Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Chergova, Maya (2018) The role of mitochondrial fission factor Drp1 in angiogenesis. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 16 January 2021 for intellectual property related reasons.
Visibile to: nobody


Abstract (english)

Because of the mostly glycolytic nature of endothelial cell metabolism, the role of mitochondria and mitochondrial shape in angiogenesis, the new blood vessel formation from existing vasculature, has not been studied. Here we show that the mitochondrial fission factor Dynamin related protein 1 (Drp1) unexpectedly limits endosomal VEGFR2 signaling and hence angiogenesis. Drp1 levels were reduced when Human Umbilical Vein Endothelial Cells (HUVECs) were activated, and angiogenesis was accordingly stimulated in HUVECs where DRP1 was silenced. In vivo, constitutive and inducible Drp1 ablation in endothelial cells increased early stage postnatal retina vascular sprouting. Mechanistically, upon VEGF stimulation Drp1 interacted with the internalized VEGFR2 and its early endosome partner Rab5 at the endosomal VEGFR2 signaling platform. Drp1 deletion unleashed VEGFR2 activation and its downstream signaling, indicating that the VEGFR2-Rab5-Drp1 interaction limits VEGFR2 mediated angiogenesis. Our data reveal an unexpected extramitochondrial function of Drp1 in endothelial cells, where it localizes also at the endosomes to constrain the endosomal VEGFR2 signaling platform.

Abstract (italian)

A causa della natura prevalentemente glicolitica del metabolismo delle cellule endoteliali, il ruolo e la morfologia dei mitocondri nell'angiogenesi, ovvero il processo in cui avviene la formazione di nuovi vasi sanguigni a partire da vasi preesistenti, non è stato studiato. In questa tesi viene mostrato che il fattore di fissione mitocondriale Dynamin related protein 1 (Drp1) limita inaspettatamente la via di segnalazione di VEGFR2 endosomiale e quindi l'angiogenesi. È stato osservato che i livelli di Drp1 sono ridotti nelle cellule endoteliali attivate di vena ombelicale umana (HUVEC); quindi per comprendere il ruolo di Drp1, è stato stimolato il processo di angiogenesi in HUVEC in cui è stato effettuato il silenziamento genico di DRP1. In vivo, la rimozione costitutiva e inducibile di Drp1 nelle cellule endoteliali ha aumentato la vascolarizzazione nella retina durante i primi stadi della fase postnatale. Il meccanismo molecolare proposto prevede che in seguito alla stimolazione di Drp1 da parte di VEGF, esso interagisca con VEGFR2 internalizzato nell’endosoma e con Rab5, GTPasi tipica degli endosomi precoci. La delezione di Drp1 scatena invece l'attivazione di VEGFR2 e la sua via di segnalazione a valle, indicando che l'interazione di VEGFR2-Rab5-Drp1 limita l'angiogenesi mediata da VEGFR2. I dati raccolti rivelano dunque un'inaspettata funzione extramitocondriale di Drp1 nelle cellule endoteliali, in cui si localizza in corrispondenza degli endosomi per limitare la via di segnalazione endosomiale di VEGFR2.

EPrint type:Ph.D. thesis
Tutor:Scorrano, Luca
Supervisor:Herkenne , Stephanie
Ph.D. course:Ciclo 30 > Corsi 30 > BIOSCIENZE
Data di deposito della tesi:15 January 2018
Anno di Pubblicazione:2018
Key Words:mitochondria, fission, endosomes, angiogenesis, endthelial cells, Drp1, VEGFR2, Rab5
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:10713
Depositato il:16 Nov 2018 13:10
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Arasaki, K., Shimizu, H., Mogari, H., Nishida, N., Hirota, N., Furuno, A., Kudo, Y., Baba, M., Baba, N., Cheng, J., et al. (2015). A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Developmental cell 32, 304-317. Cerca con Google

Ballmer-Hofer, K., Andersson, A.E., Ratcliffe, L.E., and Berger, P. (2011). Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118, 816-826. Cerca con Google

Bierhansl, L., Conradi, L.C., Treps, L., Dewerchin, M., and Carmeliet, P. (2017). Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology 32, 126-140. Cerca con Google

Blanco, R., and Gerhardt, H. (2013). VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor perspectives in medicine 3, a006569. Cerca con Google

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932-936. Cerca con Google

Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435-439. Cerca con Google

Chang, C.R., Manlandro, C.M., Arnoult, D., Stadler, J., Posey, A.E., Hill, R.B., and Blackstone, C. (2010). A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J BiolChem 285, 32494-32503. Cerca con Google

Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160, 189-200. Cerca con Google

Chittenden, T.W., Claes, F., Lanahan, A.A., Autiero, M., Palac, R.T., Tkachenko, E.V., Elfenbein, A., Ruiz de Almodovar, C., Dedkov, E., Tomanek, R., et al. (2006). Selective regulation of arterial branching morphogenesis by synectin. Developmental cell 10, 783-795. Cerca con Google

Cho, B., Choi, S.Y., Cho, H.M., Kim, H.J., and Sun, W. (2013). Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Experimental neurobiology 22, 149-157. Cerca con Google

Christoforidis, S., McBride, H.M., Burgoyne, R.D., and Zerial, M. (1999). The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621-625. Cerca con Google

Chung, A.S., Lee, J., and Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature reviews Cancer 10, 505-514. Cerca con Google

Cipolat, S., O., M.d.B., B., D.Z., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. ProcNatlAcadSciUSA 101, 15927-15932. Cerca con Google

Cudmore, M.J., Ramma, W., Cai, M., Fujisawa, T., Ahmad, S., Al-Ani, B., and Ahmed, A. (2012). Resveratrol inhibits the release of soluble fms-like tyrosine kinase (sFlt-1) from human placenta. Am J Obstet Gynecol 206, 253 e210-255. Cerca con Google

De Smet, F., Segura, I., De Bock, K., Hohensinner, P.J., and Carmeliet, P. (2009). Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arteriosclerosis, thrombosis, and vascular biology 29, 639-649. Cerca con Google

Demory, M.L., Boerner, J.L., Davidson, R., Faust, W., Miyake, T., Lee, I., Huttemann, M., Douglas, R., Haddad, G., and Parsons, S.J. (2009). Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 284, 36592-36604. Cerca con Google

Ehling, M., Adams, S., Benedito, R., and Adams, R.H. (2013). Notch controls retinal blood vessel maturation and quiescence. Development 140, 3051-3061. Cerca con Google

Eichmann, A., and Simons, M. (2012). VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24, 188-193. Cerca con Google

Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K.S., Powell-Braxton, L., Hillan, K.J., and Moore, M.W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-442. Cerca con Google

Fong, G.H., Rossant, J., Gertsenstein, M., and Breitman, M.L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70. Cerca con Google

Francy, C.A., Alvarez, F.J., Zhou, L., Ramachandran, R., and Mears, J.A. (2015). The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J Biol Chem 290, 11692-11703. Cerca con Google

Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., Nunnari, J., and Voeltz, G.K. (2011). ER Tubules Mark Sites of Mitochondrial Division. Science 334, 358-362. Cerca con Google

Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology 161, 1163-1177. Cerca con Google

Giedt, R.J., Yang, C., Zweier, J.L., Matzavinos, A., and Alevriadou, B.R. (2012). Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radic Biol Med 52, 348-356. Cerca con Google

Greenberg, J.I., Shields, D.J., Barillas, S.G., Acevedo, L.M., Murphy, E., Huang, J., Scheppke, L., Stockmann, C., Johnson, R.S., Angle, N., et al. (2008). A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809-813. Cerca con Google

Hatch, A.L., Ji, W.K., Merrill, R.A., Strack, S., and Higgs, H.N. (2016). Actin filaments as dynamic reservoirs for Drp1 recruitment. Molecular biology of the cell 27, 3109-3121. Cerca con Google

Hellstrom, M., Phng, L.K., Hofmann, J.J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A.K., Karlsson, L., Gaiano, N., et al. (2007). Dll4 signaling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776-780. Cerca con Google

Hong, C.C., Peterson, Q.P., Hong, J.Y., and Peterson, R.T. (2006). Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol 16, 1366-1372. Cerca con Google

Ishihara, N., Eura, Y., and Mihara, K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. Journal of cell science 117, 6535-6546. Cerca con Google

Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S.O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., et al. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11, 958-966. Cerca con Google

Kasahara, A., Cipolat, S., Chen, Y., Dorn, G.W., and Scorrano, L. (2013). Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342, 734-737. Cerca con Google

Kashatus, J.A., Nascimento, A., Myers, L.J., Sher, A., Byrne, F.L., Hoehn, K.L., Counter, C.M., and Kashatus, D.F. (2015). Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Molecular cell 57, 537-551. Cerca con Google

Kerr, B.A., West, X.Z., Kim, Y.W., Zhao, Y., Tischenko, M., Cull, R.M., Phares, T.W., Peng, X.D., Bernier-Latmani, J., Petrova, T.V., et al. (2016). Stability and function of adult vasculature is sustained by Akt/Jagged1 signaling axis in endothelium. Nature communications 7, 10960. Cerca con Google

Kisanuki, Y.Y., Hammer, R.E., Miyazaki, J., Williams, S.C., Richardson, J.A., and Yanagisawa, M. (2001). Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230, 230-242. Cerca con Google

Korn, C., and Augustin, H.G. (2015). Mechanisms of Vessel Pruning and Regression. Developmental cell 34, 5-17. Cerca con Google

Korobova, F., Gauvin, T.J., and Higgs, H.N. (2014). A role for myosin II in mammalian mitochondrial fission. Curr Biol 24, 409-414. Cerca con Google

Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C., and Dejana, E. (2006). Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. The Journal of cell biology 174, 593-604. Cerca con Google

Lanahan, A., Zhang, X., Fantin, A., Zhuang, Z., Rivera-Molina, F., Speichinger, K., Prahst, C., Zhang, J., Wang, Y., Davis, G., et al. (2013). The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Developmental cell 25, 156-168. Cerca con Google

Lanahan, A.A., Hermans, K., Claes, F., Kerley-Hamilton, J.S., Zhuang, Z.W., Giordano, F.J., Carmeliet, P., and Simons, M. (2010). VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Developmental cell 18, 713-724. Cerca con Google

Li, X., and Gould, S.J. (2003). The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. JBiolChem 278, 17012-17020. Cerca con Google

Lin, J.R., Shen, W.L., Yan, C., and Gao, P.J. (2015). Downregulation of dynamin-related protein 1 contributes to impaired autophagic flux and angiogenic function in senescent endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 35, 1413-1422. Cerca con Google

Macdonald, P.J., Stepanyants, N., Mehrotra, N., Mears, J.A., Qi, X., Sesaki, H., and Ramachandran, R. (2014). A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Molecular biology of the cell 25, 1905-1915. Cerca con Google

Marsboom, G., Toth, P.T., Ryan, J.J., Hong, Z., Wu, X., Fang, Y.H., Thenappan, T., Piao, L., Zhang, H.J., Pogoriler, J., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circulation research 110, 1484-1497. Cerca con Google

Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J.H., Wernstedt, C., et al. (2005). VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. The EMBO journal 24, 2342-2353. Cerca con Google

Monvoisin, A., Alva, J.A., Hofmann, J.J., Zovein, A.C., Lane, T.F., and Iruela-Arispe, M.L. (2006). VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Developmental dynamics : an official publication of the American Association of Anatomists 235, 3413-3422. Cerca con Google

Nielsen, E., Christoforidis, S., Uttenweiler-Joseph, S., Miaczynska, M., Dewitte, F., Wilm, M., Hoflack, B., and Zerial, M. (2000). Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. The Journal of cell biology 151, 601-612. Cerca con Google

Ortiz-Sandoval, C.G., Hughes, S.C., Dacks, J.B., and Simmen, T. (2014). Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cellular logistics 4, e986399. Cerca con Google

Pernas, L., and Scorrano, L. (2016). Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol 78, 505-531. Cerca con Google

Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887. Cerca con Google

Rubino, M., Miaczynska, M., Lippe, R., and Zerial, M. (2000). Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J Biol Chem 275, 3745-3748. Cerca con Google

Shah, A.V., Birdsey, G.M., Peghaire, C., Pitulescu, M.E., Dufton, N.P., Yang, Y., Weinberg, I., Osuna Almagro, L., Payne, L., Mason, J.C., et al. (2017). The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signaling and vascular stability. Nature communications 8, 16002. Cerca con Google

Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., and Schuh, A.C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66. Cerca con Google

Simons, M. (2012). An inside view: VEGF receptor trafficking and signaling. Physiology 27, 213-222. Cerca con Google

Simons, M., Gordon, E., and Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signaling. Nature reviews Molecular cell biology 17, 611-625. Cerca con Google

Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. MolBiolCell 12, 2245-2256. Cerca con Google

Soderberg, O., Leuchowius, K.J., Gullberg, M., Jarvius, M., Weibrecht, I., Larsson, L.G., and Landegren, U. (2008). Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45, 227-232. Cerca con Google

Stahl, A., Connor, K.M., Sapieha, P., Chen, J., Dennison, R.J., Krah, N.M., Seaward, M.R., Willett, K.L., Aderman, C.M., Guerin, K.I., et al. (2010). The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51, 2813-2826. Cerca con Google

Villasenor, R., Nonaka, H., Del Conte-Zerial, P., Kalaidzidis, Y., and Zerial, M. (2015). Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes. eLife 4. Cerca con Google

Wakabayashi, J., Zhang, Z., Wakabayashi, N., Tamura, Y., Fukaya, M., Kensler, T.W., Iijima, M., and Sesaki, H. (2009). The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186, 805-816. Cerca con Google

Wang, W., Wang, Y., Long, J., Wang, J., Haudek, S.B., Overbeek, P., Chang, B.H., Schumacker, P.T., and Danesh, F.R. (2012). Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15, 186-200. Cerca con Google

Waterham, H.R., Koster, J., van Roermund, C.W., Mooyer, P.A., Wanders, R.J., and Leonard, J.V. (2007). A lethal defect of mitochondrial and peroxisomal fission. NEnglJMed 356, 1736-1741. Cerca con Google

Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat RevMol Cell Biol 11, 872-884. Cerca con Google

Yoon, Y., Pitts, K.R., Dahan, S., and McNiven, M.A. (1998). A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. JCell Biol 140, 779-793. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record