Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Rakhmonov, Jovid (2018) Development and characterization of a new generation of transition elements based secondary Al-Si-Cu-Mg foundry alloys. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 31 October 2020 for intellectual property related reasons.
Visibile to: nobody

21Mb

Abstract (english)

Secondary Al-Si-Cu-Mg based foundry alloys are widely used in automotive industry to particularly produce powertrain cast components mainly due to their good ratio between weight and mechanical properties, and excellent casting characteristics.
Presence of impurity elements, such as Fe, Mn, Cr, Ti, V and Zr, in secondary Al-Si alloys is one of the critical issues since these elements tend to reduce alloy mechanical properties. There is an ongoing effort to control the formation of intermetallic phases containing transition metals, during alloy solidification. Although phases formation involving these transition metal impurities in non-grain-refined Al-Si alloys is well documented in the literature, the role of grain refinement in microstructural evolution of secondary Al-Si-Cu-Mg alloys needs further experimental investigations since chemical grain refinement is one of the critical melt treatment operations in foundries. The primary aim of this PhD work is thus defined to characterize the formation of intermetallic phases containing transition metals in secondary Al-7Si-3Cu-0.3Mg alloy before and after grain refinement by different master alloys and contribute to the understanding of the mechanisms underlying the microstructural changes occurring with the addition of grain refiner.
Another critical issue related to Al-Si-Cu-Mg alloys is their limited thermal stability at temperatures above 200 oC. The operating temperature in engine combustion chamber is reported to often exceed 200 oC during service. Moreover, a further increase of operating temperature is anticipated due to the expected engine power enhancement in near future, which indicates the necessity for the development of a new creep-resistant Al alloys. Deliberate addition of transition metals is believed to yield a new heat-resistant alloy by promoting the formation of thermally stable dispersoids inside α-Al grains. This study thus also attempted to investigate the effect of adding transition metals Zr, V and Ni on the solidification processing, microstructural evolution and room/high-temperature tensile properties of secondary Al-7Si-3Cu-0.3Mg alloy, one of the most used alloys in automotive engine manufacturing.
The influence of transition metal impurities on microstructural evolution of secondary Al-7Si-3Cu-0.3Mg alloy was investigated before and after chemical treatment with different master alloys: Al-10Sr, Al-5Ti-1B, Al-10Ti and Al-5B. The Al-10Zr, Al-10V and Al-25Ni master alloys were used for the experimental investigations of the effects of deliberate additions of transition metals on the solidification path, microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy. Solidification path of the alloys was characterized by the traditional thermal analysis technique and differential scanning calorimetry (DSC). Optical microscope (OM), scanning electron microscope (SEM) equipped with energy-dispersive (EDS), wavelength-dispersive spectrometers (WDS) and electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) equipped with EDS were used to characterize the type, morphology and distribution of the phases precipitated during solidification and heat treatment of the studied alloys. The static tensile properties of the alloys were characterized at room (20 oC) and high temperatures (200 and 300 ºC).
Experimental findings indicate that the Sr-modification and grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy with Al-Ti-B can be enough effective despite the presence of transition metal impurities in the material and the variation of pouring temperature. However, the V and Zr (~100 ppm each) available in secondary Al-7Si-3Cu-0.3Mg alloy tended to promote the precipitation of harmful, primary AlSiTi intermetallics during solidification of grain-refined alloy. This implies that more effective optimization of grain refiner addition level in secondary Al foundry alloys can be achieved by considering the role of transition metal impurities, Ti, V and Zr, since the formation of primary AlSiTi particles causes (1) the depletion of Ti needed for effective α-Al grains growth restriction and (2) the formation of casting defects, such as shrinkage, due to their flaky morphology.
Iron available in secondary Al-7Si-3Cu-0.3Mg alloy as impurity only formed more desirable α-Al15(FeMn)3Si2 phase in non-grain refined state. After grain refinement by Al-5Ti-1B, Fe was also involved in the formation of more deleterious β-Al5FeSi phase. The TiB2 particles acted as nucleation site for β-Al5FeSi phase. Both higher cooling rate and higher Al-5Ti-1B addition levels tended to promote the formation of deleterious β-Al5FeSi at the expense of α-Al15(FeMn)3Si2 in the alloy refined by Al-5Ti-1B. This implies that rather than the ratio between Mn and Fe, the nucleation kinetics of Fe-rich intermetallics play a decisive role in the selection of competing α-Al15(FeMn)3Si2 and β-Al5FeSi intermetallic phases for the precipitation during alloy solidification. Moreover, grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy by Al-5B showed comparable performance to that of Al-5Ti-1B master alloy, however, without any deleterious influence on the precipitation sequence of Fe-rich phases, i.e. deleterious β-Al5FeSi reaction remained unfavourable during alloy solidification.
Experimental findings from the investigations of the effect of deliberate Zr and V addition revealed that Zr and V addition can induce the grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy. While Zr addition yielded the formation of pro-peritectic Zr-rich particles, which are found to nucleate primary α-Al at low undercooling, the effect of adding V can be characterized by the enhancement of the degree of constitutional undercooling. Combined Zr and V addition showed more effective grain refinement level than their individual additions.
Majority of both Zr and V added to the alloy were retained inside α-Al matrix during solidification. As a result, limited amounts of Zr and V were rejected to the interdendritic liquid by the growing α-Al dendrites, then forming small-sized and rarely distributed intermetallics. Owing to its low solid solubility in α-Al, nickel available as impurity (~ 200 ppm) or after deliberate addition (0.25 wt.%) in secondary Al-7Si-3Cu-0.3Mg alloy was mainly bound to interdendritic, insoluble intermetallics, such as Al6Cu3Ni and Al9(FeCu)Ni phases. The presence of ~ 200 ppm Ni was sufficient to diminish to a certain extent the precipitation hardening effect of Cu. Interdendritic Zr/V/Ni-rich phases remained undissolved into the α-Al matrix during solution heat treatment. Therefore, the supersaturated transition metals in α-Al solid solution obtained during solidification was only involved in the solid-state precipitation occurring during heat treatment. Unlike Cu/Mg-rich strengthening precipitates that commonly form during aging, the Zr/V-rich precipitates tended to form during solution heat treatment. Other transition metals, such as Mn, Fe, Cr and Ti, which were present as impurities in secondary Al-7Si-3Cu-0.3Mg alloy significantly promoted the formation of nano-sized Zr/V-rich precipitates inside α-Al grains. These thermally more stable precipitates, including novel α-Al(MnVFe)Si, were credited for the enhanced high-temperature strength properties of Al-7Si-3Cu-0.3Mg alloy by ~ 20 %.

Abstract (italian)

Secondary Al-Si-Cu-Mg based foundry alloys are widely used in automotive industry to particularly produce powertrain cast components mainly due to their good ratio between weight and mechanical properties, and excellent casting characteristics.
Presence of impurity elements, such as Fe, Mn, Cr, Ti, V and Zr, in secondary Al-Si alloys is one of the critical issues since these elements tend to reduce alloy mechanical properties. There is an ongoing effort to control the formation of intermetallic phases containing transition metals, during alloy solidification. Although phases formation involving these transition metal impurities in non-grain-refined Al-Si alloys is well documented in the literature, the role of grain refinement in microstructural evolution of secondary Al-Si-Cu-Mg alloys needs further experimental investigations since chemical grain refinement is one of the critical melt treatment operations in foundries. The primary aim of this PhD work is thus defined to characterize the formation of intermetallic phases containing transition metals in secondary Al-7Si-3Cu-0.3Mg alloy before and after grain refinement by different master alloys and contribute to the understanding of the mechanisms underlying the microstructural changes occurring with the addition of grain refiner.
Another critical issue related to Al-Si-Cu-Mg alloys is their limited thermal stability at temperatures above 200 oC. The operating temperature in engine combustion chamber is reported to often exceed 200 oC during service. Moreover, a further increase of operating temperature is anticipated due to the expected engine power enhancement in near future, which indicates the necessity for the development of a new creep-resistant Al alloys. Deliberate addition of transition metals is believed to yield a new heat-resistant alloy by promoting the formation of thermally stable dispersoids inside α-Al grains. This study thus also attempted to investigate the effect of adding transition metals Zr, V and Ni on the solidification processing, microstructural evolution and room/high-temperature tensile properties of secondary Al-7Si-3Cu-0.3Mg alloy, one of the most used alloys in automotive engine manufacturing.
The influence of transition metal impurities on microstructural evolution of secondary Al-7Si-3Cu-0.3Mg alloy was investigated before and after chemical treatment with different master alloys: Al-10Sr, Al-5Ti-1B, Al-10Ti and Al-5B. The Al-10Zr, Al-10V and Al-25Ni master alloys were used for the experimental investigations of the effects of deliberate additions of transition metals on the solidification path, microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy. Solidification path of the alloys was characterized by the traditional thermal analysis technique and differential scanning calorimetry (DSC). Optical microscope (OM), scanning electron microscope (SEM) equipped with energy-dispersive (EDS), wavelength-dispersive spectrometers (WDS) and electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) equipped with EDS were used to characterize the type, morphology and distribution of the phases precipitated during solidification and heat treatment of the studied alloys. The static tensile properties of the alloys were characterized at room (20 oC) and high temperatures (200 and 300 ºC).
Experimental findings indicate that the Sr-modification and grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy with Al-Ti-B can be enough effective despite the presence of transition metal impurities in the material and the variation of pouring temperature. However, the V and Zr (~100 ppm each) available in secondary Al-7Si-3Cu-0.3Mg alloy tended to promote the precipitation of harmful, primary AlSiTi intermetallics during solidification of grain-refined alloy. This implies that more effective optimization of grain refiner addition level in secondary Al foundry alloys can be achieved by considering the role of transition metal impurities, Ti, V and Zr, since the formation of primary AlSiTi particles causes (1) the depletion of Ti needed for effective α-Al grains growth restriction and (2) the formation of casting defects, such as shrinkage, due to their flaky morphology.
Iron available in secondary Al-7Si-3Cu-0.3Mg alloy as impurity only formed more desirable α-Al15(FeMn)3Si2 phase in non-grain refined state. After grain refinement by Al-5Ti-1B, Fe was also involved in the formation of more deleterious β-Al5FeSi phase. The TiB2 particles acted as nucleation site for β-Al5FeSi phase. Both higher cooling rate and higher Al-5Ti-1B addition levels tended to promote the formation of deleterious β-Al5FeSi at the expense of α-Al15(FeMn)3Si2 in the alloy refined by Al-5Ti-1B. This implies that rather than the ratio between Mn and Fe, the nucleation kinetics of Fe-rich intermetallics play a decisive role in the selection of competing α-Al15(FeMn)3Si2 and β-Al5FeSi intermetallic phases for the precipitation during alloy solidification. Moreover, grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy by Al-5B showed comparable performance to that of Al-5Ti-1B master alloy, however, without any deleterious influence on the precipitation sequence of Fe-rich phases, i.e. deleterious β-Al5FeSi reaction remained unfavourable during alloy solidification.
Experimental findings from the investigations of the effect of deliberate Zr and V addition revealed that Zr and V addition can induce the grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy. While Zr addition yielded the formation of pro-peritectic Zr-rich particles, which are found to nucleate primary α-Al at low undercooling, the effect of adding V can be characterized by the enhancement of the degree of constitutional undercooling. Combined Zr and V addition showed more effective grain refinement level than their individual additions.
Majority of both Zr and V added to the alloy were retained inside α-Al matrix during solidification. As a result, limited amounts of Zr and V were rejected to the interdendritic liquid by the growing α-Al dendrites, then forming small-sized and rarely distributed intermetallics. Owing to its low solid solubility in α-Al, nickel available as impurity (~ 200 ppm) or after deliberate addition (0.25 wt.%) in secondary Al-7Si-3Cu-0.3Mg alloy was mainly bound to interdendritic, insoluble intermetallics, such as Al6Cu3Ni and Al9(FeCu)Ni phases. The presence of ~ 200 ppm Ni was sufficient to diminish to a certain extent the precipitation hardening effect of Cu. Interdendritic Zr/V/Ni-rich phases remained undissolved into the α-Al matrix during solution heat treatment. Therefore, the supersaturated transition metals in α-Al solid solution obtained during solidification was only involved in the solid-state precipitation occurring during heat treatment. Unlike Cu/Mg-rich strengthening precipitates that commonly form during aging, the Zr/V-rich precipitates tended to form during solution heat treatment. Other transition metals, such as Mn, Fe, Cr and Ti, which were present as impurities in secondary Al-7Si-3Cu-0.3Mg alloy significantly promoted the formation of nano-sized Zr/V-rich precipitates inside α-Al grains. These thermally more stable precipitates, including novel α-Al(MnVFe)Si, were credited for the enhanced high-temperature strength properties of Al-7Si-3Cu-0.3Mg alloy by ~ 20 %.

EPrint type:Ph.D. thesis
Tutor:Bonollo, Franco and Timelli, Giulio
Ph.D. course:Ciclo 30 > Corsi 30 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:13 January 2018
Anno di Pubblicazione:14 January 2018
Key Words:secondary Al-Si alloys, transition metals, solidification path, microstructure, intermetallics, heterogeneous nucleation, high-temperature strength.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:10744
Depositato il:15 Nov 2018 12:23
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] J. Rakhmonov, G. Timelli, F. Bonollo, Adv. Eng. Mater., 18 (2016) 1096-1105. Cerca con Google

[2] A.S.J. Green, Aluminum Recycling and Processing for Energy Conservation and Sustainability, ASM International, Materials Park, Ohio 2007. Cerca con Google

[3] U.M.J. Boin, M. Bertram, JOM, 57 (2005) 26-33. Cerca con Google

[4] J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications, ASM International, Materials Park, 2004. Cerca con Google

[5] H.Z. Ye, J. Mater. Eng. Perform., 12 (2003) 288-297. Cerca con Google

[6] S. Shankar, Y.W. Riddle, M.M. Makhlouf, Metall. Mater. Trans. A, 35A (2004) 3038-3043. Cerca con Google

[7] S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Metall. Mater. Trans. A, 46 (2015) 3063-3078. Cerca con Google

[8] A.M.A. Mohamed, F.H. Samuel, A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys, Heat Treatment, in: F. Czerwinski (Ed.) Heat Treatment - Conventional and Novel Applications, InTech, 2012. Cerca con Google

[9] D. Stefanescu, Casting, ASM International, 1988. Cerca con Google

[10] L. Backerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, AFS/ScanAluminium, Oslo, 1990. Cerca con Google

[11] M. Tupaj, A.W. Orlowicz, M. Mroz, A. Trytek, O. Markowska, Arch. Foundry Eng., 16 (2016) 125-128. Cerca con Google

[12] M. Zamani, S. Seifeddine, E. Ghassemali, Metall. Ital., (2016) 29-32. Cerca con Google

[13] S.W. Choi, Y.M. Kim, K.M. Lee, H.S. Cho, S.K. Hong, Y.C. Kim, C.S. Kang, S. Kumai, J. Alloys Compd., 617 (2014) 654-659. Cerca con Google

[14] G. Timelli, G. Camicia, S. Ferraro, J. Mater. Eng. Perform., 23 (2014) 611-621. Cerca con Google

[15] S. Saleem, H. Fredriksson, Mater. Sci. Forum, 765 (2013) 135-139. Cerca con Google

[16] O. El Sebaie, A.M. Samuel, F.H. Samuel, H.W. Doty, Mater. Sci. Eng. A, 486 (2008) 241-252. Cerca con Google

[17] I. Aguilera-Luna, M.J. Castro-Román, J.C. Escobedo-Bocardo, F.A. García-Pastor, M. Herrera-Trejo, Mater. Charact., 95 (2014) 211-218. Cerca con Google

[18] A.M.A. Mohamed, F.H. Samuel, S. Al Kahtani, Mater. Sci. Eng. A, 577 (2013) 64-72. Cerca con Google

[19] P.S. Mohanty, J.E. Gruzleski, Acta Metall. Mater., 43 (1995) 2001-2012. Cerca con Google

[20] M. Easton, D. StJohn, Metall. Mater. Trans. A, 30 (1999) 1613-1623. Cerca con Google

[21] M. Easton, D. StJohn, Metall. Mater. Trans. A, 36A (2005) 1911-1920. Cerca con Google

[22] D.H. StJohn, A. Prasad, M.A. Easton, M. Qian, Metall. Mater. Trans. A, 46A (2015) 4868-4885. Cerca con Google

[23] Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater., 84 (2015) 292-304. Cerca con Google

[24] G. Timelli, G. Camicia, S. Ferraro, R. Molina, Met. Mater. Int., 20 (2014) 677-686. Cerca con Google

[25] I. Maxwell, A. Hellawell, Acta Metall., 23 (1975) 229-237. Cerca con Google

[26] I.G. Davies, J.M. Dennis, A. Hellawell, Metall. Trans., 1 (1970) 275-280. Cerca con Google

[27] M. Vader, J. Noordegraaf, P.C. van Wiggen, Light Met., (1991) 1123-1130. Cerca con Google

[28] D. Qiu, J.A. Taylor, M.X. Zhang, Metall. Mater. Trans. A, 41A (2010) 3412-3421. Cerca con Google

[29] A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd, A.L. Greer, Mater. Sci. Technol., 15 (1999) 1115-1123. Cerca con Google

[30] F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, Acta Mater., 61 (2013) 5636-5645. Cerca con Google

[31] Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian, T. Wang, Acta Mater., 120 (2016) 168-178. Cerca con Google

[32] A.L. Greer, Philos. Trans. R. Soc. London, Ser. A, 361 (2003) 479-494. Cerca con Google

[33] T.E. Quested, A.T. Dinsdale, A.L. Greer, Mater. Sci. Technol., 22 (2006) 1126-1134. Cerca con Google

[34] J.A. Spittle, S. Sadli, Mater. Sci. Technol., 11 (1995) 533-537. Cerca con Google

[35] Y. Birol, Mater. Sci. Technol., 30 (2014) 1154-1161. Cerca con Google

[36] Y. Birol, Mater. Sci. Technol., 28 (2012) 363-367. Cerca con Google

[37] A. Mazahery, M.O. Shabani, JOM, 66 (2014) 726-738. Cerca con Google

[38] L. Lu, A.K. Dahle, Mater. Sci. Eng. A, 435 (2006) 288-296. Cerca con Google

[39] A.K. Dahle, K. Nogita, J.W. Zindel, S.D. McDonald, L.M. Hogan, Metall. Mater. Trans. A, 32 (2001) 949-960. Cerca con Google

[40] A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Mater. Sci. Eng. A, 413 (2005) 243-248. Cerca con Google

[41] Y.H. Cho, H.C. Lee, K.H. Oh, A.K. Dahle, Metall. Mater. Trans. A, 39 (2008) 2435-2448. Cerca con Google

[42] Y. Sun, S.P. Pang, X.R. Liu, Z.R. Yang, G.X. Sun, Trans. Nonferrous Met. Soc. China, 21 (2011) 2186-2191. Cerca con Google

[43] S.Z. Lu, A. Hellawell, Metall. Trans. A, 20 (1989) 1288-1290. Cerca con Google

[44] S.Z. Lu, A. Hellawell, Metall. Trans. A, 18 (1987) 1721-1733. Cerca con Google

[45] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, Acta Mater., 60 (2012) 3920-3928. Cerca con Google

[46] J. Barrirero, J.H. Li, M. Engstler, N. Ghafoor, P. Schumacher, M. Oden, F. Mucklich, Scripta Mater., 117 (2016) 16-19. Cerca con Google

[47] M.M. Makhlouf, H.V. Guthy, J. Light Met., 1 (2001) 199-218. Cerca con Google

[48] A.S.J. Green, in, ASM International, Materials Park, Ohio 2007, pp. 267. Cerca con Google

[49] M. Javidani, D. Larouche, X.G. Chen, Metall. Mater. Trans. A, 46A (2015) 2933-2946. Cerca con Google

[50] W. Khalifa, F.H. Samuel, J.E. Gruzleski, Metall. Mater. Trans. A, 34A (2003) 807-825. Cerca con Google

[51] S.K. Tang, T. Sritharan, Mater. Sci. Technol., 14 (1998) 738-742. Cerca con Google

[52] B. Closset, F. Paray, J. Gruzleski, H. Mulazimoglu, Light Metals 1996, (1996) 737-744. Cerca con Google

[53] S. Murali, K.S. Raman, K.S.S. Murthy, Mater. Sci. Eng. A, 151 (1992) 1-10. Cerca con Google

[54] A. Pennors, A.M. Samuel, F.H. Samuel, H.W. Doty, Trans Amer. F., 106 (1998) 251-264. Cerca con Google

[55] X.J. Cao, J. Campbell, Mater. Trans., 47 (2006) 1303-1312. Cerca con Google

[56] G. Timelli, E. Fiorese, Metall. Ital., (2011) 9-23. Cerca con Google

[57] L.A. Narayanan, F.H. Samuel, J.E. Gruzleski, Metall. Mater. Trans. A, 25 (1994) 1761-1773. Cerca con Google

[58] L. Hurtalova, E. Tillova, M. Chalupova, Metallography Xv, 782 (2014) 359-364. Cerca con Google

[59] P. Mikołajczak, L. Ratke, Arch. Foundry Eng., 2013, pp. 79. Cerca con Google

[60] S. Seifeddine, S. Johansson, I.L. Svensson, Mater. Sci. Eng. A, 490 (2008) 385-390. Cerca con Google

[61] Z. Ma, E. Samuel, A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, Mater. Des., 31 (2010) 3791-3803. Cerca con Google

[62] K. Liu, X. Cao, X.G. Chen, Metall. Mater. Trans. B, 43 (2012) 1231-1240. Cerca con Google

[63] A. Hernandez-Rodriguez, M.D.J. Castro-Roman, M. Herrera-Trejo, S. Belmares-Perales, P. Orozco-Gonzalez, Metalurgija, 53 (2014) 314-316. Cerca con Google

[64] P. Ashtari, H. Tezuka, T. Sato, Mater. Trans., 44 (2003) 2611-2616. Cerca con Google

[65] R. Chen, Y.-F. Shi, Q.-Y. Xu, B.-C. Liu, Trans. Nonferrous Met. Soc. China (English Edition), 24 (2014) 1645-1652. Cerca con Google

[66] W. Khalifa, F.H. Samuel, J.E. Gruzleski, H.W. Doty, S. Valtierra, Metall. Mater. Trans. A, 36A (2005) 1017-1032. Cerca con Google

[67] S. Haro-Rodriguez, R.E. Goytia-Reyes, D.K. Dwivedi, V.H. Baltazar-Hernandez, H. Flores-Zuniga, M.J. Perez-Lopez, Mater. Des., 32 (2011) 1865-1871. Cerca con Google

[68] A.M. Samuel, F.H. Samuel, H.W. Doty, J. Mater. Sci., 31 (1996) 5529-5539. Cerca con Google

[69] D. Casari, M. Merlin, G.L. Garagnani, J. Mater. Sci., 48 (2013) 4365-4377. Cerca con Google

[70] E. Sjolander, S. Seifeddine, J. Mater. Process. Technol., 210 (2010) 1249-1259. Cerca con Google

[71] E. Sjolander, S. Seifeddine, Metall. Mater. Trans. A, 45A (2014) 1916-1927. Cerca con Google

[72] Y.C. Chen, M.E. Fine, W. Jr, Acta Metall. Mater., 38 (1990) 771-780. Cerca con Google

[73] A.M. Samuel, J. Gauthier, F.H. Samuel, Metall. Mater. Trans. A, 27 (1996) 1785-1798. Cerca con Google

[74] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, J. Mater. Sci., 38 (2003) 1203-1218. Cerca con Google

[75] F.H. Samuel, J. Mater. Sci., 33 (1998) 2283-2297. Cerca con Google

[76] J.H. Sokolowski, X.C. Sun, G. Byczynski, D.O. Northwood, D.E. Penrod, R. Thomas, A. Esseltine, J. Mater. Process. Technol., 53 (1995) 385-392. Cerca con Google

[77] J.H. Sokolowski, M.B. Djurdjevic, C.A. Kierkus, D.O. Northwood, J. Mater. Process. Technol., 109 (2001) 174-180. Cerca con Google

[78] D.L. Zhang, L. Zheng, Metall. Mater. Trans. A, 27 (1996) 3983-3991. Cerca con Google

[79] J.T. Staley, Mater. Sci. Technol., 3 (1987) 923-935. Cerca con Google

[80] G.Q. Wang, L. Yan, G.C. Ren, Z.K. Zhao, Adv Mater Res-Switz, 146-147 (2011) 1667-1670. Cerca con Google

[81] H.L. Yang, S.X. Ji, W.C. Yang, Y. Wang, Z.Y. Fan, Mater. Sci. Eng. A, 642 (2015) 340-350. Cerca con Google

[82] P. Ouellet, F.H. Samuel, J. Mater. Sci., 34 (1999) 4671-4697. Cerca con Google

[83] J.H. Sandoval, PhD thesis, University of Quebec, Chicoutimi, 2010. Cerca con Google

[84] J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, F.H. Samuel, Mater. Des., 58 (2014) 89-101. Cerca con Google

[85] E. Rincon, H.F. Lopez, M.M. Cisneros, H. Mancha, Mater. Sci. Eng. A, 519 (2009) 128-140. Cerca con Google

[86] M. Javidani, D. Larouche, Int. Mater. Rev., 59 (2014) 132-158. Cerca con Google

[87] A.R. Farkoosh, X. Grant Chen, M. Pekguleryuz, Mater. Sci. Eng. A, 620 (2014) 181-189. Cerca con Google

[88] A.R. Farkoosh, X. Grant Chen, M. Pekguleryuz, Mater. Sci. Eng. A, 627 (2015) 127-138. Cerca con Google

[89] M.T. Di Giovanni, E. Cerri, D. Casari, M. Merlin, L. Arnberg, G.L. Garagnani, Metall. Mater. Trans. A, 47 (2016) 2049-2057. Cerca con Google

[90] K.E. Knipling, D.C. Dunand, D.N. Seidman, Acta Mater., 56 (2008) 1182-1195. Cerca con Google

[91] K.E. Knipling, D.C. Dunand, D.N. Seidman, Int. J. Mater. Res., 97 (2006) 246-265. Cerca con Google

[92] S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Int. J. Fatigue, 70 (2015) 383-394. Cerca con Google

[93] S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Sci. Eng. A, 636 (2015) 361-372. Cerca con Google

[94] S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Thermochim. Acta, 595 (2014) 11-16. Cerca con Google

[95] S.K. Shaha, F. Czerwinski, W. Kasprzak, D.L. Chen, Mater. Des., 59 (2014) 352-358. Cerca con Google

[96] F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, P.J. Uggowitzer, Int. J. Cast Met. Res., 25 (2012) 215-224. Cerca con Google

[97] K.E. Knipling, D.C. Dunand, D.N. Seidman, Acta Mater., 56 (2008) 114-127. Cerca con Google

[98] N.A. Belov, A.N. Alabin, D.G. Eskin, V.V. Istomin-Kastrovskii, J. Mater. Sci., 41 (2006) 5890-5899. Cerca con Google

[99] N.A. Belov, A.N. Alabin, I.A. Matveeva, D.G. Eskin, Trans. Nonferrous Met. Soc. China, 25 (2015) 2817-2826. Cerca con Google

[100] Y. Meng, J.Z. Cui, Z.H. Zhao, Y.B. Zuo, J. Alloys Compd., 573 (2013) 102-111. Cerca con Google

[101] Y.C. Chen, M.E. Fine, J.R. Weertman, R.E. Lewis, Scripta Metall. Mater., 21 (1987) 1003-1008. Cerca con Google

[102] M.S. Zedalis, M.E. Fine, Metall. Trans. A, 17 (1986) 2187-2198. Cerca con Google

[103] H. Okamoto, Phase Diagrams of Dilute Binary Alloys, ASM International, Materials Park, 2002. Cerca con Google

[104] K.E. Knipling, PhD thesis, Northwestern University, Evanston, 2006. Cerca con Google

[105] J. Hernandez-Sandoval, A.M. Samuel, S. Valtierra, F.H. Samuel, Metallography, Microstructure, and Analysis, 3 (2014) 408-420. Cerca con Google

[106] A.R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, M. Pekguleryuz, J. Alloys Compd., 551 (2013) 596-606. Cerca con Google

[107] P. Sepehrband, R. Mahmudi, F. Khomamizadeh, Scripta Mater., 52 (2005) 253-257. Cerca con Google

[108] R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Mater. Lett., 60 (2006) 2606-2610. Cerca con Google

[109] M. Garat, G. Laslaz, AFS trans., 07-002 (2007) 1-8. Cerca con Google

[110] T. Gao, D. Li, Z. Wei, X. Liu, Mater. Sci. Eng. A, 552 (2012) 523-529. Cerca con Google

[111] J.H. Sandoval, A.M.A. Mohamed, S. Valtierra, F.H. Samuel, in: 14th International Conference on Aluminium Alloys, ICAA 2014, June 15, 2014 - June 19, 2014, Trans Tech Publications Ltd, Trondheim, Norway, 2014, pp. 489-494. Cerca con Google

[112] Y.G. Li, Y. Yang, Y.Y. Wu, L.Y. Wang, X.F. Liu, Mater. Sci. Eng. A, 527 (2010) 7132-7137. Cerca con Google

[113] A.R. Farkoosh, M. Pekguleryuz, Mater. Sci. Eng. A, 582 (2013) 248-256. Cerca con Google

[114] R. Molina, P. Amalberto, M. Rosso, Metall. Sci. Technol., 29 (2011) 5-15. Cerca con Google

[115] X.-G. Dong, J. Zhou, Y.-J. Jia, B. Liu, Trans. Nonferrous Met. Soc. China (English Edition), 22 (2012) s661-s667. Cerca con Google

[116] W. Kasprzak, B.S. Amirkhiz, M. Niewczas, J. Alloys Compd., 595 (2014) 67-79. Cerca con Google

[117] S.K. Shaha, F. Czerwinski, W. Kasprzak, D.L. Chen, J. Alloys Compd., 593 (2014) 290-299. Cerca con Google

[118] L.F. Mondolfo, Aluminum Alloys, Butterworth-Heinemann, 1976. Cerca con Google

[119] L.F. Mondolfo, Al–Si–Ti Aluminum–Silicon–Titanium system, in: Aluminum Alloys, Butterworth-Heinemann, 1976, 614-615. Cerca con Google

[120] L.F. Mondolfo, Al–Si–Zr Aluminum–Silicon–Zirconium system, in: Aluminum Alloys, Butterworth-Heinemann, 1976, 618-619. Cerca con Google

[121] N.Q. Vo, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A, 677 (2016) 485-495. Cerca con Google

[122] A. Waheed, G.W. Lorimer, J. Mater. Sci. Lett., 16 (1997) 1643-1646. Cerca con Google

[123] X. Cao, N. Saunders, J. Campbell, J. Mater. Sci., 39 (2004) 2303-2314. Cerca con Google

[124] K. Liu, X. Cao, X.G. Chen, Metall. Mater. Trans. A, 42A (2011) 2004-2016. Cerca con Google

[125] J. Rakhmonov, G. Timelli, F. Bonollo, Adv. Eng. Mater., 18 (2016) 1096-1105. Cerca con Google

[126] G. Timelli, P. Ferro, F. Bonollo, La metal. ital., (2010) 1-11. Cerca con Google

[127] M.B. Djurdjevic, I. Vicario, G. Huber, Rev. Metal., 50 (2014). Cerca con Google

[128] J. Rakhmonov, G. Timelli, F. Bonollo, Metall. Mater. Trans. A, 47 (2016) 5510-5521. Cerca con Google

[129] A.S.f.T. Materials, in, ASTM International, 2013, pp. 9-11. Cerca con Google

[130] C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, P.D. Lee, Acta Mater., 79 (2014) 292-303. Cerca con Google

[131] S. Farahany, A. Ourdjini, M.H. Idris, S.G. Shabestari, J. Therm. Anal. Calorim., 114 (2013) 705-717. Cerca con Google

[132] C. Puncreobutr, PhD thesis, Imperial College London, 2013, pp. 173. Cerca con Google

[133] T. Gao, X. Liu, J. Mater. Sci. Technol., 29 (2013) 291-296. Cerca con Google

[134] W.D. Kang, H.G. Park, Korean J. Met. Mater., 49 (2011) 619-627. Cerca con Google

[135] X.G. Chen, Fortier, M, J. Mater. Process. Technol., 210 (2010) 1780-1786. Cerca con Google

[136] B. Suarez-Pena, J. Asensio-Lozano, Scripta Mater., 54 (2006) 1543-1548. Cerca con Google

[137] T.H. Ludwig, P.L. Schaffer, L. Arnberg, Metall. Mater. Trans. A, 44A (2013) 3783-3796. Cerca con Google

[138] A. Manente, G. Timelli, Metall. Ital., (2008) 37-50. Cerca con Google

[139] S. Farahany, A. Ourdjini, M.H. Idris, L.T. Thai, Trans. Nonferrous Met. Soc. China, 21 (2011) 1455-1464. Cerca con Google

[140] L.M. Lu, A.K. Dahle, Light Met., (2006) 807-812. Cerca con Google

[141] S. Farahany, A. Ourdjini, T.A. Abu Bakar, M.H. Idris, Thermochim. Acta, 575 (2014) 179-187. Cerca con Google

[142] S. Ferraro, G. Timelli, A. Fabrizi, Mater. Sci. Forum, 765 (2013) 59-63. Cerca con Google

[143] K. Nogita, S.D. McDonald, A.K. Dahle, Mater. Trans., 44 (2003) 692-695. Cerca con Google

[144] Q. Wang, Y.X. Li, X.C. Li, Metall. Mater. Trans. A, 34A (2003) 1175-1182. Cerca con Google

[145] E. Samuel, B. Golbahar, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Mater. Des., 56 (2014) 468-479. Cerca con Google

[146] C.M. Dinnis, J.A. Taylor, A.K. Dahle, Mater. Sci. Eng. A, 425 (2006) 286-296. Cerca con Google

[147] Q.G. Wang, D. Apelian, D.A. Lados, J. Light Met., 1 (2001) 85-97. Cerca con Google

[148] J.Y. Hwang, H.W. Doty, M.J. Kaufman, Mater. Sci. Eng. A, 488 (2008) 496-504. Cerca con Google

[149] J.A. Taylor, G.B. Schaffer, D.H. StJohn, Metall. Mater. Trans. A, 30 (1999) 1657-1662. Cerca con Google

[150] S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suery, E. Boller, A.K. Dahle, Acta Mater., 58 (2010) 5370-5380. Cerca con Google

[151] C.M. Allen, K.A.Q. O'Reilly, B. Cantor, P.V. Evans, Prog. Mater Sci., 43 (1998) 89-170. Cerca con Google

[152] G.K. Sigworth, T.A. Kuhn, Int. J. Metalcast., 1 (2007) 31-40. Cerca con Google

[153] G. Sha, K. O'Reilly, B. Cantor, R. Hamerton, J. Worth, Mater. Sci. Forum, 331 (2000) I/. Cerca con Google

[154] T. Smith, K. O'Reilly, S. Kumar, I. Stone, Metall. Mater. Trans. A, 44 (2013) 4866-4871. Cerca con Google

[155] A. Khaliq, M.A. Rhamdhani, G.A. Brooks., J. Grandfield, Thermodynamic Analysis of Ti, Zr, V and Cr Impurities in Aluminum Melt, in: S.J. Lindsay (Ed.) Light Metals 2011, Springer International Publishing, Cham, 2016, pp. 751-756. Cerca con Google

[156] Y. Birol, Mater. Sci. Technol., 30 (2014) 465-470. Cerca con Google

[157] Y. Liu, C. Ding, Y.-X. Li, Trans. Nonferrous Met. Soc. China (English Edition), 21 (2011) 1435-1440. Cerca con Google

[158] F. Wang, D. Qiu, Z.L. Liu, J. Taylor, M. Easton, M.X. Zhang, Trans. Nonferrous Met. Soc. China, 24 (2014) 2034-2040. Cerca con Google

[159] B. Huber, K.W. Richter, J. Alloys Compd., 493 (2010) L33-L35. Cerca con Google

[160] W.M. Edwards, R.C. Thomson, S.J. Barnes, S.I. Barnes, Mater. Sci. Forum, 396-4 (2002) 625-630. Cerca con Google

[161] A.K.P. Rao, Trans. Indian Institute Met., 64 (2011) 447-451. Cerca con Google

[162] R. Cook, M.A. Kearns, P.S. Cooper, J. Light Met., (1997) 809-814. Cerca con Google

[163] T.H. Ludwig, P.L. Schaffer, L. Arnberg, Light Metals, 2013, 1023-1028. Cerca con Google

[164] G. Tong, L. Dakui, W. Zuoshan, L. Xiangfa, Evolution, microhardness of ZrAISi intermetallic and its impact on the elevated-temperature properties in Al-Si alloys, Elsevier, Kidlington, Royaume-Uni, 2012. Cerca con Google

[165] W.B. Pearson, Chapter VI - crystallographic data on “strukturbericht” types, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, 1958, 79-121. Cerca con Google

[166] B. Huber, H.S. Effenberger, K.W. Richter, Intermetallics, 18 (2010) 606-615. Cerca con Google

[167] H.M. Medrano-Prieto, C.G. Garay-Reyes, C.D. Gómez-Esparza, I. Estrada-Guel, J. Aguilar-Santillan, M.C. Maldonado-Orozco, R. Martínez-Sánchez, Mater. Charact., 120 (2016) 168-174. Cerca con Google

[168] S. Capuzzi, G. Timelli, A. Fabrizi, F. Bonollo, in: 7th International Light Metals Technology Conference, LMT 2015, July 27, 2015 - July 29, 2015, Trans Tech Publications Ltd, Port Elizabeth, South africa, 2015, pp. 212-218. Cerca con Google

[169] Y.J. Li, A.M.F. Muggerud, A. Olsen, T. Furu, Acta Mater., 60 (2012) 1004-1014. Cerca con Google

[170] M. Tocci, R. Donnini, G. Angella, A. Pola, Mater. Charact., 123 (2017) 75-82. Cerca con Google

[171] H.-W. Huang, B.-L. Ou, Mater. Des., 30 (2009) 2685-2692. Cerca con Google

[172] J. Rakhmonov, G. Timelli, F. Bonollo, L. Arnberg, Int. J. Metalcast., (2016) 1-11. Cerca con Google

[173] Q.G. Wang, C.H. Caceres, J.R. Griffiths, Metal. Mat. Trans. A, 34 (2003) 2901-2912. Cerca con Google

[174] W.H. Hunt, J.R. Brockenbrough, P.E. Magnusen, Scripta Metal. Mater., 25 (1991) 15-20. Cerca con Google

[175] M. Zamani, S. Seifeddine, A.E.W. Jarfors, Mater. Des., 86 (2015) 361-370. Cerca con Google

[176] G. Rajaram, S. Kumaran, T.S. Rao, Mater. Sci. Eng. A, 528 (2010) 247-253. Cerca con Google

[177] D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani, Mater. Sci. Eng. A, 610 (2014) 414-426. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record