Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Boscari, Federico (2018) Artificial pancreas development in type 1 diabetic patients. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
1113Kb

Abstract (english)

Introduction and background: In type 1 diabetic patients good glycaemic control is associated with complication reduction. Nevertheless a minority of patients, also treated with insulin pumps and continuous glucose monitoring (SAP therapy) achieve a satisfactory metabolic control. Several researchers are developing automatic systems, called artificial pancreas (AP) or Closed Loop Control (CLC). This system are composed by an insulin pump, a continuous glucose monitoring device and a control algorithm which modifies insulin infusion from data derived by continuous glucose monitoring. Several AP models exist, composed by different insulin pumps, different continuous glucose monitoring system and by different control algorithms that determine the precision of glucose control.

Method: we evaluated our AP model efficacy and safety at patients home compared to SAP therapy. In our AP model, the Algorithm is installed in a smartphone (DiAS, Diabetes Assistant) that communicate with pump and CGM thought blue tooth connection. We developed 5 studies that tested the system in free life condition, first during evening and night, than for 24 hours and for longer period (6 months). We finally evaluated this system in pediatric population.

Results: In a randomized cross over study of 2 month AP use during evening and night vs SAP therapy, system usage improved time in target (70-180 mg/dl) from 58.1% to 66.7% ( P < 0.0001), reduce mean glucose concentration (162 mg/dl vs 167 mg/dl, P=0.0053) and time spent in hypoglycemia (<70 mg/dl) from 3.0% to 1.7% (P < 0.0001) and lead to reduction in HbA1c values. Extension of this study for a month using AP 24 hours/day demonstrated an improvement of time in target vs SAP (64.7 ± 7.6% vs. 59.7 ± 9.6%, P = 0.01), reduction of time below the target (1.9 ± 1.1% vs. 3.2 ± 1.8%, P = 0.001).
A third trial evaluated a different algorithm for 2 weeks during overnight e for 2 weeks for 24 hours, comparing these period with 2 weeks of SAP therapy. In overnight period AP improved glucose metric vs SAP: time spent in hypoglycaemia dropped from 3.0% to 1.1% (P < 0.001), time in target increased from 61% to 75% (P < 0.001) , time spent above 180 mg/dl dropped from 37% to 24% (P < 0.001), the mean glucose concentration dropped from 163 to 150 mg/dL (P = 0.002). Similarly, metrics of glucose control in the 24-hour AP usage vs SAP demonstrated reduction of the time below target from 4.1% to 1.7% (P < 0.001), increase of time in target from 65% to 73% (P < 0.001), decrease of time above target from 32% to 25% (P = 0.001). Comparing the overnight and 24 hours CLC, a reduction in time spent in hypoglycaemia was observed when AP was used for 24 hours. A subgroup of patients extended AP use for other 5 months, confirming AP efficacy (time in target:77% vs. 66%, P<0.001, time in hypoglycaemia: 4.1% vs 1.3%, P < 0.001, time above target 31% vs 22%, P = 0.01). Finally we tested the system in paediatric population, enrolling in a summer camp 30 subject 5-9 years old. During the night AP reduced time in hypoglycaemia (P < 0.002), with no difference in time in target. During 24 hours we observed reduction of the time in hypoglycaemia, from 6.7% to 2.0% (P < 0.001), but an increase of mean glucose (147 mg/dL vs. 169 mg/dL, P < 0.001) and a decrease of time spent in target (63.1% vs. 56.8%, P = 0.022)

Conclusions: These results demonstrated our model safety and efficacy. Some improvements are necessary to ameliorate glycaemiec control on pediatric population and during day time.

Abstract (italian)

Introduzione: Nei pazienti affetti da diabete mellito di tipo 1, il buon controllo glicemico si associa con la riduzione delle complicanze.
Tuttavia solo una parte di questi pazienti, anche se trattati con sistemi per il monitoraggio in continuo della glicemia e con microinfusori per la somministrazione in continuo di insulina (SAP therapy), raggiungono un controllo metabolico soddisfacente. Diversi gruppi di studio stanno sviluppando sistemi automatici, chiamati pancreas artificiale o sistemi ad ansa chiusa (CLC, closed loop control). Tale sistema è costituito da una pompa insulinica (microinfusore), da un sistema per il monitoraggio in continuo della glicemia e da un algoritmo di controllo in grado di modificare la velocità di infusione di insulina in maniera automatica, sulla base dei valori registrati dal sensore glicemico.

Materiali e metodi: abbiamo valutato l'efficacia e la sicurezza del nostro modello di Pancreas Artificiale nei confronti della SAP therapy. Nel nostro modello di pancreas artificiale l'algoritmo di controllo è installato all'interno di uno smartphone (DiAS, Diabetes Assistant), in grado di comunicare via bluetooth con il sistema di monitoraggio in continuo della glicemia e con il microinfusore. Abbiamo portato a termine 5 studi, che saranno oggetto di questa tesi, nei quali abbiamo testato il sistema a domicilio del paziente, dapprima durante la notte, in seguito per l'intera giornata e per periodi progressivamente piu lunghi fino ad arrivare a 6 mesi di utilizzo. Abbiamo quindi testato il sistema in ambito pediatrico.

Risultati: in un trial cross over randomizzato della durata di 2 mesi in cui si utilizzava il pancreas artificiale durante la sera e la notte, confrontato a SAP Therapy, l'utilizzo del sistema portava ad un incremento del tempo trascorso in target (70-180 mg/dl), dal 58.1% al 66.7% ( P < 0.0001), ad una riduzione della glicemia media, (162 mg/dl vs 167 mg/dl, P=0.0053) e del tempo trascorso in ipoglicemia (<70 mg/dl) dal 3.0% al 1.7% (P < 0.0001) e a una riduzione dei valori di emoglobina glicata. Il proseguimento di tale studio prevedeva l'utilizzo del pancreas artificiale per l'intera giornata per un mese, dimostrando nei confronti della SAP therapy, un miglioramento del tempo trascorso in target (64.7 ± 7.6% vs. 59.7 ± 9.6%, P = 0.01) e una riduzione del tempo trascorso in ipoglicemia (1.9 ± 1.1% vs. 3.2 ± 1.8%, P = 0.001).
In un terzo trial abbiamo valutato un differente algoritmo di controllo per 2 settimane durante il periodo notturno e per 2 settimane durante l'intera giornata, paragonando tali periodi a
settimane di SAP therapy. Durante il periodo notturno il pancreas artificiale ha ridotto il tempo trascorso in ipoglicemia dal 3.0% al 1.1% (P < 0.001), incrementato il tempo in target dal 61% al 75% (P < 0.001) ridotto la glicemia media da 163 a 150 mg/dL (P = 0.002). Allo stesso modo il pancreas artificiale ha migliorato il controllo glicemico anche nelle 24 ore, riducendo il tempo trascorso in ipoglicemia dal 4.1% al 1.7% (P < 0.001), incrementando il tempo trascorso nel target dal 65% al 73% (P < 0.001), riducendo il tempo trascorso in iperglicemia dal 32% al 25% (P = 0.001). Confrontando l'utilizzo notturno del pancreas artificiale con l'utilizzo nelle 24 ore si è osservata un ulteriore riduzione del tempo trascorso in ipoglicemia con l'utilizzo del sistema per l'intera giornata. Un sottogruppo di pazienti ha proseguito l'utilizzo del pancreas artificiale per ulteriori 5 mesi, confermando l'efficacia del sistema (tempo in target:77% vs. 66%, P<0.001, tempo in ipoglicemia: 4.1% vs 1.3%, P < 0.001, tempo in iperglicemia 31% vs 22%, P = 0.01). Infine abbiamo testato il sistema in una popolazione pediatrica durante un campo scuola estivo, arruolando pazienti diabetici di età compresa tra i 5 e i 9 anni. Durante il periodo notturno il pancreas artificiale ha portato ad una riduzione delle ipoglicemie (P < 0.002), senza differenze riguardo il tempo trascorso nel target. Durante le 24 ore si osservava una riduzione del tempo trascorso in ipoglicemia, dal 6.7% al 2.0% (P < 0.001), ma un incremento della glicemia media (147 mg/dL vs. 169 mg/dL, P < 0.001) e una riduzione dle tempo trascorso nel target (63.1% vs. 56.8%, P = 0.022).

Conclusioni: questi risultati hanno dimostrato la sicurezza e l'efficacia del nostro modello di pancreas artificiale. Sono ovviamente necessari alcuni miglioramenti per portare ad ottimizzare il controllo in ambito pediatrico e durante le ore diurne.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Avogaro, Angelo
Ph.D. course:Ciclo 30 > Corsi 30 > MEDICINA SPECIALISTICA "G.B. MORGAGNI"
Data di deposito della tesi:12 January 2018
Anno di Pubblicazione:12 January 2018
Key Words:Artificial pancreas/Pancreas Artificiale type 1 diabetes/ Diabete mellito tipo 1
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/13 Endocrinologia
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina
Codice ID:10725
Depositato il:09 Nov 2018 10:10
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1 Vajo Z, Fawcett J and Duckworth WC, Recombinant DNA technology in the treatment of diabetes: insulin analogs, Endocr Rev, 2001, 22: 706-717. Cerca con Google

2 The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986. Cerca con Google

3 Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med 2000; 342:381-389 Cerca con Google

4 Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 2002; 287: 2563–94. Cerca con Google

5 Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353: 2643–53. Cerca con Google

6 Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ, A1c-Derived Average Glucose Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008;31:1473–8. Cerca con Google

7 American Diabetes Association. Glycemic targets. Diabetes Care 38:S33–S40, 2015. Cerca con Google

8 Wood JR, Miller KM, Maahs DM, et al. T1D Exchange Clinic Network. Most youth with type 1 diabetes in the T1D Exchange Clinic Registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes clinical guidelines. Diabetes Care 2013; 36: 2035–37. Cerca con Google

9 DCCT Research Group. Epidemiology of severe hypoglycemia in the diabetes control and complications trial. Am J Med 1991;90: 450–59. Cerca con Google

10 The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes 1997; 46: 271–86. Cerca con Google

11 Leese GP, Wang J, Broomhall J. Frequency of severe hypoglycemia requiring emergency treatment in type 1 and type 2 diabetes: a population-based study of health service resource use. Diabetes Care 2003; 26: 1176–80. Cerca con Google

12 Cengiz E, Xing D, Wong JC, et al. T1D Exchange Clinic Network. Severe hypoglycemia and diabetic ketoacidosis among youth with type 1 diabetes in the T1D Exchange Clinic Registry. Pediatr Diabetes 2013; 14: 447–54. Cerca con Google

13 Weinstock RS, Xing D, Maahs DM, et al. T1D Exchange Clinic Network. Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange Clinic Registry. J Clin Endocrinol Metab 2013; 98: 3411–19. Cerca con Google

14 Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care 2003; 26: 1902–12. Cerca con Google

15 Karges B, Schwandt A, Heidtmann B, Kordonouri O, Binder E, Schierloh U, Boettcher C, Kapellen T, Rosenbauer J, Holl RW. Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes. JAMA. 2017 Oct 10;318(14):1358-1366. Cerca con Google

16 Wolever, T., & Bolognesi, C. (1996). Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. The Journal of Nutrition, 126(11), 2798–2806. Cerca con Google

17 Kirstine J. Bell, Bruce R. King, Amir Shafat, Carmel E. Smart. The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes. J Diabetes Complications. 2015 Nov-Dec;29(8):1323-9. Cerca con Google

18 Schmidt S, Kirsten Nørgaard K., Bolus calculator, Journal of Diabetes Science and Technology 2014, Vol. 8(5) 1035–1041 Cerca con Google

19 Heinemann L. Insulin pump therapy: what is the evidence for using different types of boluses for coverage of prandial insulin requirements? J Diabetes Sci Technol. 2009 Nov 1;3(6):1490-500. Cerca con Google

20 Misso ML, Egberts KJ, Page M, O'Connor D, Shaw J. Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2010 Jan 20;(1):CD005103. Cerca con Google

21 Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med. 2008 Jul;25(7):765-74. Cerca con Google

22 Bruttomesso D, Crazzolara D, Maran A, Costa S, Dal Pos M, Girelli A, Lepore G, Aragona M, Iori E, Valentini U, Del Prato S, Tiengo A, Buhr A, Trevisan R, Baritussio A. In Type 1 diabetic patients with good glycaemic control, blood glucose variability is lower during continuous subcutaneous insulin infusion than during multiple daily injections with insulin glargine. Diabet Med. 2008 Mar;25(3):326-32 Cerca con Google

23 Lepore G, Bruttomesso D, Bonomo M, Dodesini AR, Costa S, Meneghini E, Corsi A, Nosari I, Trevisan R. Continuous subcutaneous insulin infusion is more effective than multiple daily insulin injections in preventing albumin excretion rate increase in Type 1 diabetic patients. Diabet Med. 2009 Jun;26(6):602-8. Cerca con Google

24 Rosenlund S, Hansen TW, Andersen S, Rossing P. Effect of 4 years subcutaneous insulin infusion treatment on albuminuria, kidney function and HbA1c compared with multiple daily injections: a longitudinal follow-up study. Diabet Med. 2015 Nov;32(11):1445-52 Cerca con Google

25 Steineck I, Cederholm J, Eliasson B, Rawshani A, Eeg-Olofsson K, Svensson AM, Zethelius B, Avdic T, Landin-Olsson M, Jendle J, Gudbjörnsdóttir S; Swedish National Diabetes Register. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ. 2015 Jun 22 Cerca con Google

26 Heller S, White D, Lee E, Lawton J, Pollard D, Waugh N, Amiel S, Barnard K, Beckwith A, Brennan A, Campbell M, Cooper C, Dimairo M, Dixon S, Elliott J, Evans M, Green F, Hackney G, Hammond P, Hallowell N, Jaap A, Kennon B, Kirkham J, Lindsay R, Mansell P, Papaioannou D, Rankin D, Royle P, Smithson WH, Taylor C. A cluster randomised trial, cost-effectiveness analysis and psychosocial evaluation of insulin pumptherapy compared with multiple injections during flexible intensive insulin therapy for type 1 diabetes: the REPOSE Trial. Health Technol Assess. 2017 Apr;21(20):1-278. Cerca con Google

27 Ozgen Saydam B, Yilmazmis F, Aydin N, Bektas B, Yilmaz S, Cavdar U, Ozisik S, Akinci B. The Effect of Retraining on Treatment Success, Quality of Life, and Metabolic Parameters in Patients with Type 1 Diabetes Using an Insulin Pump. Med Princ Pract. 2017;26(4):325-330. Cerca con Google

28 Miller KM, Beck RW, Bergenstal RM, Goland RS, Haller MJ, McGill JB, et al. T1D Exchange Clinic Network:Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care, 2013; 36, 2009-14 Cerca con Google

29 Wong JC, Foster NC, Maahs DM, Raghinaru D, Bergenstal RM, Ahmann AJ, et al. T1D Exchange Clinic Network: Real-time continuous glucose monitoring among participants in the T1D Exchange clinic registry. Diabetes Care 2014; 37: 2702-9 Cerca con Google

30 Battelino T, Phillip M, Bratina N, Nimri R, Oskarsson P, Bolinder J. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care. 2011; 34: 795-800 Cerca con Google

31 Beck RW, Hirsch IB, Laffel L, Tamborlane WV, Bode BW, Buckingham B, et al. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care. 2009; 32:1378-83 Cerca con Google

32 Bode B, Beck RW, Xing D, Gilliam L, Hirsch I, Kollman C, et al. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Sustained benefit of continuous glucose monitoring on A1C, glucose profiles, and hypoglycemia in adults with type 1 diabetes. Diabetes Care 2009; 32: 2047-9 Cerca con Google

33 Bergenstal RM, Tamborlane WV, Ahmann A, et al. Eff ectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 2010; 363: 311–20. Cerca con Google

34 Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Wilson DM, Xing D, Beck RW, Block J, Bode B, Fox LA, Hirsch I, Kollman C, Laffel L, Ruedy KJ, Steffes M, Tamborlane WV. Hemoglobin A1c and mean glucose in patients with type 1 diabetes: analysis of data from the Juvenile Diabetes Research Foundation continuous glucose monitoring randomized trial. Diabetes Care. 2011 Mar;34(3):540-4. Cerca con Google

35 Cobelli C, Renard E, Kovatchev B. Artificial pancreas: past, present, future. Diabetes. 2011 Nov;60(11):2672-82. Cerca con Google

36 Kadish AH. Automation control of blood sugar. I. A servomechanism for glucose monitoring and control. Am J Med Electron 1964;3:82–86 . Cerca con Google

37 Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W. An artificial endocrine pancreas. Diabetes 1974;23:389–396. Cerca con Google

38 Pfeiffer EF, Thum C, Clemens AH. The artificial beta cell—a continuous control of blood sugar by external regulation of insulin infusion (glucose controlled insulin infusion system). Horm Metab Res 1974;6:339–342. Cerca con Google

39 Mirouze J, Selam JL, Pham TC, Cavadore D. Evaluation of exogenous insulin homoeostasis by the artificial pancreas in insulin-dependent diabetes. Diabetologia 1977;13:273–278. Cerca con Google

40 Kraegen EW, Campbell LV, Chia YO, Meler H, Lazarus L. Control of blood glucose in diabetics using an artificial pancreas. Aust N Z J Med 1977;7: 280–286. Cerca con Google

41 Shichiri M, Kawamori R, Yamasaki Y, Inoue M, Shigeta Y, Abe H. Computer algorithm for the artificial pancreatic beta cell. Artif Organs 1978;2 (Suppl.):247–250 Cerca con Google

42 Clemens AH, Chang PH, Myers RW. The development of Biostator, a glucose controlled insulin infusion system (GCIIS). Horm Metab Res 1977;(Suppl. 7):23–33 Cerca con Google

43 Bergenstal RM, Klonoff DC, Garg SK, et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med 2013; 369: 224–32. Cerca con Google

44 Buckingham BA, Raghinaru D, Cameron F, Bequette BW, Chase HP, Maahs DM, Slover R, Wadwa RP, Wilson DM, Ly T, Aye T, Hramiak I, Clarson C, Stein R, Gallego PH, Lum J, Sibayan J, Kollman C, Beck RW; In Home Closed Loop Study Group. Predictive Low-Glucose Insulin Suspension Reduces Duration of Nocturnal Hypoglycemia in Children Without Increasing Ketosis. Diabetes Care. 2015 Jul;38(7):1197-204 Cerca con Google

45 Hovorka R, Canonico V, Chassin LJ, Haueter U, MassiBenedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska ME: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 2004;25:905–920. Cerca con Google

46 Parker RS, Doyle FJ 3rd, Peppas NA: A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999;46:148–157. Cerca con Google

47 Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE: An improved PID switching control strategy for type 1 diabetes. IEEE Trans Biomed Eng 2008;55:857–865. Cerca con Google

48 Atlas E, Nimri R, Miller S, Grunberg E, Phillip M: MDLogic artificial pancreas system. Diabetes Care 2010;33: 1072–1076 Cerca con Google

49 Kovatchev BP, Patek SD, Dassau E, Doyle FJ III, Magni L, De Nicolao G, and Cobelli C. Control-to-range for diabetes: functionality and modular architecture, J Diabetes Sci Technol, 3: 1058-1065, 2009. Cerca con Google

50 Patek SD, Magni L, Dassau E, Karvetski CH, Toffanin C, DeNicolao G, DelFaverokS, Breton M, Dalla Man C, Renard E, Zisser H, Doyle FJ III, Cobelli C, Kovatchev BP. Modular Closed-Loop Control of Diabetes, Transactions on Biomedical Engineering, 29: 2986-3000, 2012. Cerca con Google

51 Hughes CS, Patek SD, Breton MD, and Kovatchev BP. Hypoglycemia Prevention via Pump Attenuation and Red-Yellow-Green “Traffic” Lights Using Continuous Glucose Monitoring and Insulin Pump Data. Diabetes Sci Technol, 4: 1146-1155, 2010. Cerca con Google

52 Ellingsen C, Dassau E, Zisser H, Grosman B, Percival MW, Jovanovič L, and FJ Doyle III. Safety constraints in an artificial b-cell: an implementation of Model Predictive Control (MPC) with Insulin-on-Board (IOB). Diabetes. Sci. Technol. 3: 536-544, 2009. Cerca con Google

53 Dalla Man C, Rizza RA, and Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng, 54:1740-1749, 2007. Cerca con Google

54 Dalla Man C, Raimondo DM, Rizza RA, and Cobelli C. GIM, Simulation Software of Meal Glucose-Insulin Model. J Diabetes Science and Technology, 1: 323-330, 2007. Cerca con Google

55 Kovatchev BP, Breton MD, Dalla Man C, Cobelli C. In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. J Diabetes Sci Technol 3: 44-55, 2009. Cerca con Google

56 Kovatchev BP. Closed Loop Control for Type 1 Diabetes, Editorial. BMJ, 342:d1911, 2011. Cerca con Google

57 Renard EM, Farret A, Place J, Cobelli C, Kovatchev BP, Breton MD. Closed-loop insulin delivery using subcutaneous infusion and glucose sensing, and equipped with a dedicated safety supervision algorithm, improves safety of glucose control in type 1 diabetes. Diabetologia 53: S25, 2010. Cerca con Google

58 Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing D, et al. Overnight closed loop insulin delivery in adults with type 1 diabetes: crossover randomised controlled studies. BMJ, 342:d1855, 2011. Cerca con Google

59 Dassau E, Zisser H, Palerm CC, Buckingham BA, Jovanovič L, Doye III FJ. Modular Artificial β-Cell System: A Prototype for Clinical Research J Diabetes Sci Technol. 2:863-872, 2008. Cerca con Google

60 Breton MD, Farret A, Bruttomesso D, Anderson SM, Magni L, Patek S, Dalla Man C, Place J, Demartini S, Del Favero S, Toffanin C, Karvetski CH, Dassau E, Zisser H, Doyle FJ III, De Nicolao G, Avogaro A, Cobelli C, Renard E, Kovatchev BP on behalf of The International Artificial Pancreas (iAP) Study Group. Fully-integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near-normoglycemia. Diabetes,doi:10.2337/db11-1445, 2012. Cerca con Google

61 Kovatchev BP, Breton MD, Keith-Hynes PT, Patek SD. The Diabetes Assistant (DiAs) – unified platform for monitoring and control of blood glucose levels in diabetic patients; PCT/US12/43910, 2012. Cerca con Google

62 Kovatchev BP, Breton MD, Keith-Hynes PT, Patek SD. Methods and apparatus for modular power management and protection of critical services in ambulatory medical devices. PCT/US12/43883, 2012. Cerca con Google

63 Cobelli C, Renard E, Kovatchev BP, Keith-Hynes P, Ben Brahim N, Place J, Del Favero S, Breton MD, Farret A, Bruttomesso D, Dassau E, Zisser H, Doyle FJ III, Patek S, Avogaro A. Pilot Studies of Wearable Artificial Pancreas in Type 1 Diabetes. Diabetes Care. 2012;35:e 65-7 Cerca con Google

64 Kovatchev BP, Renard E, Cobelli C, Zisser H, Keith-Hynes P, Anderson SM, Brown SA, Chernavvsky DR, Breton MD, Farret A, Pelletier M, Place J, Bruttomesso D, Del Favero S, Visentin R, Filippi A, Scotton R, Avogaro A, Doyle F III. Feasibility of Outpatient Fully Integrated Closed-Loop Control: First Studies of Wearable Artificial Pancreas. Diabetes Care, 2013. 36: 1851-1858. Cerca con Google

65 Brown SA, Kovatchev BP, Breton MD, Anderson SM, Keith-Hynes P, Patek SD, Jiang B, Ben Brahim N, Vereshchetin P, Bruttomesso D, Avogaro A, Del Favero S, Boscari F, Galasso S, Visentin R, Monaro M, Cobelli C. Multinight "bedside" closed-loop control for patients with type 1 diabetes. Diabetes Technol Ther. 2015 Mar;17(3):203-9 Cerca con Google

66 Brown SA, Breton MD, Anderson SM, Kollar L, Keith-Hynes P, Levy CJ, Lam DW, Levister C, Baysal N, Kudva YC, Basu A, Dadlani V, Hinshaw L, McCrady-Spitzer S, Bruttomesso D, Visentin R, Galasso S, Del Favero S, Leal Y, Boscari F, Avogaro A, Cobelli C, Kovatchev BP. Overnight Closed-Loop Control Improves Glycemic Control in a Multicenter Study of Adults With Type 1 Diabetes. J Clin Endocrinol Metab. 2017 Oct 1;102(10):3674-3682 Cerca con Google

67 DeSalvo D, Keith-Hynes P, Peyser T, Place J, Caswell K, Wilson D, Harris B, Clinton P, Kovatchev BP, Buckingham B. Remote Glucose Monitoring in Camp Setting Reduces the Risk of Prolonged Nocturnal Hypoglycemia. Diabetes Technol Ther, 2014;16:1-7 Cerca con Google

68 Kropff J, Del Favero S, Place J, Toffanin C, Visentin R, Monaro M, Messori M, Di Palma F, Lanzola G, Farret A, Boscari F, Galasso S, Magni P, Avogaro A, Keith-Hynes P, Kovatchev BP, Bruttomesso D, Cobelli C, DeVries JH, Renard E, Magni L; AP@home consortium. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 2015 Dec;3(12):939-47. Cerca con Google

69 Toffanin C, Messori M, Di Palma F, De Nicolao G, Cobelli C, Magni L. Artifi cial pancreas: model predictive control design from clinical experience. J Diabetes Sci Technol 2013; 7: 1470–83. Cerca con Google

70 Zisser H, Renard E, Kovatchev B, et al. Multicenter closed-loop insulin delivery study points to challenges for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with type 1 diabetes from various sites. Diabetes Technol Ther 2014; 16: 613–22. Cerca con Google

71 Maahs DM, Chase HP, Westfall E, et al. The effects of lowering nighttime and breakfast glucose levels with sensor-augmented pump therapy on hemoglobin A1c levels in type 1 diabetes. Diabetes Technol Ther 2014; 16: 284–91. Cerca con Google

72 Bradley C, Lewis KS. Measures of psychological well-being and treatment satisfaction developed from the responses of people with tablet-treated diabetes. Diabet Med 1990; 7: 445–51. Cerca con Google

73 Cox DJ, Irvine A, Gonder-Frederick L, Nowacek G, Butterfi eld J. Fear of hypoglycemia: quantifi cation, validation, and utilization. Diabetes Care 1987; 10: 617–21. Cerca con Google

74 Van Bon AC, Brouwer TB, von Basum G, Hoekstra JBL, DeVries JH. Future acceptance of an artifi cial pancreas in adults with type 1 diabetes. Diabetes Technol Ther 2011; 13: 731–36. Cerca con Google

75 Renard E, Farret A, Kropff J, Bruttomesso D, Messori M, Place J, Visentin R, Calore R, Toffanin C, Di Palma F, Lanzola G, Magni P, Boscari F, Galasso S, Avogaro A, Keith-Hynes P, Kovatchev B, Del Favero S, Cobelli C, Magni L, DeVries JH; AP@home Consortium. Day-and-Night Closed-Loop Glucose Control in Patients With Type 1 Diabetes Under Free-Living Conditions: Results of a Single-Arm 1-Month Experience Compared With a Previously Reported Feasibility Study of Evening and Night at Home. Diabetes Care. 2016 Jul;39(7):1151-60. Cerca con Google

76 Anderson SM, Raghinaru D, Pinsker JE, Boscari F, Renard E, Buckingham BA, Nimri R, Doyle FJ 3rd, Brown SA, Keith-Hynes P, Breton MD, Chernavvsky D, Bevier WC, Bradley PK, Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Farret A, Place J, Ly TT, Shanmugham S, Phillip M, Dassau E, Dasanayake IS, Kollman C, Lum JW, Beck RW, Kovatchev B; Control to Range Study Group. Multinational Home Use of Closed-Loop Control Is Safe and Effective. Diabetes Care. 2016 Jul;39(7):1143-50 Cerca con Google

77 Kovatchev B, Cheng P, Anderson SM, Pinsker JE, Boscari F, Buckingham BA, Doyle FJ 3rd, Hood KK, Brown SA, Breton MD, Chernavvsky D, Bevier WC, Bradley PK, Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Ly TT, Shanmugham S, Dassau E, Kollman C, Lum JW, Beck RW. Feasibility of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin Delivery. Diabetes Technol Ther. 2017 Jan;19(1):18-24 Cerca con Google

78 Del Favero S, Boscari F, Messori M, Rabbone I, Bonfanti R, Sabbion A, Iafusco D, Schiaffini R, Visentin R, Calore R, Moncada YL, Galasso S, Galderisi A, Vallone V, Di Palma F, Losiouk E, Lanzola G, Tinti D, Rigamonti A, Marigliano M, Zanfardino A, Rapini N, Avogaro A, Chernavvsky D, Magni L, Cobelli C, Bruttomesso D. Randomized Summer Camp Crossover Trial in 5- to 9-Year-Old Children: Outpatient Wearable Artificial Pancreas Is Feasible and Safe. Diabetes Care. 2016 Jul;39(7):1180-5 Cerca con Google

79 Ly TT, Breton MD, Keith-Hynes P, De Salvo D, Clinton P, Benassi K, Mize B, Chernavvsky D, Place J, Wilson DM, Kovatchev BP, Buckingham BA. Overnight glucose control with an automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp. Diabetes Care. 2014 Aug;37(8):2310-6. Cerca con Google

80 Danne T, Battelino T, Jarosz-Chobot P, et al.; PedPump Study Group. Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump Study in 17 countries. Diabetologia 2008;51: 1594–1601 Cerca con Google

81 Troncone A, Bonfanti R, Iafusco D, Rabbone I, Sabbion A, Schiaffini R, Galderisi A, Marigliano M, Rapini N, Rigamonti A, Tinti D, Vallone V, Zanfardino A, Boscari F, Del Favero S, Galasso S, Lanzola G, Messori M, Di Palma F, Visentin R, Calore R, Leal Y, Magni L, Losiouk E, Chernavvsky D, Quaglini S, Cobelli C, Bruttomesso D. Evaluating the Experience of Children With Type 1 Diabetes and Their Parents Taking Part in an Artificial Pancreas Clinical Trial Over Multiple Days in a Diabetes Camp Setting. Diabetes Care. 2016 Dec;39(12):2158-2164 Cerca con Google

82 Hovorka R. Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 2011; 7: 385-95. Cerca con Google

83 Thabit H, Tauschmann M, Allen JM, Leelarathna L, Hartnell S, Wilinska ME, Acerini CL, Dellweg S, Benesch C, Heinemann L, Mader JK, Holzer M, Kojzar H, Exall J, Yong J, Pichierri J, Barnard KD, Kollman C, Cheng P, Hindmarsh PC, Campbell FM, Arnolds S, Pieber TR, Evans ML, Dunger DB, Hovorka R. Home Use of an Artificial Beta Cell in Type 1 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2129-2140 Cerca con Google

84 Nimri R, Muller I, Atlas E, Miller S, Fogel A, Bratina N, Kordonouri O, Battelino T, Danne T, Phillip M. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care. 2014 Nov;37(11):3025-32. Cerca con Google

85 Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, Balliro C, Hillard MA, Nathan DM, Damiano ER. Outpatient glycemic control with a bionic pancreas in type 1 diabetes.N Engl J Med. 2014 Jul 24;371(4):313-325 Cerca con Google

86 El-Khatib FH, Balliro C, Hillard MA, Magyar KL, Ekhlaspour L, Sinha M, Mondesir D, Esmaeili A, Hartigan C, Thompson MJ, Malkani S, Lock JP, Harlan DM, Clinton P, Frank E, Wilson DM, DeSalvo D, Norlander L, Ly T, Buckingham BA, Diner J, Dezube M, Young LA, Goley A, Kirkman MS, Buse JB, Zheng H, Selagamsetty RR, Damiano ER, Russell SJ. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet. 2017 Jan 28;389(10067):369-380 Cerca con Google

87 Russell SJ, Hillard MA, Balliro C, Magyar KL, Selagamsetty R, Sinha M, Grennan K, Mondesir D, Ehklaspour L, Zheng H, Damiano ER, El-Khatib FH. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016 Mar;4(3):233-43 Cerca con Google

88 Stewart ZA, Wilinska ME, Hartnell S, Temple RC, Rayman G, Stanley KP, Simmons D, Law GR, Scott EM, Hovorka R, Murphy HR. Closed-Loop Insulin Delivery during Pregnancy in Women with Type 1 Diabetes. N Engl J Med. 2016 Aug Cerca con Google

89 Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, Wilinska ME, Nodale M, Mangat J, Evans ML, Burnstein R, Hovorka R. Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial. Crit Care. 2013 Jul 24;17(4):R159. Cerca con Google

90 Cherñavvsky DR, DeBoer MD, Keith-Hynes P, Mize B, McElwee M, Demartini S, Dunsmore SF, Wakeman C, Kovatchev BP, Breton MD. Use of an artificial pancreas among adolescents for a missed snack bolus and an underestimated meal bolus. Pediatr Diabetes. 2016 Feb;17(1):28-35. Cerca con Google

91 Pinsker JE, Lee JB, Dassau E, Seborg DE, Bradley PK, Gondhalekar R, Bevier WC, Huyett L, Zisser HC, Doyle FJ 3rd. Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas. Diabetes Care. 2016 Jul;39(7):1135-42. Cerca con Google

92 Haidar A, Legault L, Messier V, Mitre TM, Leroux C, Rabasa-Lhoret R. Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial. Lancet Diabetes Endocrinol. 2015 Jan;3(1):17-26. Cerca con Google

93 Ceriello A, Hanefeld M, Leiter L, et al. Postprandial glucose regulation and diabetic complications. Arch Intern Med. 2004;164(19): 2090–2095. Cerca con Google

94 The challenges of achieving postprandial glucose control using closed-loop systems in patients with type 1 diabetes. Gingras V, Taleb N, Roy-Fleming A, Legault L, Rabasa-Lhoret R. Diabetes Obes Metab. 2017 Jul 4. doi: 10.1111/dom.13052. [Epub ahead of print] Review. Cerca con Google

95 Brazeau AS, Mircescu H, Desjardins K, et al. Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Res Clin Pract. 2013;99(1):19–23. Cerca con Google

96 Brand-Miller J, Hayne S, Petocz P, Colagiuri S. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2003;26(8):2261–2267. Cerca con Google

97 Gilbertson HR, Brand-Miller JC, Thorburn AW, Evans S, Chondros P, Werther GA. The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diabetes Care. 2001;24(7): 1137–1143. Cerca con Google

98 Smart CE, Evans M, O'Connell SM, et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care. 2013;36(12): 3897–3902. Cerca con Google

99 Lodefalk M, Aman J, Bang P. Effects of fat supplementation on glycaemic response and gastric emptying in adolescents with type 1 diabetes. Diabet Med. 2008;25(9):1030–1035. Cerca con Google

100 American Diabetes Association. Postprandial blood glucose. American Diabetes Association. Diabetes Care. 2001;24(4):775–778. Cerca con Google

101 Haidar A, Duval C, Legault L, Rabasa-Lhoret R. Pharmacokinetics of insulin aspart and glucagon in type 1 diabetes during closed-loop operation. J Diabetes Sci Technol. 2013;7(6):1507–1512. Cerca con Google

102 Russell-Jones D, Bode BW, De Block C, et al. Fast-acting insulin aspart improves glycemic control in basal-bolus treatment for type 1 diabetes: results of a 26-week multicenter, active-controlled, treat-to-target, randomized, parallel-group trial (onset 1). Diabetes Care. 2017;40(7):943–950. Cerca con Google

103 Fath M, Danne T, Biester T, Erichsen L, Kordonouri O, Haahr H. Faster-acting insulin aspart provides faster onset and greater early exposure vs insulin aspart in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes. 2017; Feb 6: doi: 10.1111/ pedi.12506. [Epub ahead of print] Cerca con Google

104 Heise T, Stender-Petersen K, Hovelmann U, et al. Pharmacokinetic and pharmacodynamic properties of faster-acting insulin aspart versus insulin aspart across a clinically relevant dose range in subjects with type 1 diabetes mellitus. Clin Pharmacokinet. 2016;56(6):649–660. Cerca con Google

105 Garg SK, Buse JB, Skyler JS, Vaughn DE, Muchmore DB. Subcutaneous injection of hyaluronidase with recombinant human insulin compared with insulin lispro in type 1 diabetes. Diabetes Obes Metab. 2014;16(11):1065–1069. Cerca con Google

106 Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev. 2015;67(3): 564–600. Cerca con Google

107 Edelman S, Garg S, Frias J, et al. A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care. 2006;29(10): 2189–2195. Cerca con Google

108 Sherr JL, Patel NS, Michaud CI, et al. Mitigating meal-related glycemic excursions in an insulin-sparing manner during closed-loop insulin delivery: the beneficial effects of adjunctive pramlintide and liraglutide. Diabetes Care. 2016;39(7):1127–1134. Cerca con Google

109 Ilkowitz JT, Katikaneni R, Cantwell M, Ramchandani N, Heptulla RA. Adjuvant liraglutide and insulin versus insulin monotherapy in the closed-loop system in type 1 diabetes: a randomized open-labeled crossover design trial. J Diabetes Sci Technol. 2016;10(5): 1108–1114. Cerca con Google

110 Gingras V, Haidar A, Messier V, Legault L, Ladouceur M, Rabasa- Lhoret R. Simplified semi-quantitative meal bolus strategy combined with single- and dual-hormone closed-loop delivery in patients with type 1 diabetes: a pilot study. Diabetes Technol Ther. 2016;18 (8):464–471. Cerca con Google

111 Turksoy K, Bayrak ES, Quinn L, Littlejohn E, Cinar A. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement. Diabetes Technol Ther. 2013;15(5):386–400. Cerca con Google

112 van Bon AC, Hermanides J, Koops R, Hoekstra JB, DeVries JH. Postprandial glycemic excursions with the use of a closed-loop platform in subjects with type 1 diabetes: a pilot study. J Diabetes Sci Technol. 2010;4(4):923–928. Cerca con Google

113 Blauw H, van Bon AC, Koops R, DeVries JH. Consortium obotP. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes Obes Metab. 2016;18(7):671–677. Cerca con Google

114 Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D. DeBoer MD, Cherñavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Pediatr Diabetes. 2017 Nov;18(7):540-546. Cerca con Google

115 FDA Advisory Panel Votes to Recommend Non-Adjunctive Use of Dexcom G5 Mobile CGM. Diabetes Technol Ther. 2016 Aug;18(8):512-6. Cerca con Google

116 Facchinetti A, Del Favero S, Sparacino G, Cobelli C. Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices. Med Biol Eng Comput. 2015;53(12):1259–1269. Cerca con Google

117 Taleb N, Emami A, Suppere C, et al. Comparison of two continuous glucose monitoring systems, Dexcom G4 platinum and Medtronic paradigm Veo Enlite system, at rest and during exercise. Diabetes Technol Ther. 2016;18(9):561–567. Cerca con Google

118 Diabetes Research in Children Network Study Group, Buckingham BA, Kollman C, et al. Evaluation of factors affecting CGMS calibration. Diabetes Technol Ther. 2006;8(3):318–325. Cerca con Google

119 Towards a Run-to-Run Adaptive Artificial Pancreas: In Silico Results. Toffanin C, Visentin R, Messori M, Di Palma F, Magni L, Cobelli C. IEEE Trans Biomed Eng. 2017 Jan 11 Cerca con Google

120 Hirsch IB. doi: 10.2337/dc14-2898. Glycemic Variability and Diabetes Complications: Does It Matter? Of Course It Does! Diabetes Care. 2015 Aug;38(8):1610-4. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record