Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Zanetti, Giulia (2018) Study of the mechanism of action of botulinum neurotoxins to develop inhibitors and to improve their pharmacological application. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (Tesi Dottorato)
Thesis not accessible until 01 January 2021 for intellectual property related reasons.
Visibile to: nobody

28Mb

Abstract (english)

Seven antigenically different botulinum neurotoxin types (BoNT/A through /G) and many subtypes (BoNT/A1, BoNT/A2, etc.) constitute a growing family of bacterial exotoxins that specifically paralyze the cholinergic peripheral nerve terminals of vertebrates. Most notably, BoNTs intoxicate the neuromuscular junction, thereby causing a severe neuro-muscular paralysis known as botulism.
Despite the heterogeneity of their primary sequence, BoNTs are structurally and functionally conserved and composed of a 50 kDa light chain (L) and a 100 kDa heavy chain (H), linked via a unique, and fundamental, disulphide bridge. The C-terminal (HC, 50 kDa) and the N-terminal halves (HN, 50 kDa) of H constitute a sophisticated nanomolecular machine that mediates both the neurospecific binding of the molecule to peripheral nerve endings and the delivery of L into the neuronal cytosol. L is a zinc-dependent protease that specifically cleaves SNARE proteins (SNAP-25 (synaptosomal-associated protein of 25 kDa), VAMP (vesicle-associated membrane protein) and Stx (syntaxin)), the three proteins that form the SNARE complex which is the core of the nanomachine that mediates the fusion of synaptic vesicles (SV) with the presynaptic membrane, thus allowing neurotransmitter release. Cleavage causes impairment of SNARE complex assembly/function and thus a blockade of neuroexocytosis, which results in the flaccid paralysis typical of botulism. Patients can die for respiratory failure but, if vital functions are maintained by intensive care, they fully recover as the botulism neuroparalysis is completely reversible.
The mechanism of action of BoNTs can be conveniently divided into five fundamental steps: 1) binding to nerve terminals, 2) internalization by SV recycling, 3) pH-dependent translocation of L into the cytoplasm, 4) reduction of the interchain disulphide bond and 5) hydrolysis of SNARE proteins. BoNT/A and /E cleave SNAP-25, BoNT/B, /D, /F and /G cleave VAMP. BoNT/C is unique because it cleaves two substrates, SNAP-25 and syntaxins.
BoNTs are the most poisonous substances known to vertebrates, and are classified as potential biological weapons. Currently, the only treatment available consists in passive immunisation with antisera raised against the seven main toxin types. Unfortunately, antisera are variably reactive against subtypes and, moreover, no licensed vaccine are available for human use. This situation has promoted an intense research to develop new antitoxins.
At the same time, neurospecificity and reversibility of action make BoNTs the therapeutic of choice for the treatment of a heterogeneous number of human diseases characterized by the hyperactivity of peripheral nerve terminals.
Given this dichotomy of BoNTs, the aim of my PhD has been double: i) to develop pan-inhibitors that would prevent/treat botulism and ii) to better understand the toxin functioning in vivo to improve its use in human therapy.
i) BoNT’s intoxication strictly depends on the reduction of the interchain disulphide bond. Without it, L remains attached to H and cannot exert its catalytic activity. By using a pharmacological approach, I found that the Thioredoxin-Thioredoxin Reductase (Trx-TrxR) system is responsible for the reduction of all BoNT serotypes and that inhibitors of Trx-TrxR strongly reduce their neurotoxicity in vitro and in vivo in a model that recapitulates clinical botulism. These results are remarkable because they show for the first time that the different BoNTs can be inhibited by a single drug (a pan-inhibitor) by impacting on their common mechanism of action.
Following the same concept, the trafficking of BoNTs within the synaptic terminal represents another rational target to develop pan-inhibitors. Recently, it was reported that the chemical compound EGA inhibits pathogens or toxins that enter cells via acidic endosomes. Since also BoNTs have a similar requirement to trigger the translocation of L into the cytosol, I tested the activity of EGA and I found that it significantly inhibits the neurotoxic activity of BoNT/A, BoNT/B and BoNT/D in vitro and in vivo, tested because are serotypes frequently involved in human and animal botulism, respectively. Interestingly, none of the main steps underlying toxin’s cellular mechanism is directly affected by the drug. Rather, I provided indirect evidence that EGA interferes with the sorting of BoNTs inside nerve terminals, hampering their trafficking toward acidic compartments essential for L translocation.
Together, these studies show that BoNT’s activity can be significantly mitigated independently from their intertypic differences by using drugs targeting common steps of their mechanism of action. These inhibitors represent lead compounds for the development of new drugs against botulism.
ii) BoNTs are successful human therapeutic agents. Despite their use is almost invariably restricted to BoNT/A and BoNT/B, recent data on human volunteers suggest that BoNT/C can be used to treat non-responder individuals with similarly effective pharmacological outcomes. However, little is known about the mechanism by which BoNT/C paralyzes peripheral nerve terminals in vivo. In fact, at variance from all the other BoNTs, BoNT/C cleaves two substrates, SNAP-25 and syntaxin-1A/1B. Therefore, I undertook a study to evaluate the individual contribution of SNAP-25 and syntaxin cleavage to BoNT/C activity in vivo. I took advantage from a recent publication where two triple-mutated BoNT/C L, L200W/M221W/I226W (BoNT/C α-3W) and S51T/R52N/N53P (BoNT/C α-51), were reported to cleave selectively syntaxins.
Thanks to a collaboration with Dr. T. Binz, I received the full-length BoNT/C mutants produced by recombinant methods and I tested their biochemical and toxicological properties. I found that both mutants cleave syntaxin with similar efficiency with respect to wild type BoNT/C (BoNT/C-wt), but unexpectedly, they maintain a residual activity on SNAP-25 which is higher for BoNT/C α-3W than for BoNT/C α-51. Interestingly, this different activity on SNAP-25 strictly correlates with the lethality of mutant toxins in vivo. At the same time, the proteolysis of syntaxin provides a substantial and prolonged neuromuscular impairment without the complete blockage of neurotransmission. These results suggest that SNAP-25 cleavage is the main determinant of BoNT/C neuroparalyzing activity and that BoNT/C derivatives with selective activity for syntaxins represent an appealing strategy to develop BoNTs endowed with long lasting activity and a wide safety margin.

Abstract (italian)

Le neurotossine botuliniche (BoNTs) sono esotossine batteriche, agenti eziologici del botulismo. In base alla diversa antigenicità si possono dividere in sette sierotipi principali (BoNT/A-/G) che comprendono ulteriori sottotipi (BoNT/A1, BoNT/A2 ecc.). Presentano tutte tropismo specifico per la giunzione neuromuscolare dove esercitano un’azione neuroparalizzante.
Nonostante la sequenza amminoacidica eterogenea, dal punto di vista strutturale e funzionale le BoNTs appaiono altamente conservate: sono composte da due catene polipeptidiche, una pesante di 100 kDa (H) e una leggera di 50 kDa (L), unite da un unico, ma fondamentale, ponte disolfuro. Il C-terminale (HC, 50 kDa) e l’N-terminale (HN, 50 kDa) di H costituiscono una sofisticata macchina molecolare che media sia il legame neurospecifico della molecola ai terminali nervosi periferici che la traslocazione di L nel citoplasma dei motoneuroni. L è una proteasi zinco-dipendente che idrolizza in modo specifico le proteine SNARE (SNAP-25 (synaptosomal-associated protein of 25 kDa), VAMP (vesicle-associated membrane protein) and Stx (syntaxin)), tre proteine che costituiscono il nucleo della macchina molecolare, il cosiddetto “SNARE complex”, che media la fusione delle vescicole sinaptiche (SV) con la membrana presinaptica permettendo il rilascio di neurotrasmettitore. Il taglio di una di queste importanti proteine provoca una riduzione nella funzionalità del complesso e quindi un blocco della neuroesocitosi: ciò determina la paralisi flaccida tipica del botulismo. I pazienti possono morire di insufficienza respiratoria ma, se le funzioni vitali vengono sostenute, essi recuperano completamente la mobilità in quanto la neuroparalisi è reversibile.
Il meccanismo d’azione delle BoNTs può essere riassunto in cinque fasi fondamentali: 1) riconoscimento specifico e legame al terminale sinaptico, 2) internalizzazione tramite il riciclo delle SV, 3) traslocazione pH-dipendente di L nel citoplasma 4) riduzione del ponte disolfuro intercatena e 5) idrolisi delle proteine SNARE.
In particolare, la BoNT/A e BoNT/E agiscono sulla SNAP-25, mentre BoNT/B, /D, /F e /G idrolizzano la VAMP. La BoNT/C è unica perché taglia sia SNAP-25 che la proteina sintaxina.
Le BoNTs sono le sostanze più velenose note, classificate dal Centro per il Controllo e la Prevenzione delle Malattie (CDC) come agenti in categoria A, cioè tossine potenzialmente utilizzabili come armi biologiche. Attualmente non esiste nessun vaccino approvato per l’uso umano e l'unico trattamento disponibile consiste nell'immunizzazione passiva con antisieri prodotti per contrastare i sette sierotipi principali e di conseguenza variabilmente reattivi nei confronti dei sottotipi. Questa situazione ha promosso un'intensa ricerca per sviluppare nuove antitossine.
Tuttavia, allo stesso tempo, la loro neurospecificità e la reversibilità della paralisi rendono le BoNTs degli agenti terapeutici di prima scelta per il trattamento di un’ampia varietà di malattie umane caratterizzate da iperattività dei terminali nervosi periferici.
Considerando questa dicotomia, il mio progetto di dottorato si può dividere in due parti principali aventi lo scopo di: i) sviluppare pan-inibitori in grado di prevenire/trattare il botulismo e ii) capire meglio il funzionamento delle BoNTs in vivo per migliorare e ampliare l'uso di queste molecole in terapia.
i) Considerando il meccanismo d’intossicazione delle BoNTs, uno step fondamentale è la riduzione del ponte disolfuro intercatena, senza la quale L rimane attaccata a H e non può esercitare la sua attività catalitica. Utilizzando un approccio farmacologico ho dimostrato che il sistema Tioredossina-Tioredossina Reduttasi (Trx-TrxR) è il principale responsabile della riduzione per tutti i sierotipi di tossina botulinica e che inibitori di questa coppia redox producono una sostanziale protezione dall’intossicazione sia in vitro che in vivo in un modello che ricapitola il botulismo. Questo risultato è importante perché è il primo che mostra che sierotipi diversi di BoNTs possono essere inibiti da un'unica molecola (pan-inibitore) che agisce sul meccanismo d’azione comune.
Un altro aspetto importante nella tossicità di queste neurotossine è il loro traffico all'interno del terminale nervoso. Questo potrebbe essere un altro target razionale.
Recentemente, è stato riportato che il composto chimico EGA inibisce agenti patogeni o tossine che necessitano del passaggio attraverso compartimenti acidi (endosomi) per poter penetrare nel citoplasma di cellule bersaglio. Dal momento che anche le BoNTs necessitano di condizioni simili perché avvenga la traslocazione di L nel citoplasma, ho saggiato l’effetto di questa molecola sull’azione delle BoNTs. Consistentemente, ho trovato che EGA inibisce significativamente l’attività neurotossica della BoNT/A, BoNT/B e BoNT/D in vitro e in vivo. Sono stati scelti questi tre sierotipi perché sono quelli più comunemente associati al botulismo umano (BoNT/A e /B) ed animale (BoNT/D). È interessante notare come nessuno degli steps del meccanismo d’azione sia direttamente inibito dalla molecola: ciò è compatibile con la possibilità che EGA interferisca con il traffico delle BoNTs all’interno del terminale nervoso ostacolando il raggiungimento del compartimento acido essenziale per la traslocazione di L.
Complessivamente, questi studi mostrano come l’attività delle BoNTs possa essere significativamente inibita, indipendentemente dalle loro differenze antigeniche, usando molecole che agiscano su steps comuni del meccanismo d’azione. Questi inibitori rappresentano lead compounds per lo sviluppo di farmaci capaci di prevenire il botulismo.
ii) Le BoNTs sono agenti terapeutici di successo. Nonostante il loro impiego sia quasi esclusivamente limitato alle BoNT/A e BoNT/B, dati recenti ottenuti su volontari umani suggeriscono che la BoNT/C possa essere utilizzata per trattare individui non rispondenti a BoNT/A e BoNT/B con risultati farmacologici altrettanto efficaci.
Tuttavia, al momento ci sono poche conoscenze riguardo al meccanismo con il quale la BoNT/C paralizza i terminali nervosi periferici in vivo: infatti, a differenza di tutti gli altri sierotipi, la BoNT/C è l'unica che idrolizza due substrati, SNAP-25 e sintaxina-1A/1B. Per questo motivo, ho intrapreso uno studio per valutare il contributo individuale del taglio di SNAP-25 e di quello della sintaxina nell’attività della BoNT/C in vivo.
Per fare questo mi sono basata su una recente pubblicazione in cui è stato riportato che due BoNT/C triple-mutanti, L200W/M221W/I226W (BoNT/C α-3W) e S51T/R52N/N53P (BoNT/C α-51), sono risultate selettive per la sintaxina.
Grazie alla collaborazione col gruppo del Dr. T. Binz, ho ottenuto queste due BoNT/C mutanti, prodotte con metodi ricombinanti, e ne ho testato le loro proprietà biochimiche e tossicologiche. Quello che ho scoperto è che entrambe le triple-mutanti idrolizzano la sintaxina con un’efficienza simile alla tossina WT (BoNT/C-wt) ma, inaspettatamente, entrambe mantengono anche un'attività residua nei confronti della SNAP-25 (più elevata per la BoNT/C α-3W rispetto alla BoNT/C α-51). È interessante notare come questa attività sulla SNAP-25 sia strettamente correlata alla letalità delle tossine mutanti in vivo. D’altra parte, la proteolisi della sintaxina fornisce una sostanziale e prolungata compromissione neuromuscolare senza provocare il completo blocco della neurotrasmissione. Questi risultati suggeriscono che il taglio di SNAP-25 sia il principale determinante dell'attività neuroparalizzante e che derivati della BoNT/C, aventi attività selettiva per le sintaxina, potrebbero rappresentare una buona strategia per lo sviluppo di BoNTs dotate di attività prolungata e con un ampio margine di sicurezza.

EPrint type:Ph.D. thesis
Tutor:Montecucco, Cesare
Ph.D. course:Ciclo 30 > Corsi 30 > SCIENZE BIOMEDICHE SPERIMENTALI
Data di deposito della tesi:12 January 2018
Anno di Pubblicazione:12 January 2018
Key Words:Neurotossine botuliniche; Sistema della tioredossina; Neuroparalisi periferica; Tossine mutanti Botulinum neurotoxins; Thioredoxin system; Peripheral neuroparalysis; Mutant toxins
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/04 Patologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche
Codice ID:10717
Depositato il:25 Oct 2018 15:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Kandel Erik R. SJH, Jessel Thomas M.(2000) Principles of Neural Sciences. Fourth edition, McGraw-Hill. Cerca con Google

2. Duregotti E, Zanetti G, Scorzeto M, et al. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction. Toxins (Basel). 2015;7(12):5322-5336. Cerca con Google

3. Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol. 2014;12(8):535-549. Cerca con Google

4. Sudhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol. 2011;3(12). Cerca con Google

5. Harlow ML, Szule JA, Xu J, Jung JH, Marshall RM, McMahan UJ. Alignment of synaptic vesicle macromolecules with the macromolecules in active zone material that direct vesicle docking. PLoS One. 2013;8(7):e69410. Cerca con Google

6. Zhao R, Masayasu H, Holmgren A. Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc Natl Acad Sci U S A. 2002;99(13):8579-8584. Cerca con Google

7. Sudhof TC. The presynaptic active zone. Neuron. 2012;75(1):11-25. Cerca con Google

8. Sudhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80(3):675-690. Cerca con Google

9. Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W. The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J Neurochem. 2009;108(3):662-675. Cerca con Google

10. Megighian A, Zordan M, Pantano S, et al. Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction. J Cell Sci. 2013;126(Pt 14):3134-3140. Cerca con Google

11. Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci. 2014;71(5):793-811. Cerca con Google

12. Rickman C, Hu K, Carroll J, Davletov B. Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J. 2005;388(Pt 1):75-79. Cerca con Google

13. Sudhof TC. A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med. 2013;19(10):1227-1231. Cerca con Google

14. Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature. 2012;490(7419):201-207. Cerca con Google

15. Saheki Y, De Camilli P. Synaptic vesicle endocytosis. Cold Spring Harb Perspect Biol. 2012;4(9):a005645. Cerca con Google

16. Montecucco C, Rasotto MB. On botulinum neurotoxin variability. MBio. 2015;6(1). Cerca con Google

17. Hill KK, Smith TJ. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol. 2013;364:1-20. Cerca con Google

18. Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol. 2015;166(4):290-302. Cerca con Google

19. Moriishi K, Koura M, Abe N, et al. Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta. 1996;1307(2):123-126. Cerca con Google

20. Moriishi K, Koura M, Fujii N, et al. Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl Environ Microbiol. 1996;62(2):662-667. Cerca con Google

21. Setlow P JESatsIMD, LR Beuchat (Eds.), Food Micro- biology. Fundamentals and Frontiers. 3rd ed. ASM Press, Washington, DC, pp. 35–67. Cerca con Google

22. Hatheway CL JECts-baILC, A Balows, M Sussman (Eds.), Topley & Wilson’s Microbiology and Infections. 9th ed. Vol. 2. Systematic Bacteriology. Arnold, London, pp. 731–782. Cerca con Google

23. Smith, LDS and Sugiyama H (1988) Botulism: the organism it, the disease, 2nd ed., Charles C Thomas S, IL. Cerca con Google

24. Johnson EA, Montecucco C. Botulism. Handb Clin Neurol. 2008;91:333-368. Cerca con Google

25. Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017;69(2):200-235. Cerca con Google

26. Koepke R, Sobel J, Arnon SS. Global occurrence of infant botulism, 1976-2006. Pediatrics. 2008;122(1):e73-82. Cerca con Google

27. Chertow DS, Tan ET, Maslanka SE, et al. Botulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. Jama. 2006;296(20):2476-2479. Cerca con Google

28. Arnon SS, Schechter R, Inglesby TV, et al. Botulinum toxin as a biological weapon: medical and public health management. Jama. 2001;285(8):1059-1070. Cerca con Google

29. Rawlings ND, Barrett AJ. Homologues of insulinase, a new superfamily of metalloendopeptidases. Biochem J. 1991;275 ( Pt 2):389-391. Cerca con Google

30. Schiavo G, Rossetto O, Santucci A, DasGupta BR, Montecucco C. Botulinum neurotoxins are zinc proteins. J Biol Chem. 1992;267(33):23479-23483. Cerca con Google

31. Gu S, Rumpel S, Zhou J, et al. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science. 2012;335(6071):977-981. Cerca con Google

32. Eswaramoorthy S, Sun J, Li H, Singh BR, Swaminathan S. Molecular Assembly of Clostridium botulinum progenitor M complex of type E. Sci Rep. 2015;5:17795. Cerca con Google

33. Miyata K, Yoneyama T, Suzuki T, et al. Expression and stability of the nontoxic component of the botulinum toxin complex. Biochem Biophys Res Commun. 2009;384(1):126-130. Cerca con Google

34. Ohishi I, Sugii S, Sakaguchi G. Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect Immun. 1977;16(1):107-109. Cerca con Google

35. Ohishi I, Sakaguchi G. Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect Immun. 1980;28(2):303-309. Cerca con Google

36. Couesnon A, Molgo J, Connan C, Popoff MR. Preferential entry of botulinum neurotoxin A Hc domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine. PLoS Pathog. 2012;8(3):e1002583. Cerca con Google

37. Amatsu S, Sugawara Y, Matsumura T, Kitadokoro K, Fujinaga Y. Crystal structure of Clostridium botulinum whole hemagglutinin reveals a huge triskelion-shaped molecular complex. J Biol Chem. 2013;288(49):35617-35625. Cerca con Google

38. Fujinaga Y, Sugawara Y, Matsumura T. Uptake of botulinum neurotoxin in the intestine. Curr Top Microbiol Immunol. 2013;364:45-59. Cerca con Google

39. Lee K, Gu S, Jin L, et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog. 2013;9(10):e1003690. Cerca con Google

40. Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon. 2015;107(Pt A):9-24. Cerca con Google

41. Lee K, Lam KH, Kruel AM, et al. Inhibiting oral intoxication of botulinum neurotoxin A complex by carbohydrate receptor mimics. Toxicon. 2015;107(Pt A):43-49. Cerca con Google

42. Lam KH, Jin R. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery. Curr Opin Struct Biol. 2015;31:89-95. Cerca con Google

43. Simpson L. The life history of a botulinum toxin molecule. Toxicon. 2013;68:40-59. Cerca con Google

44. Lamanna C. The most poisonous poison. Science. 1959;130(3378):763-772. Cerca con Google

45. Johnson EA, Montecucco C. Botulism. Handb Clin Neurol. 2008;91:333-368. Cerca con Google

46. Binz T, Rummel A. Cell entry strategy of clostridial neurotoxins. J Neurochem. 2009;109(6):1584-1595. Cerca con Google

47. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5(10):898-902. Cerca con Google

48. Rummel A. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol. 2013;364:61-90. Cerca con Google

49. Swaminathan S. Molecular structures and functional relationships in clostridial neurotoxins. Febs j. 2011;278(23):4467-4485. Cerca con Google

50. Simpson LL. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol. 2004;44:167-193. Cerca con Google

51. Rossetto O, Montecucco C. Presynaptic neurotoxins with enzymatic activities. Handb Exp Pharmacol. 2008(184):129-170. Cerca con Google

52. Pirazzini M, Bordin F, Rossetto O, Shone CC, Binz T, Montecucco C. The thioredoxin reductase-thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett. 2013;587(2):150-155. Cerca con Google

53. Mazzocchio R, Caleo M. More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist. 2015;21(1):44-61. Cerca con Google

54. Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M. Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci. 2011;31(44):15650-15659. Cerca con Google

55. Restani L, Giribaldi F, Manich M, et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog. 2012;8(12):e1003087. Cerca con Google

56. Dolly JO, Black J, Williams RS, Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984;307(5950):457-460. Cerca con Google

57. Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends in biochemical sciences. 1986;11(8):314-317. Cerca con Google

58. Matteoli M, Verderio C, Rossetto O, et al. Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci U S A. 1996;93(23):13310-13315. Cerca con Google

59. Van Heyningen WE. Tentative identification of the tetanus toxin recptor in nervous tissue. J Gen Microbiol. 1959;20(2):310-320. Cerca con Google

60. Simpson LL, Rapport MM. The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J Neurochem. 1971;18(9):1751-1759. Cerca con Google

61. Ledeen RW, Diebler MF, Wu G, Lu ZH, Varoqui H. Ganglioside composition of subcellular fractions, including pre- and postsynaptic membranes, from Torpedo electric organ. Neurochem Res. 1993;18(11):1151-1155. Cerca con Google

62. Sonnino S, Mauri L, Chigorno V, Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology. 2007;17(1):1r-13r. Cerca con Google

63. Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol. 2000;7(8):693-699. Cerca con Google

64. Rummel A, Mahrhold S, Bigalke H, Binz T. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol. 2004;51(3):631-643. Cerca con Google

65. Berntsson RP, Peng L, Dong M, Stenmark P. Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun. 2013;4:2058. Cerca con Google

66. Karalewitz AP, Fu Z, Baldwin MR, Kim JJ, Barbieri JT. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. J Biol Chem. 2012;287(48):40806-40816. Cerca con Google

67. Strotmeier J, Lee K, Volker AK, et al. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J. 2010;431(2):207-216. Cerca con Google

68. Zhang Y, Buchko GW, Qin L, Robinson H, Varnum SM. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions. Biochem Biophys Res Commun. 2011;404(1):407-412. Cerca con Google

69. Nishiki T, Kamata Y, Nemoto Y, et al. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem. 1994;269(14):10498-10503. Cerca con Google

70. Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol. 2003;162(7):1293-1303. Cerca con Google

71. Rummel A, Karnath T, Henke T, Bigalke H, Binz T. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem. 2004;279(29):30865-30870. Cerca con Google

72. Jin R, Rummel A, Binz T, Brunger AT. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature. 2006;444(7122):1092-1095. Cerca con Google

73. Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER. Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol. 2007;179(7):1511-1522. Cerca con Google

74. Peng L, Berntsson RP, Tepp WH, et al. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci. 2012;125(Pt 13):3233-3242. Cerca con Google

75. Willjes G, Mahrhold S, Strotmeier J, Eichner T, Rummel A, Binz T. Botulinum neurotoxin G binds synaptotagmin-II in a mode similar to that of serotype B: tyrosine 1186 and lysine 1191 cause its lower affinity. Biochemistry. 2013;52(22):3930-3938. Cerca con Google

76. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell. 2008;19(12):5226-5237. Cerca con Google

77. Dong M, Yeh F, Tepp WH, et al. SV2 is the protein receptor for botulinum neurotoxin A. Science. 2006;312(5773):592-596. Cerca con Google

78. Rummel A, Hafner K, Mahrhold S, et al. Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem. 2009;110(6):1942-1954. Cerca con Google

79. Chang WP, Sudhof TC. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci. 2009;29(4):883-897. Cerca con Google

80. Augustine GJ, Burns ME, DeBello WM, et al. Proteins involved in synaptic vesicle trafficking. J Physiol. 1999;520 Pt 1:33-41. Cerca con Google

81. Zhang Y, Varnum SM. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides. Biochimie. 2012;94(3):920-923. Cerca con Google

82. Fogolari F, Tosatto SC, Muraro L, Montecucco C. Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Lett. 2009;583(14):2321-2325. Cerca con Google

83. Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun. 2009;380(1):76-80. Cerca con Google

84. Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem. 2010;79:591-617. Cerca con Google

85. Rizzoli SO. Synaptic vesicle recycling: steps and principles. Embo j. 2014;33(8):788-822. Cerca con Google

86. Colasante C, Rossetto O, Morbiato L, Pirazzini M, Molgo J, Montecucco C. Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol Neurobiol. 2013;48(1):120-127. Cerca con Google

87. Harper CB, Martin S, Nguyen TH, et al. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J Biol Chem. 2011;286(41):35966-35976. Cerca con Google

88. Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle. Cell. 2006;127(4):831-846. Cerca con Google

89. Wohlfarth K, Goschel H, Frevert J, Dengler R, Bigalke H. Botulinum A toxins: units versus units. Naunyn Schmiedebergs Arch Pharmacol. 1997;355(3):335-340. Cerca con Google

90. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394(6689):192-195. Cerca con Google

91. Sankaranarayanan S, Ryan TA. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol. 2000;2(4):197-204. Cerca con Google

92. Ahnert-Hilger G, Holtje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol. 2003;150:140-160. Cerca con Google

93. Pirazzini M, Azarnia Tehran D, Leka O, Zanetti G, Rossetto O, Montecucco C. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta. 2016;1858(3):467-474. Cerca con Google

94. Fischer A, Montal M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A. 2007;104(25):10447-10452. Cerca con Google

95. Koriazova LK, Montal M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol. 2003;10(1):13-18. Cerca con Google

96. Fischer A, Montal M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon. 2013;75:101-107. Cerca con Google

97. Galloux M, Vitrac H, Montagner C, et al. Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem. 2008;283(41):27668-27676. Cerca con Google

98. Fischer A. Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. Curr Top Microbiol Immunol. 2013;364:115-137. Cerca con Google

99. Sun S, Suresh S, Liu H, et al. Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe. 2011;10(3):237-247. Cerca con Google

100. Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S. Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry. 2004;43(8):2209-2216. Cerca con Google

101. Fu FN, Busath DD, Singh BR. Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation. Biophys Chem. 2002;99(1):17-29. Cerca con Google

102. Puhar A, Johnson EA, Rossetto O, Montecucco C. Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem Biophys Res Commun. 2004;319(1):66-71. Cerca con Google

103. Montecucco C, Schiavo G, Dasgupta BR. Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem J. 1989;259(1):47-53. Cerca con Google

104. Montecucco C, Schiavo G, Brunner J, Duflot E, Boquet P, Roa M. Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry. 1986;25(4):919-924. Cerca con Google

105. Zhang S, Finkelstein A, Collier RJ. Evidence that translocation of anthrax toxin's lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc Natl Acad Sci U S A. 2004;101(48):16756-16761. Cerca con Google

106. Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Orlik F, Benz R. Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage. Biochemistry. 2006;45(9):3060-3068. Cerca con Google

107. Basilio D, Jennings-Antipov LD, Jakes KS, Finkelstein A. Trapping a translocating protein within the anthrax toxin channel: implications for the secondary structure of permeating proteins. J Gen Physiol. 2011;137(4):343-356. Cerca con Google

108. Simpson LL, Coffield JA, Bakry N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther. 1994;269(1):256-262. Cerca con Google

109. Simpson LL. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther. 1983;225(3):546-552. Cerca con Google

110. Keller JE, Cai F, Neale EA. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry. 2004;43(2):526-532. Cerca con Google

111. Schiavo G, Papini E, Genna G, Montecucco C. An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun. 1990;58(12):4136-4141. Cerca con Google

112. de Paiva A, Poulain B, Lawrence GW, Shone CC, Tauc L, Dolly JO. A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J Biol Chem. 1993;268(28):20838-20844. Cerca con Google

113. Simpson LL, Maksymowych AB, Park JB, Bora RS. The role of the interchain disulfide bond in governing the pharmacological actions of botulinum toxin. J Pharmacol Exp Ther. 2004;308(3):857-864. Cerca con Google

114. Fischer A, Montal M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. 2007;282(40):29604-29611. Epub 22007 Jul 29631. Cerca con Google

115. Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol. 2011;13(11):1731-1743. doi: 1710.1111/j.1462-5822.2011.01654.x. Epub 02011 Aug 01625. Cerca con Google

116. Schiavo G, Papini E, Genna G, Montecucco C. An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun. 1990;58(12):4136-4141. Cerca con Google

117. Lopez-Mirabal HR, Winther JR. Redox characteristics of the eukaryotic cytosol. Biochim Biophys Acta. 2008;1783(4):629-640. Cerca con Google

118. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102-6109. Cerca con Google

119. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19(13):1539-1605. Cerca con Google

120. Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 2010;396(1):120-124. Cerca con Google

121. Powis G, Kirkpatrick DL. Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol. 2007;7(4):392-397. Cerca con Google

122. Kistner A, Habermann E. Reductive cleavage of tetanus toxin and botulinum neurotoxin A by the thioredoxin system from brain. Evidence for two redox isomers of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol. 1992;345(2):227-234. Cerca con Google

123. Prast-Nielsen S, Cebula M, Pader I, Arner ES. Noble metal targeting of thioredoxin reductase--covalent complexes with thioredoxin and thioredoxin-related protein of 14 kDa triggered by cisplatin. Free Radic Biol Med. 2010;49(11):1765-1778. Epub 2010 Sep 1717. Cerca con Google

124. Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994;13(1):1-8. Cerca con Google

125. Rossetto O, Schiavo G, Montecucco C, et al. SNARE motif and neurotoxins. Nature. 1994;372(6505):415-416. Cerca con Google

126. Pellizzari R, Rossetto O, Lozzi L, et al. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J Biol Chem. 1996;271(34):20353-20358. Cerca con Google

127. Breidenbach MA, Brunger AT. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature. 2004;432(7019):925-929. Cerca con Google

128. Brunger AT, Rummel A. Receptor and substrate interactions of clostridial neurotoxins. Toxicon. 2009;54(5):550-560. Cerca con Google

129. Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S. Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol. 2009;16(7):789-794. Cerca con Google

130. Jin R, Sikorra S, Stegmann CM, Pich A, Binz T, Brunger AT. Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry. 2007;46(37):10685-10693. Cerca con Google

131. Rossetto O, Morbiato L, Caccin P, Rigoni M, Montecucco C. Presynaptic enzymatic neurotoxins. J Neurochem. 2006;97(6):1534-1545. Cerca con Google

132. Schiavo G, Rossetto O, Benfenati F, Poulain B, Montecucco C. Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus. Ann N Y Acad Sci. 1994;710:65-75. Cerca con Google

133. Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry. 1996;35(8):2630-2636. Cerca con Google

134. Huang X, Wheeler MB, Kang YH, et al. Truncated SNAP-25 (1-197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol Endocrinol. 1998;12(7):1060-1070. Cerca con Google

135. Montecucco C, Schiavo G, Pantano S. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci. 2005;30(7):367-372. Cerca con Google

136. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998;395(6700):347-353. Cerca con Google

137. Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80(2):717-766. Cerca con Google

138. Binz T. Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. Curr Top Microbiol Immunol. 2013;364:139-157. Cerca con Google

139. Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev. 1982;46(1):86-94. Cerca con Google

140. Neale EA, Bowers LM, Jia M, Bateman KE, Williamson LC. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol. 1999;147(6):1249-1260. Cerca con Google

141. Montecucco C, Molgo J. Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol. 2005;5(3):274-279. Cerca con Google

142. Sobel J. Botulism. Clin Infect Dis. 2005;41(8):1167-1173. Cerca con Google

143. Duchen LW. An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci. 1971;14(1):47-60. Cerca con Google

144. Naumann M, Jankovic J. Safety of botulinum toxin type A: a systematic review and meta-analysis. Curr Med Res Opin. 2004;20(7):981-990. Cerca con Google

145. Naumann M, Albanese A, Heinen F, Molenaers G, Relja M. Safety and efficacy of botulinum toxin type A following long-term use. Eur J Neurol. 2006;13 Suppl 4:35-40. Cerca con Google

146. Ramirez-Castaneda J, Jankovic J. Long-term efficacy, safety, and side effect profile of botulinum toxin in dystonia: a 20-year follow-up. Toxicon. 2014;90:344-348. Cerca con Google

147. Eleopra R, Tugnoli V, Quatrale R, et al. Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clin Neurophysiol. 2002;113(8):1258-1264. Cerca con Google

148. Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De Grandis D. Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett. 1997;224(2):91-94. Cerca con Google

149. Pellett S, Tepp WH, Whitemarsh RC, Bradshaw M, Johnson EA. In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon. 2015;107(Pt A):37-42. Cerca con Google

150. Shoemaker CB, Oyler GA. Persistence of Botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol. 2013;364:179-196. Cerca con Google

151. Patarnello T, Bargelloni L, Rossetto O, Schiavo G, Montecucco C. Neurotransmission and secretion. Nature. 1993;364(6438):581-582. Cerca con Google

152. Eleopra R, Montecucco C, Devigili G, et al. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study. Clin Neurophysiol. 2013;124(5):999-1004. Cerca con Google

153. Peng L, Adler M, Demogines A, et al. Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins. PLoS Pathog. 2014;10(7):e1004177. Cerca con Google

154. Foran PG, Mohammed N, Lisk GO, et al. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem. 2003;278(2):1363-1371. Cerca con Google

155. Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C. Different types of botulinum toxin in humans. Mov Disord. 2004;19 Suppl 8:S53-59. Cerca con Google

156. Keller JE. Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience. 2006;139(2):629-637. Cerca con Google

157. Morbiato L, Carli L, Johnson EA, Montecucco C, Molgo J, Rossetto O. Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci. 2007;25(9):2697-2704. Cerca con Google

158. Cherington M. Clinical spectrum of botulism. Muscle Nerve. 1998;21(6):701-710. Cerca con Google

159. Persell DJ, Arangie P, Young C, et al. Preparing for bioterrorism: category A agents. Nurse Pract. 2001;26(12):12-15, 19-24, 27; quiz 28-19. Cerca con Google

160. Rossow H, Kinnunen PM, Nikkari S. [Botulinum toxin as a biological weapon]. Duodecim. 2012;128(16):1678-1684. Cerca con Google

161. Possession, use, and transfer of select agents and toxins; biennial review. Final rule. Fed Regist. 2012;77(194):61083-61115. Cerca con Google

162. Scott AB, Rosenbaum A, Collins CC. Pharmacologic weakening of extraocular muscles. Invest Ophthalmol. 1973;12(12):924-927. Cerca con Google

163. Scott AB. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology. 1980;87(10):1044-1049. Cerca con Google

164. Scott AB, Suzuki D. Systemic toxicity of botulinum toxin by intramuscular injection in the monkey. Mov Disord. 1988;3(4):333-335. Cerca con Google

165. Lim EC, Seet RC. Use of botulinum toxin in the neurology clinic. Nat Rev Neurol. 2010;6(11):624-636. Cerca con Google

166. Hallett M, Albanese A, Dressler D, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon. 2013;67:94-114. Cerca con Google

167. Naumann M, Dressler D, Hallett M, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon. 2013;67:141-152. Cerca con Google

168. Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon. 2001;39(1):27-41. Cerca con Google

169. Dressler D. Clinical applications of botulinum toxin. Curr Opin Microbiol. 2012;15(3):325-336. Cerca con Google

170. Carruthers J, Burgess C, Day D, et al. Consensus Recommendations for Combined Aesthetic Interventions in the Face Using Botulinum Toxin, Fillers, and Energy-Based Devices. Dermatol Surg. 2016;42(5):586-597. Cerca con Google

171. Johnson EA. Clostridial toxins as therapeutic agents: benefits of nature's most toxic proteins. Annu Rev Microbiol. 1999;53:551-575. Cerca con Google

172. Dolimbek BZ, Aoki KR, Steward LE, Jankovic J, Atassi MZ. Mapping of the regions on the heavy chain of botulinum neurotoxin A (BoNT/A) recognized by antibodies of cervical dystonia patients with immunoresistance to BoNT/A. Mol Immunol. 2007;44(5):1029-1041. Cerca con Google

173. Atassi MZ, Jankovic J, Steward LE, Aoki KR, Dolimbek BZ. Molecular immune recognition of botulinum neurotoxin B. The light chain regions that bind human blocking antibodies from toxin-treated cervical dystonia patients. Antigenic structure of the entire BoNT/B molecule. Immunobiology. 2012;217(1):17-27. Cerca con Google

174. Peck MW, Smith TJ, Anniballi F, et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel). 2017;9(1). Cerca con Google

175. Smith TJ, Lou J, Geren IN, et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun. 2005;73(9):5450-5457. Cerca con Google

176. Mazuet C, Ezan E, Volland H, Popoff MR, Becher F. Toxin detection in patients' sera by mass spectrometry during two outbreaks of type A Botulism in France. J Clin Microbiol. 2012;50(12):4091-4094. Cerca con Google

177. Webb RP, Smith TJ, Wright P, Brown J, Smith LA. Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine. 2009;27(33):4490-4497. Cerca con Google

178. Pirazzini M, Azarnia Tehran D, Zanetti G, et al. The thioredoxin reductase--Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. Toxicon. 2015;107(Pt A):32-36. Cerca con Google

179. Agarwal R, Binz T, Swaminathan S. Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. Biochemistry. 2005;44(35):11758-11765. Cerca con Google

180. Silvaggi NR, Boldt GE, Hixon MS, et al. Structures of Clostridium botulinum Neurotoxin Serotype A Light Chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol. 2007;14(5):533-542. Cerca con Google

181. Thanongsaksrikul J, Chaicumpa W. Botulinum neurotoxins and botulism: a novel therapeutic approach. Toxins (Basel). 2011;3(5):469-488. Cerca con Google

182. Eswaramoorthy S, Kumaran D, Swaminathan S. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr D Biol Crystallogr. 2001;57(Pt 11):1743-1746. Cerca con Google

183. Li B, Peet NP, Butler MM, Burnett JC, Moir DT, Bowlin TL. Small molecule inhibitors as countermeasures for botulinum neurotoxin intoxication. Molecules. 2010;16(1):202-220. Cerca con Google

184. Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C, Dressler D. Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res. 2006;9(2-3):127-131. Cerca con Google

185. Tugnoli V, Eleopra R, Montecucco C, De Grandis D. The therapeutic use of botulinum toxin. Expert Opin Investig Drugs. 1997;6(10):1383-1394. Cerca con Google

186. Gillespie EJ, Ho CL, Balaji K, et al. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc Natl Acad Sci U S A. 2013;110(50):E4904-4912. Cerca con Google

187. Wang D, Zhang Z, Dong M, Sun S, Chapman ER, Jackson MB. Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry. 2011;50(14):2711-2713. Cerca con Google

188. Eklund MW and Dowell VR (1987) Avian Botulism CC, Thomas S, IL. Cerca con Google

189. DS. SL, Hiroshi S. Botulism: the organism, its toxins, the disease. 2nd ed. 1988. Cerca con Google

190. Espelund M, Klaveness D. Botulism outbreaks in natural environments - an update. Front Microbiol. 2014;5:287. Cerca con Google

191. Anniballi F, Auricchio B, Fiore A, et al. Botulism in Italy, 1986 to 2015. Euro Surveill. 2017;22(24). Cerca con Google

192. Peck MW. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Microbiol. 2006;101(3):556-570. Cerca con Google

193. Fagan RP, McLaughlin JB, Middaugh JP. Persistence of botulinum toxin in patients' serum: Alaska, 1959-2007. J Infect Dis. 2009;199(7):1029-1031. Cerca con Google

194. Sheth AN, Wiersma P, Atrubin D, et al. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin Infect Dis. 2008;47(10):1245-1251. Cerca con Google

195. Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis. 2014;209(2):183-191. Cerca con Google

196. Barash JR, Arnon SS. Dual toxin-producing strain of Clostridium botulinum type Bf isolated from a California patient with infant botulism. J Clin Microbiol. 2004;42(4):1713-1715. Cerca con Google

197. Dover N, Barash JR, Hill KK, et al. Clostridium botulinum strain Af84 contains three neurotoxin gene clusters: bont/A2, bont/F4 and bont/F5. PLoS One. 2013;8(4):e61205. Cerca con Google

198. Maslanka SE, Luquez C, Dykes JK, et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J Infect Dis. 2016;213(3):379-385. Cerca con Google

199. Carli L, Montecucco C, Rossetto O. Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve. 2009;40(3):374-380. Cerca con Google

200. Jankovic J, Schwartz K. Response and immunoresistance to botulinum toxin injections. Neurology. 1995;45(9):1743-1746. Cerca con Google

201. Bentivoglio AR, Del Grande A, Petracca M, Ialongo T, Ricciardi L. Clinical differences between botulinum neurotoxin type A and B. Toxicon. 2015;107(Pt A):77-84. Cerca con Google

202. Wu YJ, Tejero R, Arancillo M, et al. Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. J Neurophysiol. 2015;114(4):2404-2417. Cerca con Google

203. Kofuji T, Fujiwara T, Sanada M, Mishima T, Akagawa K. HPC-1/syntaxin 1A and syntaxin 1B play distinct roles in neuronal survival. J Neurochem. 2014;130(4):514-525. Cerca con Google

204. Santamato A, Micello MF, Ranieri M, et al. Employment of higher doses of botulinum toxin type A to reduce spasticity after stroke. J Neurol Sci. 2015;350(1-2):1-6. Cerca con Google

205. Dressler D, Saberi FA, Kollewe K, Schrader C. Safety aspects of incobotulinumtoxinA high-dose therapy. J Neural Transm (Vienna). 2015;122(2):327-333. Cerca con Google

206. Pirazzini M, Henke T, Rossetto O, et al. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett. 2013;587(23):3831-3836. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record