Norman, and Ratnieks Francis (2017), “A landscape scale study of the net effect of proximity to a neonicotinoid-treated crop on honey bee and bumble bee colonies”, Environmental Science & Technology (Aug. 23, 2017), issn: 0013-936X, doi: 10.1021/acs.est.7b02236. Cerca con Google

Benton E. P., Grant J. F., Mueller T. C., Webster R. J., and Nichols R. J. (2016), “Consequences of imidacloprid treatments for hemlock woolly adelgid on stream water quality in the southern Appalachians”, Forest Ecology and Management, Special Section: Forest Management for Climate Change, 360 (Supplement C Jan. 15, 2016), pp. 152-158, issn: 0378-1127, doi: 10.1016/j.foreco.2015. 10.028. Cerca con Google

Bhattacherjee A. K. and Dikshit Abhay (2016), “Dissipation kinetics and risk assessment of thiamethoxam and dimethoate in mango”, Environmental monitoring and assessment, 188, 3, p. 165. Biocca Marcello, Pochi Daniele, Fanigliulo Roberto, Gallo Pietro, Pulcini Patrizio, Marcovecchio Francesca, and Perrino Cinzia (2017), “Evaluating a filtering and recirculating system to reduce dust drift in simulated sowing of dressed seed and 83 abraded dust particle characteristics”, Pest Management Science, 73, 6 (June 1, 2017), pp. 1134-1142, issn: 1526-4998, doi: 10.1002/ps.4428. Cerca con Google

Bonmatin J. M., Marchand P. A., Charvet R., Moineau I., Bengsch E. R., and Colin M. E. (2005), “Quantification of Imidacloprid Uptake in Maize Crops”, Journal of Agricultural and Food Chemistry, 53, 13 (June 1, 2005), pp. 5336-5341, issn: 0021-8561, doi: 10.1021/jf0479362. Cerca con Google

Bonmatin J.-M., Giorio C., Girolami V., Goulson D., Kreutzweiser D. P., Krupke C., Liess M., Long E., Marzaro M., Mitchell E. a. D., Noome D. A., Simon-Delso N., and Tapparo A. (2015), “Environmental fate and exposure; neonicotinoids and fipronil”, Environmental Science and Pollution Research, 22, 1 (Jan. 1, 2015), pp. 35-67, issn: 0944-1344, 1614-7499, doi: 10.1007/s11356-014-3332-7. Cerca con Google

Botías Cristina, David Arthur, Hill Elizabeth M., and Goulson Dave (2016), “Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects”, Science of The Total Environment, 566–567, pp. 269-278, issn: 0048-9697, doi: 10.1016/j.scitotenv.2016.05.065. Cerca con Google

Botias Cristina, David Arthur, Hill Elizabeth, and Goulson Dave (2017), “Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes”, Environmental Pollution (Jan. 3, 2017), issn: 0269-7491. Cerca con Google

Botías Cristina, David Arthur, Horwood Julia, Abdul-Sada Alaa, Nicholls Elizabeth, Hill Elizabeth, and Goulson Dave (2015), “Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees”, Environmental Science & Technology (Oct. 16, 2015), p. 151016093630009, issn: 0013-936X, 1520-5851, doi: 10.1021/acs.est.5b03459. Cerca con Google

Boulange Julien, Thuyet Dang Quoc, Jaikaew Piyanuch, and Watanabe Hirozumi (2016), “Simulating the fate and transport of nursery-box-applied pesticide in rice paddy fields”, Pest Management Science, 72, 6 (June 1, 2016), pp. 1178-1186, issn: 1526-4998, doi: 10.1002/ps.4096. Cerca con Google

Bradley Paul M., Journey Celeste A., Romanok Kristin M., Barber Larry B., Buxton Herbert T., Foreman William T., Furlong Edward T., Glassmeyer Susan T., Hladik Michelle L., Iwanowicz Luke R., Jones Daniel K., Kolpin Dana W., Kuivila Kathryn M., Loftin Keith A., Mills Marc A., Meyer Michael T., Orlando James L., Reilly Timothy J., Smalling Kelly L., and Villeneuve Daniel L. (2017), “Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams”, Environmental Science & Technology, 51, 9 (May 2, 2017), pp. 4792-4802, issn: 0013-936X, doi: 10.1021/acs.est. 7b00012. Cerca con Google

Brandt Annely, Grikscheit Katharina, Siede Reinhold, Grosse Robert, Meixner Marina Doris, and Büchler Ralph (2017), “Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin”, Scientific Reports, 7, 1 (July 5, 2017), p. 4673, issn: 2045-2322, doi: 10.1038/s41598-017-04734-1. Cerca con Google

Brüggemann Lutz, Quapp Wolfgang, and Wennrich Rainer (2006), “Test for nonlinearity concerning linear calibrated chemical measurements”, Accreditation and quality assurance, 11, 12, pp. 625-631. Bruzzoniti Maria Concetta, Checchini Leonardo, Carlo Rosa Maria De, Orlandini Serena, Rivoira Luca, and Bubba Massimo Del (2014), “QuEChERS sample preparation for the determination of pesticides and other organic residues in 84 environmental matrices: a critical review”, Analytical and Bioanalytical Chemistry, 406, 17 (Apr. 27, 2014), pp. 4089-4116, issn: 1618-2642, 1618-2650, doi:10.1007/s00216-014-7798-4. Cerca con Google

Buronfosse T., Moroni P., Benoˇıt E., and Rivière J. L. (1995), “Stereoselective sulfoxidation of the pesticide methiocarb by flavin-containing monooxygenaseand cytochrome P450-dependent monooxygenases of rat liver microsomes. Anticholinesterase activity of the two sulfoxide enantiomers”, Journal of Biochemical Toxicology, 10, 4, pp. 179-189, issn: 1522-7146, doi: 10.1002/jbt.2570100402. Cerca con Google

Carreck Norman L. and Ratnieks Francis L. W. (2014), “The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?”, Journal of Apicultural Research, 53, 5, pp. 607-614, issn: 0021-8839, doi: 10.3896/IBRA.1.53.5.08. Cerca con Google

Cartereau Alison, Martin Carine, and Thany Steeve H. (2017), “Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian 7 nicotinic acetylcholine receptor”, British Journal of Pharmacology. Cerca con Google

Carvalho Raquel N., Ceriani Lidia, Ippolito Alessio, and Lettieri Teresa (2015), Development of the first Watch List under the Environmental Quality Standards Directive. Cerca con Google

Ccanccapa Alexander, Masiá Ana, Navarro-Ortega Alícia, Picó Yolanda, and Barceló Damià (2016), “Pesticides in the Ebro River basin: Occurrence and risk assessment”, Environmental Pollution, 211 (Supplement C Apr. 1, 2016), pp. 414-424, issn: 0269-7491, doi: 10.1016/j.envpol.2015.12.059. Cerca con Google

Chau N. D. G., Sebesvari Z., Amelung W., and Renaud F. G. (2015), “Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces”, Environmental Science and Pollution Research, 22, 12 (June 1, 2015), pp. 9042-9058, issn: 0944-1344, 1614-7499, doi: 10.1007/ s11356-014-4034-x. Cerca con Google

Chen M., Yi Q., Hong J., Zhang L., Lin K., and Yuan D. (2015), “Simultaneous determination of 32 antibiotics and 12 pesticides in sediment using ultrasonicassisted extraction and high performance liquid chromatography-tandem mass spectrometry”, Analytical Methods, 7, 5, pp. 1896-1905, issn: 1759-9660, doi: 10.1039/c4ay02895c. Cerca con Google

Chrétien François, Giroux Isabelle, Thériault Georges, Gagnon Patrick, and Corriveau Julie (2017), “Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field”, Environmental Pollution, 224 (Supplement C May 1, 2017), pp. 255-264, issn: 0269-7491, doi: 10.1016/j.envpol.2017.02.002. Cerca con Google

Chyi-Chuann Chen and Yung-Reui Chen (2005), “Study on laminar hydathodes of Ficus formosana (Moraceae) I. Morphology and ultrastructure”, Botanical Bulletin of Academia Sinica, 46. Cerca con Google

Cimino Andria M., Boyles Abee L., Thayer Kristina A., and Perry Melissa J. (2017), “Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review”, Environmental Health Perspectives, 125, 2 (Feb. 2017), pp. 155-162, issn: 0091-6765, doi: 10.1289/EHP515. Cerca con Google

Codling Garry, Al Naggar Yahya, Giesy John P., and Robertson Albert J. (2016), “Concentrations of neonicotinoid insecticides in honey, pollen and honey 85 bees (Apis mellifera L.) in central Saskatchewan, Canada”, Chemosphere, 144, pp. 2321-2328. Cerca con Google

Colombo Valentina, Mohr Silvia, Berghahn Rüdiger, and Pettigrove Vincent J. (2013), “Structural Changes in a Macrozoobenthos Assemblage After Imidacloprid Pulses in Aquatic Field-Based Microcosms”, Archives of Environmental Contamination and Toxicology, 65, 4 (Nov. 1, 2013), pp. 683-692, issn: 0090-4341, 1432-0703, doi: 10.1007/s00244-013-9940-2. Cerca con Google

Commission Implementing Regulation (EU) No 187/2014 of 26 February 2014 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance methiocarb (2014), Feb. 26, 2014, http://eurlex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32014R0187& from=EN (visited on 10/20/2017). Vai! Cerca con Google

Commission Implementing Regulation (EU) No 485/2013 (2013). Cerca con Google

Commission Implementing Regulation (EU) No 781/2013 of 14 August 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substance fipronil, and prohibiting the use and sale of seeds treated with plant protection products containing this active substance (2013), Aug. 14, 2013, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:219:0022:0025:EN:PDF (visited on 10/20/2017). Vai! Cerca con Google

Cox-Foster Diana L., Conlan Sean, Holmes Edward C., Palacios Gustavo, Evans Jay D., Moran Nancy A., Quan Phenix-Lan, Briese Thomas, Hornig Mady, Geiser David M., Martinson Vince, vanEngelsdorp Dennis, Kalkstein Abby L., Drysdale Andrew, Hui Jeffrey, Zhai Junhui, Cui Liwang, Hutchison Stephen K., Simons Jan Fredrik, Egholm Michael, Pettis Jeffery S., and Lipkin W. Ian (2007), “A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder”, Science, 318, 5848 (Oct. 12, 2007), pp. 283-287, issn: 0036-8075, 1095-9203, doi: 10.1126/science.1146498. Cerca con Google

Dance C., Botías C., and Goulson D. (2017), “The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee microcolonies”, Ecotoxicology and Environmental Safety, 139 (May 2017), pp. 194-201, issn: 0147-6513, doi: 10.1016/j.ecoenv.2017.01.041. Cerca con Google

Daniele G, Jabot C, Giroud B, and Vuillet E (2017), “Exposure assessment of selected pesticide residues in honeybees, beebread and beeswax from French beehives by liquid chromatography-quadrupole mass spectrometry”, Environ Sci Pollut Res., in press. Doi: https://doi. org/10.1007/s11356-017-9227-7. Vai! Cerca con Google

Dankyi E., Gordon C., Carboo D., and Fomsgaard I.S. (2014), “Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuECh-ERS extraction procedure and LC-MS/MS”, Science of the Total Environment, 499, 1, pp. 276-283, issn: 0048-9697, doi: 0.1016/j.scitotenv.2014.08.051. Cerca con Google

David Arthur, Botías Cristina, Abdul-Sada Alaa, Goulson Dave, and Hill Elizabeth M. (2015), “Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment”, Analytical and bioanalytical chemistry, pp. 1-12. Cerca con Google

David Arthur, Botías Cristina, Abdul-Sada Alaa, Nicholls Elizabeth, Rotheray Ellen L., Hill Elizabeth M., and Goulson Dave (2016), “Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicoti-noids and fungicides commonly applied to crops”, Environment International, 88 (Mar. 2016), pp. 169-178, issn: 0160-4120, doi: 10.1016/j.envint.2015.12.011. Cerca con Google

De Perre Chloé, Murphy Tracye M., and Lydy Michael J. (2015), “Fate and effects of clothianidin in fields using conservation practices”, Environmental Toxicology and Chemistry, 34, 2, pp. 258-265, issn: 1552-8618, doi: 10.1002/etc.2800. Cerca con Google

Desneux Nicolas, Decourtye Axel, and Delpuech Jean-Marie (2007), “The Sublethal Effects of Pesticides on Beneficial Arthropods”, Annual Review of Entomology, 52, 1, pp. 81-106, doi: 10.1146/annurev.ento.52.110405.091440. Cerca con Google

Elbert Alfred, Haas Matthias, Springer Bernd, Thielert Wolfgang, and Nauen Ralf (2008), “Applied aspects of neonicotinoid uses in crop protection”, Pest management science, 64, 11, pp. 1099-1105. Cerca con Google

Ellis Ciaran, Park Kirsty J., Whitehorn Penelope, David Arthur, and Goulson Dave (2017), “The Neonicotinoid Insecticide Thiacloprid Impacts upon Cerca con Google

Bumblebee Colony Development under Field Conditions”, Environmental Science & Technology, 51, 3 (Feb. 7, 2017), pp. 1727-1732, issn: 0013-936X, doi:10.1021/acs.est.6b04791. Cerca con Google

EPA (1987), Guidance for the Reregistration of Pesticide Products Containing Cerca con Google

Methiocarb (100501) as the Active Ingredient, Case Number 577, CAS 2032-65-7, National Service Center for Environmental Publications (NSCEP). Cerca con Google

Evard Hanno, Kruve Anneli, and Leito Ivo (2016), “Tutorial on estimating the limit of detection using LC-MS analysis, part I: Theoretical review”, Analytica Chimica Acta, 942 (Supplement C Oct. 26, 2016), pp. 23-39, issn: 0003-2670, doi: 10.1016/j.aca.2016.08.043. Cerca con Google

Evelsizer Vince and Skopec Mary (2016), “Pesticides, Including Neonicotinoids, in Drained Wetlands of Iowa’s Prairie Pothole Region”, Wetlands (July 22, 2016), pp. 1-12, issn: 0277-5212, 1943-6246, doi: 10.1007/s13157-016-0796-x. Cerca con Google

Fang Qingkui, Shi Yanhong, Cao Haiqun, Tong Zhou, Xiao Jinjing, Liao Min, Wu Xiangwei, and Hua Rimao (2017), “Degradation Dynamics and Dietary Risk Assessments of Two Neonicotinoid Insecticides during Lonicera japonica Planting, Drying, and Tea Brewing Processes”, Journal of Agricultural and Food Chemistry, 65, 8, pp. 1483-1488. Cerca con Google

Finnegan Meaghean C., Baxter Leilan R., Maul Jonathan D., Hanson Mark L., and Hoekstra Paul F. (2017), “Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish”, Environmental Toxicology and Chemistry, 36, 10 (Oct. 1, 2017), pp. 2838-2848, issn: 1552-8618, doi:10.1002/etc.3846. Cerca con Google

Ford Kevin A. and Casida John E. (2006a), “Chloropyridinyl Neonicotinoid Insecticides: Diverse Molecular Substituents Contribute to Facile Metabolism in Mice”, Chem. Res. Toxicol. 19 (Mar. 31, 2006), pp. 944-951. Cerca con Google

– (2006b), “Unique and Common Metabolites of Thiamethoxam, Clothianidin, and Dinotefuran in Mice”, Chemical Research in Toxicology, 19, 11 (Nov. 1, 2006), pp. 1549-1556, issn: 0893-228X, doi: 10.1021/tx0601859. Cerca con Google

Frommberger Malte, Pistorius Jens, Joachimsmeier Ina, and Schenke Detlef (2012), “Guttation and the risk for honey bee colonies (Apis mellifera L.): a worst case semi-field scenario in maize with special consideration of impact on bee brood and brood development”, Julius-Kühn-Archiv, 0, 437 (Oct. 2, 2012), p. 71, issn: 1868-9892. Cerca con Google

Gbylik-Sikorska Malgorzata, Sniegocki Tomasz, and Posyniak Andrzej (2015), “Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry”, Journal of Chromatography B, 990 (May 15, 2015), pp. 132-140, issn: 1570-0232, doi: 10.1016/j.jchromb.2015.03.016. Cerca con Google

Gibbons David, Morrissey Christy, and Mineau Pierre (2015), “A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife”, Environmental Science and Pollution Research, 22, 1, pp. 103-118. Cerca con Google

Giorio Chiara, Safer Anton, Sánchez-Bayo Francisco, Tapparo Andrea, Lentola Andrea, Girolami Vincenzo, Lexmond Maarten Bijleveld van, and Bonmatin Jean-Marc (2017), “An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport”, Environmental Science and Pollution Research (Nov. 5, 2017), pp. 1-33, issn: 0944-1344, 1614-7499, doi: 10.1007/s11356-017-0394-3. Cerca con Google

Girolami V., Marzaro M., Vivan L., Mazzon L., Giorio C., Marton D., and Tapparo A. (2013), “Aerial powdering of bees inside mobile cages and the extent of neonicotinoid cloud surrounding corn drillers”, Journal of Applied Entomology, 137, 1 (Feb. 1, 2013), pp. 35-44, issn: 1439-0418, doi:10.1111/j.14390418.2012.01718.x. Cerca con Google

Girolami V., Marzaro M., Vivan L., Mazzon L., Greatti M., Giorio C., Marton D., and Tapparo A. (2012), “Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication”, Journal of Applied Entomology, 136, 1 (Feb. 1, 2012), pp. 17-26, issn: 1439-0418, doi: 10.1111/j. 1439-0418.2011.01648.x. Cerca con Google

Girolami V., Mazzon L., Squartini A., Mori N., Marzaro M., Bernardo A. Di, Greatti M., Giorio C., and Tapparo A. (2009), “Translocation of Neonicotinoid Insecticides from Coated Seeds to Seedling Guttation Drops: A Novel Way of Intoxication for Bees”, Journal of Economic Entomology, 102, 5 (Sept. 30, 2009), pp. 1808-1815, issn: 0022-0493, doi: 10.1603/029.102.0511. Cerca con Google

Gonzalez-Rey Maria, Tapie Nathalie, Le Menach Karyn, Dévier Marie-Hélène, Budzinski Hélène, and Bebianno Maria João (2015), “Occurrence of pharmaceutical compounds and pesticides in aquatic systems”, Marine Pollution Bulletin, 96, 1 (July 15, 2015), pp. 384-400, issn: 0025-326X, doi: 10.1016/j.marpolbul. 2015.04.029. Cerca con Google

Goulson Dave (2014), “Ecology: Pesticides linked to bird declines”, Nature, advance online publication, issn: 0028-0836, doi: 10.1038/nature13642. Cerca con Google

Goulson Dave, Nicholls Elizabeth, Botías Cristina, and Rotheray Ellen L. (2015), “Bee declines driven by combined stress from parasites, pesticides, and lack of flowers”, Science, 347, 6229 (Mar. 27, 2015), p. 1255957, issn: 0036-8075, 1095-9203, doi: 10.1126/science.1255957. Cerca con Google

Greatti Moreno, Barbattini Renzo, Stravisi Antonella, Sabatini Anna Gloria, and Rossi Simona (2006), “Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds”, Bulletin of Insectology, 59, 2, pp. 99-103. Cerca con Google

Greatti Moreno, Sabatini Anna Gloria, Barbattini Renzo, Rossi Simona, and Stravisi Antonella (2003), “Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results”, Bulletin of Insectology, 56, 1, pp. 69-72. Cerca con Google

Green Trevor, Toghill Alison, Lee Robert, Waechter Felix, Weber Edgar, and Noakes James (2005), “Thiamethoxam Induced Mouse Liver Tumors and Their Relevance to HumansPart 1: Mode of Action Studies in the Mouse”, Toxicological Sciences, 86, 1 (July 1, 2005), pp. 36-47, issn: 1096-6080, doi: 10.1093/toxsci/kfi124. Cerca con Google

Guarino Joseph (1972), “METHIOCARB, A CHEMICAL BIRD REPELLENT: A REVIEW OF ITS EFFECTIVENESS ON CROPS”, Proceedings of the 5th Vertebrate Pest Conference (1972) (Mar. 1, 1972). Cerca con Google

Hallmann Caspar A., Foppen Ruud P. B., van Turnhout Chris A. M., de Kroon Hans, and Jongejans Eelke (2014), “Declines in insectivorous birds are associated with high neonicotinoid concentrations”, Nature, advance online publication, issn: 0028-0836, doi: 10.1038/nature13531. Cerca con Google

Han Yongtao, Zou Nan, Song Le, Li Yanjie, Qin Yuhong, Liu Shaowen, Li Xuesheng, and Pan Canping (2015), “Simultaneous determination of 70 pesticide residues in leek, leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials”, Journal of Chromatography B, 1005 (Nov. 15, 2015), pp. 56-64, issn: 1570-0232, doi: 10.1016/j.jchromb.2015.10.002. Cerca con Google

Hartz Kara E. Huff, Edwards Tracye M., and Lydy Michael J. (2017), “Fate and transport of furrow-applied granular tefluthrin and seed-coated clothianidin insecticides: Comparison of field-scale observations and model estimates”, Ecotoxicology (May 30, 2017), pp. 1-13, issn: 0963-9292, 1573-3017, doi: 10.1007/s10646-017-1818-z. Cerca con Google

Hayasaka D., Korenaga T., Suzuki K., Saito F., Sánchez-Bayo F., and Goka K. (2012), “Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms”, Ecotoxicology and Environmental Safety, 80 (Supplement C June 1, 2012), pp. 355-362, issn: 0147-6513, doi: 10.1016/j.ecoenv.2012.04.004. Cerca con Google

Heard Matthew S., Baas Jan, Dorne Jean- Lou, Lahive Elma, Robinson Alexander G., Rortais Agnes, Spurgeon David J., Svendsen Claus, and Hesketh Helen (2017), “Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?”, Science of The Total Environment, 578 (Feb. 1, 2017), pp. 357-365, issn: 0048-9697, doi: 10.1016/j.scitotenv.2016.10.180. Cerca con Google

Henry Mickaël, Béguin Maxime, Requier Fabrice, Rollin Orianne, Odoux Jean-François, Aupinel Pierrick, Aptel Jean, Tchamitchian Sylvie, and Decourtye Axel (2012), “A Common Pesticide Decreases Foraging Success and Survival in Honey Bees”, Science, 336, 6079 (Apr. 20, 2012), pp. 348-350, issn: 0036-8075, 1095-9203, doi: 10.1126/science.1215039. Cerca con Google

Hilton Martin J, Jarvis Tim D, and Ricketts Dean C (2016), “The degradation rate of thiamethoxam in European field studies”, Pest Management Science, 72, 2 (Feb. 1, 2016), pp. 388-397, issn: 1526-4998, doi: 10.1002/ps.4024. Cerca con Google

Hirano Tetsushi, Yanai Shogo, Takada Tadashi, Yoneda Naoki, Omotehara Takuya, Kubota Naoto, Minami Kiichi, Yamamoto Anzu, Mantani Youhei, Yokoyama Toshifumi, Kitagawa Hiroshi, and Hoshi Nobuhiko (2017), “NOAEL-dose of a neonicotinoid pesticide, clothianidin, acutely induce anxiety-related behavior with human-audible vocalizations in male mice in a novel environment”, Toxicology Letters (Oct. 17, 2017), issn: 0378-4274, doi: 10.1016/j.toxlet.2017.10.010. Cerca con Google

Hladik Michelle L. and Kolpin Dana W. (2015), “First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA”, Environmental Chemistry, 13, 1 (Aug. 18, 2015), pp. 12-20, issn: 1449-8979, doi: 10.1071/EN15061. Cerca con Google

Hladik Michelle L., Kolpin Dana W., and Kuivila Kathryn M. (2014), “Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA”, Environmental Pollution, 193 (Supplement C Oct. 1, 2014), pp. 189-196, issn: 0269-7491, doi: 10.1016/j.envpol.2014.06.033. Cerca con Google

Huang Jian Xiang, Liu Cong Yun, Lu Da Hai, Chen Jia Jia, Deng Yi Cai, and Wang Fu Hua (2015), “Residue behavior and risk assessment of mixed formulation of imidacloprid and chlorfenapyr in chieh-qua under field conditions”, Environmental monitoring and assessment, 187, 10, p. 650. Cerca con Google

Hubaux Andre and Vos Gilbert (1970), “Decision and detection limits for calibration curves”, Analytical Chemistry, 42, 8, pp. 849-855, issn: 0003-2700, doi: 10.1021/ac60290a013. Cerca con Google

Huseth Anders S. and Groves Russell L. (2014), “Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem”, PLOS ONE, 9, 5 (May 13, 2014), e97081, issn: 1932-6203, doi: 10.1371/journal.pone.0097081. Cerca con Google

Ihara Makoto, Sattelle David B., and Matsuda Kazuhiko (2015), “Probing new components (loop G and the 􀀀 interface) of neonicotinoid binding sites on nicotinic acetylcholine receptors”, Pesticide Biochemistry and Physiology, Insecticide and Acaricide Modes of Action and their Role in Resistance and its Management, 121, pp. 47-52, issn: 0048-3575, doi: 10.1016/j.pestbp.2015.02.011. Cerca con Google

Inostroza Pedro A., Wicht Anna-Jorina, Huber Thomas, Nagy Claudia, Brack Werner, and Krauss Martin (2016), “Body burden of pesticides and wastewaterderived pollutants on freshwater invertebrates: Method development and application in the Danube River”, Environmental pollution, 214, pp. 77-85. Cerca con Google

Iwasa Takao, Motoyama Naoki, Ambrose John T., and Roe R. Michael (2004), “Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera”, Crop Protection, 23, 5, pp. 371-378, issn: 0261-2194, doi: 10.1016/j.cropro.2003.08.018. Cerca con Google

Jeschke Peter and Nauen Ralf (2008), “Neonicotinoids-from zero to hero in insecticide chemistry”, Pest Management Science, 64, 11 (Nov. 2008), pp. 1084-1098, issn: 1526498X, 15264998, doi: 10.1002/ps.1631. Cerca con Google

Jones Ainsley and Turnbull Gordon (2016), “Neonicotinoid concentrations in UK honey from 2013”, Pest management science, 72, 10, pp. 1897-1900. Cerca con Google

Kaufmann Anton and Walker Stephan (2016), “Improved performance of multiplexed targeted tandem mass spectrometry scans using customized Q Orbitrap data acquisition”, Rapid Communications in Mass Spectrometry, 30, 9, pp. 1131-1138, issn: 1097-0231, doi: 10.1002/rcm.7532. Cerca con Google

Kiljanek Tomasz, Niewiadowska Alicja, and Posyniak Andrzej (2016), “Pesticide Poisoning of Honeybees: A Review of Symptoms, Incident Classification, and Causes of Poisoning”, Journal of Apicultural Science, 60, 2, pp. 5-24. Cerca con Google

Klarich Kathryn L., Pflug Nicholas C., DeWald Eden M., Hladik Michelle L., Kolpin Dana W., Cwiertny David M., and LeFevre Gregory H. (2017), “Occurrence of Neonicotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment”, Environmental Science & Technology Letters, 4, 5 (May 9, 2017), pp. 168-173, doi: 10.1021/acs.estlett.7b00081. Cerca con Google

Kluser Stéphane and Peduzzi Pascal (2007), “Global pollinator decline: a literature review”. Cerca con Google

Krupke C. H., Holland J. D., Long E. Y., and Eitzer B. D. (2017), “Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit”, Journal of Applied Ecology. Cerca con Google

Krupke Christian H., Hunt Greg J., Eitzer Brian D., Andino Gladys, and Given Krispn (2012), “Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields”, PLoS ONE, 7, 1, e29268, doi: 10.1371/journal.pone.0029268. Cerca con Google

Kuhr Ronald J. (1970), “Metabolism of carbamate insecticide chemicals in plants and insects”, Journal of Agricultural and Food Chemistry, 18, 6 (Nov. 1, 1970), pp. 1023-1030, issn: 0021-8561, doi: 10.1021/jf60172a042. Cerca con Google

La Nguyen, Lamers Marc, Bannwarth Matthias, Nguyen Vien Van, and Streck Thilo (2015), “Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling”, Paddy and Water Environment, 13, 2 (Apr. 1, 2015), pp. 191-203, issn: 1611-2490, 1611-2504, doi:10.1007/s10333-014-0420-8. Cerca con Google

Larson Jonathan L., Redmond Carl T., and Potter Daniel A. (2015), “Mowing mitigates bioactivity of neonicotinoid insecticides in nectar of flowering lawn weeds and turfgrass guttation”, Environmental Toxicology and Chemistry, 34, 1 (Jan. 1, 2015), pp. 127-132, issn: 1552-8618, doi: 10.1002/etc.2768. Cerca con Google

Latli Bachir, D’Amou Kevin, and Casida John E. (1999), “Novel and Potent 6-Chloro-3-pyridinyl Ligands for the 42 Neuronal Nicotinic Acetylcholine Receptor”, Journal of Medicinal Chemistry, 42, 12, pp. 2227-2234, issn: 0022-2623, doi: 10.1021/jm980721x. Cerca con Google

Lehotay Steven J., Maštovská Katerina, and Lightfield Alan R. (2005), “Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables”, Journal of AOAC International, 88, 2 (Mar. 1, 2005), pp. 615-629. Cerca con Google

Lentola A., David A., Abdul-Sada A., Tapparo A., Goulson D., and Hill E. M. (2017), “Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects”, Environmental Pollution, 228 (Sept. 1, 2017), pp. 297-304, issn: 0269-7491, doi: 10.1016/j.envpol.2017.03.084. Cerca con Google

Li Ming, Hua Xiude, Ma Ming, Liu Jisong, Zhou Liangliang, and Wang Minghua (2014), “Detecting clothianidin residues in environmental and agricultural samples using rapid, sensitive enzyme-linked immunosorbent assay and gold immunochromatographic assay”, Science of the Total Environment, 499, pp. 1-6. Cerca con Google

Li Yi, Zhang Jinzhen, Jin Yue, Wang Lin, Zhao Wen, Zhang Wenwen, Zhai Lifei, Zhang Yaping, Zhang Yongxin, and Zhou Jinhui (2015), “Hybrid quadrupoleorbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multixenobiotics in honey”, Journal of Chromatography A. Cerca con Google

Limay-Rios Victor, Forero Luis Gabriel, Xue Yingen, Smith Jocelyn, Baute Tracey, and Schaafsma Arthur (2016), “Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario”, Environmental Toxicology and Chemistry, 35, 2 (Feb. 1, 2016), pp. 303-310, issn: 1552-8618, doi: 10.1002/etc.3257. Cerca con Google

Liu Zhonghua, Dai Yijun, Huang Guodong, Gu Yuyu, Ni Jueping, Wei Hua, and Yuan Sheng (2011), “Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application”, Pest Management Science, 67, 10, pp. 1245-1252, issn: 1526-4998, doi: 10.1002/ps.2174. Cerca con Google

Long Elizabeth Y. and Krupke Christian H. (2016), “Non-cultivated plants present a season-long route of pesticide exposure for honey bees”, Nature Communications, 7 (May 31, 2016), p. 11629, issn: 2041-1723, doi: 10.1038/ncomms11629. Cerca con Google

López-Doval Julio C., Montagner Cassiana C., de Alburquerque Anjaína Fernandes, Moschini-Carlos Viviane, Umbuzeiro Gisela, and Pompêo Marcelo (2017), “Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment”, Science of The Total Environment, 575 (Supplement C Jan. 1, 2017), pp. 1307-1324, issn: 0048-9697, doi: 10.1016/j.scitotenv.2016.09.210. Cerca con Google

López Sonia Herrera, Lozano Ana, Sosa Alexis, Hernando M. Dolores, and Fernández-Alba Amadeo R. (2016), “Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study”, Chemosphere, 163, pp. 44-53. Cerca con Google

Main Anson R., Michel Nicole L., Headley John V., Peru Kerry M., and Morrissey Christy A. (2015), “Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada’s Prairie Wetlands”, Environmental Science & Technology, 49, 14 (July 21, 2015), pp. 8367-8376, issn: 0013-936X, doi: 10.1021/acs.est.5b01287. Cerca con Google

Masiá Ana, Campo Julián, Navarro-Ortega Alícia, Barceló Damià, and Picó Yolanda (2015), “Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data”, Science of The Total Environment, Towards a better understanding of the links between stressors, hazard assessment and ecosystem services under water scarcity, 503-504 (Supplement C Jan. 15, 2015), pp. 58-68, issn: 0048-9697, doi:10.1016/j.scitotenv.2014.06.095. Cerca con Google

Matamoros Víctor, Calderón-Preciado Diana, Domínguez Carmen, and Bayona Josep M. (2012), “Analytical procedures for the determination of emerging organic contaminants in plant material: A review”, Analytica Chimica Acta, 722 (Apr. 13, 2012), pp. 8-20, issn: 0003-2670, doi: 10.1016/j.aca.2012.02.004. Cerca con Google

Matsuda Kazuhiko, Buckingham Steven D., Kleier Daniel, Rauh James J., Grauso Marta, and Sattelle David B. (2001), “Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors”, Trends in Pharmacological Sciences, 22, 11 (Nov. 1, 2001), pp. 573-580, issn: 0165-6147, doi: 10.1016/S0165-6147(00)01820-4. Cerca con Google

McMahen Rebecca L., Strynar Mark J., McMillan Larry, DeRose Eugene, and Lindstrom Andrew B. (2016), “Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater”, Science of The Total Environment, 569-570 (Supplement C Nov. 1, 2016), pp. 880-887, issn: 0048-9697, doi: 10.1016/j.scitotenv.2016.05.085. Cerca con Google

Michel N., Freese M., Brinkmann M., Pohlmann J.-D., Hollert H., Kammann U., Haarich M., Theobald N., Gerwinski W., and Rotard W. (2016), “Fipronil and two of its transformation products in water and European eel from the river Elbe”, Science of The Total Environment, 568, pp. 171-179. Cerca con Google

Miles Jesse C., Hua Jessica, Sepulveda Maria S., Krupke Christian H., and Hoverman Jason T. (2017), “Effects of clothianidin on aquatic communities: Evaluating the impacts of lethal and sublethal exposure to neonicotinoids”, PLOS ONE, 12, 3 (Mar. 23, 2017), e0174171, issn: 1932-6203, doi: 10.1371/ journal.pone.0174171. Cerca con Google

Mitchell E. a. D., Mulhauser B., Mulot M., Mutabazi A., Glauser G., and Aebi A. (2017), “A worldwide survey of neonicotinoids in honey”, Science, 358, 6359 (Oct. 6, 2017), pp. 109-111, issn: 0036-8075, 1095-9203, doi: 10.1126/science.aan3684. Cerca con Google

Moffat Christopher, Buckland Stephen T., Samson Andrew J., McArthur Robin, Chamosa Pino Victor, Bollan Karen A., Huang Jeffrey T.-J., and Connolly Christopher N. (2016), “Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees”, Scientific Reports, 6 (Apr. 28, 2016), p. 24764, issn: 2045-2322, doi: 10.1038/srep24764. Cerca con Google

Mortensen Spencer R., Holmsen Jeffrey D., and Weltje Lennart (2015), “Fipronil should not be categorized as a “systemic insecticide”: a reply to Gibbons et al. (2015)”, Environmental Science and Pollution Research (May 23, 2015), pp. 1-2, issn: 0944-1344, 1614-7499, doi: 10.1007/s11356-015-4719-9. Cerca con Google

Mörtl Mária, Darvas Béla, Vehovszky Ágnes, Gyori János, and Székács András (2017), “Occurrence of neonicotinoids in guttation liquid of maize – soil mobility and cross-contamination”, International Journal of Environmental Analytical Chemistry, 97, 9 (July 15, 2017), pp. 868-884, issn: 0306-7319, doi: 10.1080/03067319.2017.1370090. Cerca con Google

Moser Susan E. and Obrycki John J. (2009), “Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy”, Biological Control, 51, 3, pp. 487-492, issn: 1049-9644, doi: 10.1016/j.bioco ntrol.2009.09.001. Cerca con Google

Münze Ronald, Orlinskiy Polina, Gunold Roman, Paschke Albrecht, Kaske Oliver, Beketov Mikhail A., Hundt Matthias, Bauer Coretta, Schüürmann Gerrit, Möder Monika, and Liess Matthias (2015), “Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEARpesticides index”,Science of The Total Environment, 537 (Supplement C Dec. 15, 2015), pp. 69-80, issn: 0048-9697, doi: 10.1016/j.scitotenv.2015.07.012. Cerca con Google

Mutinelli Franco, Costa Cecilia, Lodesani Marco, Baggio Alessandra, Medrzycki Piotr, Formato Giovanni, and Porrini Claudio (2010), “Honey bee colony losses in Italy”, Journal of Apicultural Research, 49, 1, pp. 119-120, issn: 0021-8839, doi: 10.3896/IBRA.1.49.1.24. Cerca con Google

Narahashi Toshio, Zhao Xilong, Ikeda Tomoko, Salgado Vincent L., and Yeh Jay Z. (2010), “Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals”, Pesticide Biochemistry and Physiology, Special Issue: Insecticidal Action, 97, 2 (June 1, 2010), pp. 149-152, issn: 0048-3575, doi: 10.1016/j.pestbp.2009.07.008. Cerca con Google

Nikolakis Alexander, Keppler Juergen, Miles Mark, and Schoening Ralf (2015), “Neonicotinoid seed treatment products–Occurrence and relevance of guttation for honeybee colonies”, Julius-Kühn-Archiv, 450, p. 160. Cerca con Google

Oonnithan E. Sukumaran and Casida John E. (1968), “Oxidation of methyl-and dimethylcarbamate insecticide chemicals by microsomal enzymes and anticholinesterase activity of the metabolites”, Journal of Agricultural and Food Chemistry, 16, 1, pp. 28-44. Cerca con Google

Pamminger Tobias, Basley Kate, Goulson Dave, and Hughes William OH (2017), “First indication of acetylcholine-based communication in honeybee aemocytes and its modulation by a neonicotinoid insecticide”, bioRxiv (Feb. 3, 2017), p. 105700, doi: 10.1101/105700. Cerca con Google

Pei Zhou, Yitong Lu, Baofeng Liu, and Gan Jay J. (2004), “Dynamics of fipronil residue in vegetable-field ecosystem”, Chemosphere, 57, 11, pp. 1691-1696, issn: 0045-6535, doi: 10.1016/j.chemosphere.2004.06.025. Cerca con Google

Pérez-Fernández Virginia, Rocca Lucia Mainero, Tomai Pierpaolo, Fanali Salvatore, and Gentili Alessandra (2017), “Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry”, Analytica Chimica Acta, issn: 0003-2670, doi: 10.1016/j.aca. 2017.06.029. Cerca con Google

Pettis Jeffery S., Johnson Josephine, and Dively Galen (2012), “Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema”, Naturwissenschaften, 99, 2, pp. 153-158. Cerca con Google

Pilling Edward, Campbell Peter, Coulson Mike, Ruddle Natalie, and Tornier Ingo (2013), “A Four-Year Field Program Investigating Long-Term Effects of Repeated Exposure of Honey Bee Colonies to Flowering Crops Treated with Thiamethoxam”, PLOS ONE, 8, 10, e77193, issn: 1932-6203, doi: 10.1371/ journal.pone.0077193. Cerca con Google

Pistorius J., Bischoff G., Heimbach U., and Stähler M. (2010), “Bee poisoning incidents in Germany in spring 2008 caused by abrasion of active substance from treated seeds during sowing of maize”, Julius-Kühn-Archiv, 423, p. 118. Cerca con Google

Pistorius Jens, Brobyn Tricia, Campbell Peter, Forster Rolf, Lortsch Jose-Anne, Marolleau Franck, Maus Christian, Lückmann Johannes, Suzuki Hiroyuki, Wallner Klaus, and Becker Roland (2012), “Assessment of risks to honey bees posed by guttation”, Julius-Kühn-Archiv, 0, 437 (Oct. 4, 2012), p. 199, issn: 1868-9892. Cerca con Google

Pistorius Jens, Wehner Anja, Kriszan Melanie, Bargen Holger, Knaebe Silvio, Klein Olaf, Frommberger Malte, Staehler Matthias, Heimbach Udo, et al. (2015) “Application of predefined doses of neonicotinoid containing dusts in field trials and acute effects on honey bees”, Bulletin of Insectology, 68, 2, pp. 161-172. Cerca con Google

Porrini Claudio, Mutinelli Franco, Bortolotti Laura, Granato Anna, Laurenson Lynn, Roberts Katherine, Gallina Albino, Silvester Nicholas, Medrzycki Piotr, Renzi Teresa, et al. (2016), “The status of honey bee health in Italy: results from the nationwide bee monitoring network”, PloS one, 11, 5, e0155411. Cerca con Google

Prisco Gennaro Di, Cavaliere Valeria, Annoscia Desiderato, Varricchio Paola, Caprio Emilio, Nazzi Francesco, Gargiulo Giuseppe, and Pennacchio Francesco (2013), “Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees”, Proceedings of the National Academy of Sciences, 110, 46 (Dec. 11, 2013), pp. 18466-18471, issn: 0027-8424, 1091-6490, doi: 10.1073/pnas.1314923110. Cerca con Google

Prisco Gennaro Di, Iannaccone Marco, Ianniello Flora, Ferrara Rosalba, Caprio Emilio, Pennacchio Francesco, and Capparelli Rosanna (2017), “The neonicotinoid insecticide Clothianidin adversely affects immune signaling in a human cell line”, Scientific Reports, 7, 1 (Oct. 18, 2017), p. 13446, issn: 2045-2322, doi: 10.1038/s41598-017-13171-z. Cerca con Google

Prosser Phil and Hart A. D. M. (2005), “Assessing potential exposure of birds to pesticide-treated seeds”, Ecotoxicology, 14, 7, pp. 679-691. Cerca con Google

Rajski Łukasz, Lozano Ana, Uclés Ana, Ferrer Carmen, and Fernández-Alba Amadeo R. (2013), “Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry”, Journal of Chromatography A, 1304 (Supplement C Aug. 23, 2013), pp. 109-120, issn: 0021-9673, doi: 10.1016/j.chroma.2013.06.070. Cerca con Google

Rajski Łukasz, Ramos María del Mar Gómez, and Fernández-Alba Amadeo R. (2017), “Evaluation of MS2 workflows in LC-Q-Orbitrap for pesticide multiresidue methods in fruits and vegetables”, Analytical and Bioanalytical Chemistry (Feb. 21, 2017), pp. 1-12, issn: 1618-2642, 1618-2650, doi: 10.1007/s00216-017-0220-2. Cerca con Google

Reetz J. E., Schulz W., Seitz W., Spiteller M., Zühlke S., Armbruster W., and Wallner K. (2015), “Uptake of Neonicotinoid Insecticides by Water-Foraging Honey Bees (Hymenoptera: Apidae) Through Guttation Fluid of Winter Oilseed Rape”, Journal of Economic Entomology (Oct. 29, 2015), tov287, issn: 0022-0493, 1938-291X, doi: 10.1093/jee/tov287. Cerca con Google

Reetz Jana E., Zühlke Sebastian, Spiteller Michael, and Wallner Klaus (2011), “Neonicotinoid insecticides translocated in guttated droplets of seed-treated maize and wheat: a threat to honeybees?”, Apidologie, 42, 5 (June 30, 2011), pp. 596-606, issn: 0044-8435, 1297-9678, doi: 10.1007/s13592-011-0049-1. Cerca con Google

Richards Jaben, Reif Ruben, Luo Yuzhuo, and Gan Jay (2016), “Distribution of pesticides in dust particles in urban environments”, Environmental Pollution, 214 (July 2016), pp. 290-298, issn: 0269-7491, doi: 10.1016/j.envpol.2016.04.025. Cerca con Google

Rocha Monyque Palagano da, Dourado Priscila Leocadia Rosa, Rodrigues Mayara de Souza, Raposo Jorge Luiz, Grisolia Alexeia Barufatti, and Oliveira Kelly Mari Pires de (2015), “The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil)”, Environmental Monitoring and Assessment, 187, 7 (July 1, 2015), p. 442, issn: 0167-6369, 1573-2959, doi: 10.1007/s10661-015-4475-9. Cerca con Google

Rolke Daniel, Fuchs Stefan, Grünewald Bernd, Gao Zhenglei, and Blenau Wolfgang (2016), “Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera)”, Ecotoxicology (Sept. 19, 2016), pp. 1-18, issn: 0963-9292, 1573-3017, doi: 10.1007/s10646-016-1725-8. Cerca con Google

Rosenkranz Peter, Aumeier Pia, and Ziegelmann Bettina (2010), “Biology and control of Varroa destructor”, Journal of Invertebrate Pathology, 103 (Supplement Jan. 1, 2010), S96-S119, issn: 0022-2011, doi: 10.1016/j.jip.2009.07.016. Cerca con Google

Rundlöf Maj, Andersson Georg K. S., Bommarco Riccardo, Fries Ingemar, Hederström Veronica, Herbertsson Lina, Jonsson Ove, Klatt Björn K., Pedersen Thorsten R., Yourstone Johanna, and Smith Henrik G. (2015), “Seed coating with a neonicotinoid insecticide negatively affects wild bees”, Nature, 521, 7550, pp. 77-80, issn: 0028-0836, doi: 10.1038/nature14420. Cerca con Google

Sánchez-Bayo Francisco, Goka Koichi, and Hayasaka Daisuke (2016), “Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems”, Agroecology and Land Use Systems, p. 71, doi: 10.3389/fenvs. 2016.00071. Cerca con Google

Sánchez-Bayo Francisco, Tennekes Henk A., and Goka Koichi (2013), “Impact of Systemic Insecticides on Organisms and Ecosystems”, doi: 10.5772/52831. SANTE/11945/2015; Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed (2013). Cerca con Google

Schaafsma Arthur, Limay-Rios Victor, Baute Tracey, Smith Jocelyn, and Xue Yingen (2015), “Neonicotinoid Insecticide Residues in Surface Water and Soil Associated with Commercial Maize (Corn) Fields in Southwestern Ontario”, PLOS ONE, 10, 2 (Feb. 24, 2015), e0118139, issn: 1932-6203, doi: 10.1371/ journal.pone.0118139. Cerca con Google

Schaafsma Arthur, Limay-Rios Victor, Xue Yingen, Smith Jocelyn, and Baute Tracey (2016), “Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario”, Environmental Toxicology and Chemistry, 35, 2 (Feb. 1, 2016), pp. 295-302, issn: 1552-8618, doi: 10.1002/etc.3231. Cerca con Google

Seltenrich Nate (2017), “Catching Up with Popular Pesticides: More Human Health Studies Are Needed on Neonicotinoids”, Environmental Health Perspectives, 125, 2 (Feb. 2017), A41-A42, issn: 0091-6765, doi: 10.1289/ehp.125-A41. Cerca con Google

Sengupta Ashmita, Lyons J. Michael, Smith Deborah J., Drewes Jörg E., Snyder Shane A., Heil Ann, and Maruya Keith A. (2014), “The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent”, Environmental Toxicology and Chemistry, 33, 2 (Feb. 1, 2014), pp. 350-358, issn: 1552-8618, doi: 10.1002/etc.2457. Cerca con Google

Sgolastra F., Renzi T., Draghetti S., Medrzycki P., Lodesani M., Maini S., and Porrini C. (2012), “Effects of neonicotinoid dust from maize seed-dressing on honey bees”, Bulletin of Insectology, 65, 2, pp. 273-280, issn: 1721-8861. Cerca con Google

Sgolastra Fabio, Medrzycki Piotr, Bortolotti Laura, Renzi Maria Teresa, Tosi Simone, Bogo Gherardo, Teper Dariusz, Porrini Claudio, Molowny-Horas Roberto, and Bosch Jordi (2017a), “Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species”, Cerca con Google

Pest Management Science, 73, 6 (June 1, 2017), pp. 1236-1243, issn: 1526-4998, doi: 10.1002/ps.4449. Cerca con Google

Sgolastra Fabio, Porrini Claudio, Maini Stefano, Bortolotti Laura, Medrzycki Piotr, Mutinelli Franco, and Lodesani Marco (2017b), “Healthy honey bees and sustainable maize production: why not?”, Bulletin of Insectology, 70, 1, pp. 156-160. Cerca con Google

Sicbaldi Fernando, Sacchi Gian Attilio, Trevisan Marco, and Del Re Attilio A. M. (1997), “Root Uptake and Xylem Translocation of Pesticides from Different Chemical Classes”, Pesticide Science, 50, 2 (June 1, 1997), pp. 111-119, issn: 1096-9063, doi: 10.1002/(SICI)1096-9063(199706)50:2<111::AID-PS573> 3.0.CO;2-3. Cerca con Google

Simmons William R. and Angelini David R. (2017), “Chronic exposure to a neonicotinoid increases expression of antimicrobial peptide genes in the bumblebee Bombus impatiens”, Scientific Reports, 7 (Mar. 21, 2017), p. 44773, issn: 2045-2322, doi: 10.1038/srep44773. Cerca con Google

Simon-Delso N., Amaral-Rogers V., Belzunces L. P., Bonmatin J. M., Chagnon M., Downs C., Furlan L., Gibbons D. W., Giorio C., Girolami V., Goulson D., Kreutzweiser D. P., Krupke C. H., Liess M., Long E., McField M., Mineau P., Mitchell E. a. D., Morrissey C. A., Noome D. A., Pisa L., Settele J., Stark J. D., Tapparo A., Dyck H. Van, Praagh J. Van, Sluijs J. P. Van der, Whitehorn P. R., and Wiemers M. (2014), “Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites”, Environmental Science and Pollution Research, 22, 1 (Sept. 19, 2014), pp. 5-34, issn: 0944-1344, 1614-7499, doi: 10.1007/s11356-014-3470-y. Cerca con Google

Singh Sanjay and Singh T. N. (2013), “Guttation 1: chemistry, crop husbandry and molecular farming”, Phytochemistry Reviews, 12, 1 (Jan. 9, 2013), pp. 147-172, issn: 1568-7767, 1572-980X, doi: 10.1007/s11101-012-9269-x. Cerca con Google

Sospensione cautelativa dell’autorizzazione di impiego per la concia di sementi, dei prodotti fitosanitari contenenti le sostanze attive clothianidin, thiamethoxam, imidacloprid e fipronil, ai sensi dell’articolo 3, comma 1, del decreto del Presidente della Repubblica 23 aprile 2001, n. 290. (2008). Cerca con Google

Swenson Tami L. and Casida John E. (2013), “Neonicotinoid formaldehyde generators: Possible mechanism of mouse-specific epatotoxicity/hepatocarcinogenicity of thiamethoxam”, Toxicology Letters, 216, 2 (Feb. 4, 2013), pp. 139-145, issn: 0378-4274, doi: 10.1016/j.toxlet.2012.11.027. Cerca con Google

Tapparo Andrea, Giorio Chiara, Marzaro Matteo, Marton Daniele, Soldà Lidia, and Girolami Vincenzo (2011), “Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds”, Journal of Environmental Monitoring, 13, 6 (June 8, 2011), pp. 1564-1568, issn: 1464-0333, doi: 10.1039/C1EM10085H. Cerca con Google

Tapparo Andrea, Marton Daniele, Giorio Chiara, Zanella Alessandro, Soldà Lidia, Marzaro Matteo, Vivan Linda, and Girolami Vincenzo (2012), “Assessment of the Environmental Exposure of Honeybees to Particulate Matter Containing Neonicotinoid Insecticides Coming from Corn Coated Seeds”, Environmental Science & Technology, 46, 5 (Mar. 6, 2012), pp. 2592-2599, issn: 0013-936X, doi: 10.1021/es2035152. Cerca con Google

Teló Gustavo Mack, Senseman Scott Allen, Marchesan Enio, Camargo Edinalvo Rabaioli, Jones Trevor, and McCauley Garry (2015), “Residues of hiamethoxam and chlorantraniliprole in rice grain”, Journal of agricultural and food chemistry, 63, 8, pp. 2119-2126. thermofisher.com (2017), https : / / www . thermofisher . com / uk / en / home / products-and-services/promotions/industrial/save-hram-orbitrapms.html (visited on 10/26/2017). Cerca con Google

Tian Fang, Qiang Zhimin, Liu Wenjun, and Ling Wencui (2013), “Methiocarb degradation by free chlorine in water treatment: Kinetics and pathways”, Chemical Engineering Journal, 232, pp. 10-16. Cerca con Google

Tomizawa Motohiro and Casida John E. (2000), “Imidacloprid, Thiacloprid, and Their Imine Derivatives Up-Regulate the 42 Nicotinic Acetylcholine Receptor in M10 Cells”, Toxicology and Applied Pharmacology, 169, 1 (Nov. 15, 2000), pp. 114-120, issn: 0041-008X, doi: 10.1006/taap.2000.9057. Cerca con Google

– (2003), “Selective Toxicity of Neonicotinoids Attributable to Specificity of Insect and Mammalian Nicotinic Receptors”, Annual Review of Entomology, 48, 1, pp. 339-364, doi: 10.1146/annurev.ento.48.091801.112731. Cerca con Google

– (2005), “NEONICOTINOID INSECTICIDE TOXICOLOGY: Mechanisms of Selective Action”, Annual Review of Pharmacology and Toxicology, 45, 1, pp. 247- 268, doi: 10.1146/annurev.pharmtox.45.120403.095930. Cerca con Google

Tosi Simone, Burgio Giovanni, and Nieh James C. (2017), “A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability”, Scientific Reports, 7, 1 (Apr. 26, 2017), p. 1201, issn: 2045-2322, doi: 10.1038/s41598-017-01361-8. Cerca con Google

Tosi Simone, Costa Cecilia, Vesco Umberto, Quaglia Giancarlo, and Guido Giovanni (2018), “A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides”, Science of The Total Environment, 615 (Supplement C Feb. 15, 2018), pp. 208-218, issn: 0048-9697, doi: 10.1016/j.scitotenv.2017.09.226. Cerca con Google

Tsvetkov N., Samson-Robert O., Sood K., Patel H. S., Malena D. A., Gajiwala P. H., Maciukiewicz P., Fournier V., and Zayed A. (2017), “Chronic exposure to neonicotinoids reduces honey bee health near corn crops”, Science, 356, 6345 (June 30, 2017), pp. 1395-1397, issn: 0036-8075, 1095-9203, doi: 10.1126/ science.aam7470. Cerca con Google

Van Dijk Tessa C., Van Staalduinen Marja A., and Van der Sluijs Jeroen P. (2013), “Macro-Invertebrate Decline in SurfaceWater Polluted with Imidacloprid”, PLoS ONE, 8, 5, e62374, doi: 10.1371/journal.pone.0062374. Cerca con Google

vanEngelsdorp Dennis, Hayes Jerry, Underwood Robyn M., and Pettis Jeffery (2008), “A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring Cerca con Google

2008”, PLoS ONE, 3, 12 (Dec. 30, 2008), issn: 1932-6203, doi: 10.1371/ journal.pone.0004071. Cerca con Google

vanEngelsdorp Dennis and Meixner Marina Doris (2010), “A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them”, Journal of Invertebrate Pathology, 103, Supplement, S80-S95, issn: 0022-2011, doi: 10.1016/j.jip.2009.06.011. Cerca con Google

Vázquez P. Parrilla, Lozano A., Uclés S., Ramos M. M. Gómez, and Fernández-Alba A. R. (2015), “A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry”, Journal of Chromatography A, issn: 0021-9673, doi: 10.1016/j.chroma.2015.11.081. Cerca con Google

Walorczyk Stanis{\textbackslash}law (2014), “Validation and use of a QuEChERSbased gas chromatographic–tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty”, Talanta, 120, pp. 106-113. Cerca con Google

Wanumen Andrea C., Carvalho Geraldo A., Medina Pilar, Viñuela Elisa, and Adán Ángeles (2016), “Residual Acute Toxicity of Some Modern Insecticides Toward Two Mirid Predators of Tomato Pests”, Journal of Economic Entomology (Mar. 30, 2016), tow059, issn: 0022-0493, 1938-291X, doi: 10.1093/jee/tow059. Cerca con Google

Weston Donald P., Chen Da, and Lydy Michael J. (2015), “Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California”, Science of The Total Environment, 527-528 (Supplement C Sept. 15, 2015), pp. 18-25, issn: 0048-9697, doi: 10.1016/j.scitotenv.2015.04.095. Cerca con Google

Wettstein Felix E., Kasteel Roy, Garcia Delgado Maria F., Hanke Irene, Huntscha Sebastian, Balmer Marianne E., Poiger Thomas, and Bucheli Thomas D. (2016), “Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains”, Journal of Agricultural and Cerca con Google

Food Chemistry, 64, 33 (Aug. 24, 2016), pp. 6407-6415, issn: 0021-8561, doi:10.1021/acs.jafc.6b02619. Cerca con Google

Whitehorn Penelope R., O’Connor Stephanie, Wackers Felix L., and Goulson Dave (2012), “Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production”, Science, 336, 6079 (Apr. 20, 2012), pp. 351-352, issn: 0036-8075, 1095-9203, doi: 10.1126/science.1215025. Cerca con Google

Wu Xiaohu, Yu Yang, Xu Jun, Dong Fengshou, Liu Xingang, Du Pengqiang, Wei Dongmei, and Zheng Yongquan (2017), “Residue analysis and persistence evaluation of fipronil and its metabolites in cotton using high-performance liquid chromatography-tandem mass spectrometry”, PLOS ONE, 12, 3 (Mar. 14, 2017), e0173690, issn: 1932-6203, doi: 10.1371/journal.pone.0173690. Cerca con Google

Xu Tianbo, Dyer Dan G., McConnell Laura L., Bondarenko Svetlana, Allen Richard, and Heinemann Oliver (2016), “Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications”, Environmental Toxicology and Chemistry, 35, 2 (Feb. 1, 2016), pp. 311-321, issn: 1552-8618, doi: 10.1002/etc.3281. Cerca con Google

Xue Y., Limay-Rios V., Smith J., Baute T., Forero L.G., and Schaafsma A. (2015), “Quantifying Neonicotinoid Insecticide Residues Escaping during Maize Planting with Vacuum Planters”, Environmental Science and Technology, 49, 21, pp. 13003-13011, issn: 0013-936X, doi: 10.1021/acs.est.5b03753. Cerca con Google

Yang En-Cheng, Chang Hui-Chun, Wu Wen-Yen, and Chen Yu-Wen (2012), “Impaired Olfactory Associative Behavior of Honeybee Workers Due to Contamination of Imidacloprid in the Larval Stage”, PLOS ONE, 7, 11 (Nov. 14, 2012), issn: 1932-6203, doi: 10.1371/journal.pone.0049472. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record