Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Baritussio, Anna (2017) Non-traumatic out of hospital cardiac arrest: diagnostic and prognostic role of Cardiovascular Magnetic Resonance. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Documento in inglese) - Submitted Version
3653Kb

Abstract (english)

Background Cardiovascular Magnetic Resonance (CMR) plays an important role in out of hospital cardiac arrest survivors, not only as a diagnostic tool, but also as a guide to clinical decision-making and to patients’ management: CMR has shown to have a clinical impact in a considerable proportion of patients surviving both tachy-arrhythmic cardiac arrest and pulseless electrical activity. There is also growing evidence of the predictive role of CMR, especially in the setting of ventricular arrhythmias. In patients surviving ventricular fibrillation (VF) cardiac arrest, recurrence of Major Cardiovascular Adverse Events (MACE) is not rare. We sought to identify CMR-derived structural and functional myocardial predictors of MACE recurrence in VF cardiac arrest survivors.
Material and Methods We retrospectively analysed our CMR registry to enrol VF cardiac arrest survivors. All patients underwent a 1.5 T CMR, comprehensive of long and short- axis cine and late gadolinium enhancement (LGE) sequences. LGE was quantified with semi-automated software using the full width at half maximum method (cvi42, Circle Cardiovascular Imaging). Tissue tracking analysis software was used to assess myocardial deformation (cvi42, Circle Cardiovascular Imaging). Primary end-points were all-cause mortality and appropriate ICD discharge/anti-tachycardia pacing.
Results We enrolled 121 patients [82% male, 62 years (IQR 53-70)]. CMR was performed within 13 days (IQR 6-42) from VF arrest. Left ventricular (LV) systolic function was mildly impaired [LVEF 54 (41-64)%], right ventricular systolic function was preserved [RVEF 60 (53-65)%]. LGE was found in 71% of patients, median mass was 6.2 (0-15)% of the left ventricle. Myocardial deformation was overall impaired [global longitudinal strain, -15.5 (- 18.9- -12.3)%; global radial strain, 34.2 (25.2-45.2)%; global circumferential strain, -15.5 (- 20.3- -11.9)%]. There was a significant correlation between LGE mass and myocardial deformation (p<0.001). On CMR, 75 patients (62%) were diagnosed with ischemic heart disease (IHD) and 20 (17%) with non-ischemic heart disease (NIHD); a structural normal
heart was found in 26 (21%). Fifty-two per cent of patients were implanted with an ICD. After a median follow-up of 24 months (IQR 6-41), 22 patients (18%) were lost to follow- up. Primary end-point was met in 24 patients (14 deaths, 10 appropriate ICD discharge). LVEF did not differ between patients with and without end-point (p=0.128), while RVEF was significantly lower in those meeting the end-point (58% vs 61%, p=0.03). LGE prevalence did not differ between patients with and without end-point (p=0.075) but its extent was significantly greater in patients experiencing adverse events (LGE mass 8.6% of LV vs 4.1%, p=0.02). Myocardial deformation did not differ between patients with and without end-point. Patients with LGE mass >4.3% represented a subgroup at a higher risk of adverse events (p=0.0048).
Conclusions In a population of VF cardiac arrest survivors, CMR was able to identify a pathological substrate of the cardiac arrest in 79% of cases. While CMR-derived myocardial deformation assessment was not able to differentiate patients experiencing adverse events from those event-free, an LGE mass >4.3% of LV myocardium identified a subgroup of patients at a higher risk of developing adverse events. Further studies, in larger populations, are warranted to expand the findings on the role of CMR as risk stratification tool in this group of patients.

Abstract (italian)

Premesse La risonanza magnetica cardiovascolare (RMC) gioca un ruolo importante nei pazienti sopravvissuti ad arresto cardiaco extra-ospedaliero, non solo come strumento diagnostico, ma anche come guida nelle decisioni cliniche e nel management dei pazienti: la RMC ha infatti dimostrato di avere una implicazione clinica diretta in una proporzione considerevole di pazienti sopravvissuti sia ad arresto cardiaco su base tachi-aritmica sia secondario ad attività elettrica senza polso. C’è crescente evidenza del ruolo predittivo della RMC, in particolare nel contesto delle aritmie ventricolari. Nei pazienti che sopravvivono ad arresto cardiaco da fibrillazione ventricolare (FV), la ricorrenza di eventi avversi cardiovascolari maggiori (MACE) non è rara. Il nostro obiettivo era di identificare predittori miocardici strutturali e funzionali, valutati con RMC, della ricorrenza di MACE in pazienti sopravvissuti ad arresto cardiaco da FV.
Materiali e Metodi Abbiamo analizzato retrospettivamente il nostro registro di RMC per arruolate pazienti sopravvissuti ad arresto cardiaco da FV. Tutti i pazienti sono stati sottoposti a RMC a 1.5 T, comprensiva delle sequenze cine in asse lungo e corto e delle sequenze post-contrastografiche dopo somministrazione di gadolinio. L’impregnazione tardiva di gadolinio (LGE) è stata quantificata utilizzando un software semi-automatico, basato sul metodo full width at half maximum (cvi42, Circle Cardiovascular Imaging). La deformazione tissutale è stata analizzata mediante il software di analisi tissue tracking (cvi42, Circle Cardiovascular Imaging). End-point primari erano mortalità da tutte le cause e scarica appropriata del defibrillatore/pacing anti-tachicardico.
Risultati Abbiamo arruolato 121 pazienti [82% maschi, 62 anni (IQR 53-70)]. La RMC è stata eseguita entro 13 giorni (IQR 6-42) dall’arresto da FV. La funzione sistolica del ventricolo sinistro era lievemente ridotta [FEVsin 54 (41-64)%], mentre quella del ventricolo destro era preservata [FEVdx 60 (53-65)%]. LGE è stato trovato nel 71% della popolazione, con una massa mediana di 6.2 (0-15)% del ventricolo sinistro. La deformazione miocardica era complessivamente compromessa [strain longitudinale globale, -15.5 (- 18.9- -12.3)%; strain radiale globale, 34.2 (25.2-45.2)%; strain circonferenziale globale, -15.5 (- 20.3- -11.9)%]. C’era una correlazione significativa tra la massa di LGE e la deformazione miocardica (p<0.001). Alla RMC, in 75 pazienti (62%) è stata diagnosticata una cardiopatia ischemica e in 20 (17%) una cardiopatia non ischemica; un cuore strutturalmente normale è stato identificato in 26 (21%). Il 52% dei pazienti è stato sottoposto ad impianto di defibrillatore (ICD). Dopo un follow-up mediano di 24 mesi (IQR 6-41), 22 pazienti (18%) sono stati persi al follow- up. L’end-point primario si è verificato in 24 pazienti (14 morti, 10 scariche appropriate dell’ICD). Non vi erano differenze nelle FEVsin tra i pazienti con e senza end-point (p=0.128), mentre la FEVdx era significativamente più bassa nei pazienti con end-point (58% vs 61%, p=0.03). La prevalenza di LGE non era diversa nei pazienti con e senza end-point (p=0.075) ma la sua estensione era significativamente superiore nei pazienti con eventi avversi (massa di LGE 8.6% del Vsin vs 4.1%, p=0.02). La deformazione miocardica non differiva nei pazienti con e senza end-point. I pazienti con massa di LGE >4.3% rappresentavano un sottogruppo a più elevato rischio di eventi avversi (p=0.0048).
Conclusioni In una popolazione di pazienti sopravvissuti ad arresto cardiaco da FV, la RMC è stata in grado di identificare un substrato patologico nel 79% dei casi. Mentre la valutazione della deformazione miocardica non è stata in grado di identificare i pazienti a maggior rischio, la presenza di una massa di LGE >4.3% del ventricolo sinistro identifica un sottogruppo a più elevato rischio di sviluppare eventi avversi. Ulteriori studi, in popolazioni più ampie, sono necessari per espandere i risultati sul ruolo della RMC come stratificatore di rischio in questo gruppo di pazienti.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Perazzolo-Marra, Martina
Supervisor:Bucciarelli-Ducci, Chiara
Ph.D. course:Ciclo 30 > Corsi 30 > MEDICINA SPECIALISTICA "G.B. MORGAGNI"
Data di deposito della tesi:13 January 2018
Anno di Pubblicazione:30 October 2017
Key Words:arresto cardiaco extra ospedaliero;fibrillazione ventricolare;risonanza magnetica cardiovascolare/out of hospital cardiac arrest; ventricular fibrillation; cardiovascular magnetic resonance
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:10748
Depositato il:08 Nov 2018 11:06
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. De Vreede-Swagemakers J, Gorgels AP, Dubois-Arbouw WI, van Ree JW, Daemen MJ, Hiuben LG, et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maatrich area on incidence, characteristics and survival. J Am Coll Cardiol. 1997;30(6):1500–5. Cerca con Google

2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation. 2017; 135: e146-603. Cerca con Google

3. Polnitsky CA, Capone RJ, Gagnon DE, McGinnis K. Prehospital Coronary Care. Proposal for a uniform reporting system. JAMA. 1977;(237):134–7. Cerca con Google

4. McNally B, Robb R, Mehta M, Vellano K, Valderrama AL, Yoon PW, et al. Out-of- hospital cardiac arrest surveillance --- Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005--December 31, 2010. MMWR Surveill Summ 2011; 60: 1-19. Cerca con Google

5. Nishiyama C, Brown SP, May SJ, Iwami T, Koster RW, Beesems SG, et al. Apples to apples or apples to oranges  ? International variation in reporting of process and outcome of care for out-of-hospital cardiac arrest. Resuscitation 2014; 85: 1599– 609. Cerca con Google

6. Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: Update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest. Circulation 2015; 132: 1286-300. Cerca con Google

7. Cummins RO, Chamberlain D a, Abramson NS, Allen M, Baskett PJ, Becker L, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A statement for health professionals from a task force of the Cerca con Google

American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation. 1991;84(2):960–75. Cerca con Google

8. Wnent J, Masterson S, Gräsner JT, Böttiger BW, Herlitz J, Koster RW, et al. EuReCa ONE – 27 Nations, ONE Europe, ONE Registry: a prospective observational analysis over one month in 27 resuscitation registries in Europe – the EuReCa ONE study protocol. Scand J Trauma Resusc Emerg Med 2015; 23: 7. Cerca con Google

9. Gorgels APM, Gijsbers C, de Vreede-Swagemakers J, Lousberg A, Wellens HJJ. Out-of-hospital cardiac arrest--the relevance of heart failure. The Maastricht Circulatory Arrest Registry. Eur Heart J. 2003;24:1204–9. Cerca con Google

10. Myerburg RJ, Junttila MJ. Sudden cardiac death caused by coronary heart disease. Circulation. 2012;125(8):1043–52. Cerca con Google

11. Ilkhanoff L, Goldberger JJ. Out-of-hospital cardiac arrest: Getting beyond the tip of the iceberg. Circulation. 2012;126(7):793–6. Cerca con Google

12. Basso C, Aguilera B, Banner J, Cohle S, d’Amati G, de Gouveia RH, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch [Internet]. Virchows Arch (2017). https://doi.org/10.1007/s00428-017-2221-0. Vai! Cerca con Google

13. Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010; 81: 1479–87. Cerca con Google

14. Norris RM. Circumstances of out of hospital cardiac arrest in patients with ischaemic heart disease. Heart. 2005; 91: 1537–40. Cerca con Google

15. Jabbour RJ, Sen S, Mikhail GW, Malik IS. Out of hospital cardiac arrest: Concise review of strategies to improve outcome. Cardiovasc Revascularization Med 2017; Available from: http://dx.doi.org/10.1016/j.carrev.2017.03.011 Vai! Cerca con Google

16. Engdahl J, Holmberg M, Karlson BW, Luepker R, Herlitz J. The epidemiology of out- of-hospital “sudden” cardiac arrest. Resuscitation. 2002; 52(3): 235–45. Cerca con Google

17. Mehta D, Curwin J, Gomes J a, Fuster V. Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation 1997;96(9):3215–23. Cerca con Google

18. Chugh SS, Kelly KL, Titus JL. Sudden cardiac death with apparently normal heart. Circulation 2000; 102: 649-54. Cerca con Google

19. Corrado D, Basso C, Thiene G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc Res. 2001;50(2):399–408. Cerca con Google

20. Evaluation SC. Survivors of Out-of-Hospital Cardiac Arrest With Apparently Normal Heart: Need for Definition and Standardized Clinical Evaluation. Consensus Statement of the Joint Steering Committees of the Unexplained Cardiac Arrest Registry of Europe and of the Idiopathic Ventricular Fibrillation Registry of the United States. Circulation 1997;95(1):265–72. Cerca con Google

21. Arsenos P, Gatzoulis K, Dilaveris P, Manis G, Tsichris D, Archontakis S, et al. Arrhythmic Sudden Cardiac Death: substrate, mechanism and current risk stratification strategies for the post-myocardial infarction patient. Hell J Cardiol. 2013;(54):301–15. Cerca con Google

22. Zaman S, Kovoor P. Sudden cardiac death early after myocardial infarction: pathogenesis, risk stratification, and primary prevention. Circulation 2014;129(23): 2426–35. Cerca con Google

23. Rubenstein JC, Lee DC, Wu E, Kadish AH, Passman R, Bello D, et al. A comparison of cardiac magnetic resonance imaging peri-infarct border zone quantification strategies for the prediction of ventricular tachyarrhythmia inducibility. Cardiol J. 2013; 20(1): 68–77. Cerca con Google

24. Stojanovska, Fadranka, Garg, Anubhav, Patel, Smita, Melville, David, Kazerooni, Ella, Mueller G. Congenital and Hereditary Causes of Sudden Cardiac Death in Cerca con Google

Young Adults  : Diagnosis , Differential Diagnosis, and Risk Stratification. Cerca con Google

Radiographics. 2013;(33):1977–2001. Cerca con Google

25. Semsarian C, Ingles J, Wilde AA. Sudden cardiac death in the young: the molecular Cerca con Google

autopsy and a practical approach to surviving relatives. Eur Heart J 2015; 36: 1290- Cerca con Google

6. Cerca con Google

26. Corrado D, Migliore F, Basso C, Thiene G. Exercise and the risk of sudden cardiac Cerca con Google

death. Herz. 2006;31(6):553–8. Cerca con Google

27. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young Cerca con Google

competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Cerca con Google

Circulation. 2009;119(8):1085–92. Cerca con Google

28. Sweeting J, Semsarian C. Sudden cardiac death in athletes: still much to learn. Cerca con Google

Cardiology Clinics 2016; 34: 531-41. Cerca con Google

29. Kocovski L, Fernandes J. Sudden Cardiac Death: A Modern Pathology Approach to Cerca con Google

Hypertrophic Cardiomyopathy. Arch Pathol Lab Med 2015;139(3):413–6. Cerca con Google

30. O’Mahony C, Elliott P, McKenna W. Sudden cardiac death in hypertrophic Cerca con Google

cardiomyopathy. Circ Arrhythmia Electrophysiol. 2013;6(2):443–51. Cerca con Google

31. Koutalas E, Kanoupakis E, Vardas P. Sudden cardiac death in non-ischemic dilated Cerca con Google

cardiomyopathy: A critical appraisal of existing and potential risk stratification tools. Cerca con Google

Int J Cardiol 2013;167(2):335–41. Cerca con Google

32. Lubitz SA, Goldbarg SH, Mehta D. Sudden Cardiac Death in Infiltrative Cerca con Google

Cardiomyopathies: Sarcoidosis, Scleroderma, Amyloidosis, Hemachromatosis. Prog Cerca con Google

Cardiovasc Dis. 2008;51(1):58–73. Cerca con Google

33. van der Bijl P, Delgado V, Bax JJ. Noninvasive imaging markers associated with Cerca con Google

sudden cardiac death. Trends in Cardiovascular Medicine. 2016; 26: 348-60. Cerca con Google

34. Mazeika P. Aborted sudden cardiac death: a clinical perspective. Postgrad Med J. Cerca con Google

2001;77(908):363–70. Cerca con Google

35. Fernández-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology (Basel) 2017;6(1):7. doi:10.3390/biology6010007 Cerca con Google

36. Basso C, Perazzolo Marra M, Rizzo S, De Lazzari M, Giorgi B, Cipriani A, et al. Arrhythmic Mitral Valve Prolapse and Sudden Cardiac Death. Circulation. 2015;132(7):556–66. Cerca con Google

37. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal 2017, ehx393, https://doi.org/10.1093/eurheartj/ehx393. Vai! Cerca con Google

38. Noc M, Fajadet J, Lassen JF, Kala P, Maccarthy P, Olivecrona GK, et al. Invasive coronary treatment strategies for out-of-hospital cardiac arrest  : a consensus statement from the European Association for Percutaneous Cardiovascular Interventions ( EAPCI )/ Stent for Life ( SFL ) groups. Eurointervention 2014; 10: 31- 7. Cerca con Google

39. Agewall S, Beltrame JF, Reynolds HR, Niessner A, Rosano G, Caforio ALP, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143–53. Cerca con Google

40. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015;95:1–80. Cerca con Google

41. Price S, Uddin S, Quinn T. Echocardiography in cardiac arrest. Curr Opin Crit Care [Internet]. 2010;16(3):211–5. Cerca con Google

42. Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, et al. Focused Cerca con Google

Cardiac Ultrasound in the Emergent Setting  : A Consensus Statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr 2010;23(12):1225–30. Cerca con Google

43. Guidelines for the Use of Transesophageal Echocardiography (TEE) in the ED for Cardiac Arrest. Ann Emerg Med [Internet]. 2017;70(3):442–5. Cerca con Google

44. Blyth L, Atkinson P, Gadd K, Lang E. Bedside Focused Echocardiography as Predictor of Survival in Cardiac Arrest Patients  : A Systematic Review. Academic Emergency Medicine 2012; 19: 1119–26. Cerca con Google

45. Tsou P, Kurbedin J, Chen Y, Chou EH, Lee MG, Lee MC, et al. Accuracy of point-of- care focused echocardiography in predicting outcome of resuscitation in cardiac arrest patients: A systematic review and meta-analysis. Resuscitation 2017;114:92– 9. Cerca con Google

46. Wu KC. Sudden Cardiac Death Substrate Imaged by Magnetic Resonance Imaging: From Investigational Tool to Clinical Applications. Circ Cardiovasc Imaging. 2017;10(7). pii: e005461. doi: 10.1161/CIRCIMAGING.116.005461. Cerca con Google

47. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74. Cerca con Google

48. White JA, Fine NM, Gula L, Yee R, Skanes A, Klein G, et al. Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging. 2012;5:12–20. Cerca con Google

49. Neilan TG, Farhad H, Mayrhofer T, Shah RV, Dodson JA, Abbasi SA, et al. Late Gadolinium Enhancement Among Survivors of Sudden Cardiac Arrest. JACC Cardiovasc Imaging 2015;8: 414-423. Cerca con Google

50. Dastidar AG, Rodrigues JCL, Johnson TW, De Garate E, Singhal P, Baritussio A, et al. Myocardial Infarction With Nonobstructed Coronary Arteries: impact of CMR early Cerca con Google

after presentation. JACC Cardiovasc Imaging 2017; 10: 1204-6. Cerca con Google

51. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VRM, Deakin CD, et al. European Cerca con Google

Resuscitation Council and European Society of Intensive Care Medicine 2015 Cerca con Google

Guidelines for Post-resuscitation Care. Intensive Care Med 2015; 41: 2039-56. Cerca con Google

52. Nielsen N, Wetterslev J, Al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, et Cerca con Google

al. Target temperature management after out-of-hospital cardiac arrest - A randomized, parallel-group, assessor-blinded clinical trial - Rationale and design. Am Heart J 2012;163(4):541–8. Cerca con Google

53. Borne RT, Katz D, Betz J, Peterson PN, Masoudi FA. Implantable cardioverter- defibrillators for secondary prevention of sudden cardiac death: A review. J Am Heart Assoc. 2017;6(3):1–11. Cerca con Google

54. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2015;36(41):2793–867. Cerca con Google

55. Champagne J, Geelen P, Philippon F, Brugada P. Recurrent cardiac events in patients with idiopathic ventricular fibrillation, excluding patients with the Brugada syndrome. BMC Med 2005;3(1):1. Cerca con Google

56. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson 2010;12(1):71. Cerca con Google

57. Pennell DJ. Ventricular volume and mass by CMR. J Cardiovasc Magn Reson. 2002;4(4):507–13. Cerca con Google

58. Pennell DJ. Cardiovascular magnetic resonance. Circulation. 2010;121(5):692–705. Cerca con Google

59. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et Cerca con Google

al. Standardized image interpretation and post processing in cardiovascular magnetic resonance  : Society for Cardiovascular Magnetic Resonance ( SCMR ) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Cerca con Google

Reson 2013;15(1):1. Cerca con Google

60. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, et al. Structural Cerca con Google

Basis of End-Stage Failure in Ischemic Cardiomyopathy in Humans. Circulation Cerca con Google

1994; 89: 151-63. Cerca con Google

61. Baritussio A, Scatteia A, Bucciarelli-Ducci C. Role of cardiovascular magnetic Cerca con Google

resonance in acute and chronic ischemic heart disease. Int J Cardiovasc Imaging Cerca con Google

2017; doi: 10.1007/s10554-017-1116-0. [Epub ahead of print]. Cerca con Google

62. Dastidar AG, Rodrigues JCL, Baritussio A, Bucciarelli-ducci C. MRI in the Cerca con Google

assessment of ischaemic heart disease. Heart. 2016;102:239–52. Cerca con Google

63. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen E, Simonetti O, et al. Relationship of Cerca con Google

MRI Dealyed Contrast Enhancement to Irreversible Injury, Infarct Age, and Cerca con Google

Contractile Function. Circulation. 1999;(100):1992–2002. Cerca con Google

64. Ibrahim T, Bülow HP, Hackl T, Hörnke M, Nekolla SG, Breuer M, et al. Diagnostic Cerca con Google

Value of Contrast-Enhanced Magnetic Resonance Imaging and Single-Photon Emission Computed Tomography for Detection of Myocardial Necrosis Early After Acute Myocardial Infarction. J Am Coll Cardiol 2007;49(2): 208-16. Cerca con Google

65. Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, et al. Evaluation of Techniques for the Quantification of Myocardial Scar of Differing Etiology Using Cardiac Magnetic Resonance. JACC Cardiovasc Imaging 2011;4(2):150–6. Cerca con Google

66. Eitel I, Friedrich MG. T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson [Internet]. BioMed Central Ltd; 2011;13(1):13. Cerca con Google

67. Kerensky RA, Wade M, Deedwania P, Boden WE, Pepine CJ. Revisiting the Culprit Lesion in Non – Q-Wave Myocardial Infarction  : Results From the VANQWISH Trial Angiographic Core Laboratory. J Am Coll Cardiol 2002;39(9): 1456-63. Cerca con Google

68. Raman SV, Simonetti OP, Winner MW, Dickerson JA, He X, Mazzaferri EL, et al. Cerca con Google

Cardiac Magnetic Resonance With Edema Imaging Identifies Myocardium at Risk and Predicts Worse Outcome in Patients With Non – ST-Segment Elevation Acute Coronary Syndrome. J Am Coll Cardiol 2010;55(22):2480–8. Cerca con Google

69. Walls M, Verhaert D, Raman SV. Myocardial edema imaging in acute coronary syndromes. J Magn Reson Imaging. 2011;34(6):1243–50. Cerca con Google

70. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, et al. Impact of Primary Coronary Angioplasty Delay on Myocardial Salvage, Infarct Size, and Microvascular Damage in Patients With ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol 2009;54(23):2145–53. Cerca con Google

71. Aletras AH, Tilak GS, Natanzon A, Hsu L, Gonzalez FM, Hoyt RF, et al. Retrospective Determination of the Area at Risk for Reperfused Acute Myocardial Infarction With T2-Weighted Histopathological and Displacement Encoding With Stimulated Echoes ( DENSE ) Functional Validations. Circulation 2006; 113: 1856- 70. Cerca con Google

72. Dastidar AG, Rodrigues JCL, Ahmed N, Baritussio A, Bucciarelli-Ducci C. The Role of Cardiac MRI in Patients with Troponin-Positive Chest Pain and Unobstructed Coronary Arteries. Curr Cardiovasc Imaging Rep 2015; 8: 28. Cerca con Google

73. Gallagher S, Jones DA, Anand V, Mohiddin S. Diagnosis and management of patients with acute cardiac symptoms , troponin elevation and culprit-free angiograms. Heart 2012;98: 974–81. Cerca con Google

74. Monney PA, Sekhri N, Burchell T, Knight C, Davies C, Deaner A, et al. Acute myocarditis presenting as acute coronary syndrome  : role of early cardiac magnetic resonance in its diagnosis. Heart 2011; 97: 1312–8. Cerca con Google

75. Tornvall P, Gerbaud E, Behaghel A, Chopard R, Collste O, Laraudogoitia E. Myocarditis or “ true ” infarction by cardiac magnetic resonance in patients with a clinical diagnosis of myocardial infarction without obstructive coronary disease  : A Cerca con Google

meta-analysis of individual patient data. Atherosclerosis 2015; 241: 87-91. Cerca con Google

76. Caforio ALP, Pankuweit S, Arbustini E, Basso C, Heymans S, Gimeno-blanes J, et Cerca con Google

al. Current state of knowledge on aetiology , diagnosis , management , and therapy of myocarditis  : a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013; 34: 2636–48. Cerca con Google

77. Laissy JP, Hyafil F, Feldman LJ, Juliard JM, Schouman-Claeys E, Ste PG, et al. Differentiating Acute Myocardial Infarction from Myocarditis  : Diagnostic Value of Early- and Delayed-Perfusion Cardiac MR imaging. Radiology 2005; 237: 75–82. Cerca con Google

78. Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications. JACC Cardiovasc Imaging. 2015;8(12):1444–60. Cerca con Google

79. Simpson RM, Keegan J, Firmin DN. MR assessment of regional myocardial mechanics. J Magn Reson Imaging. 2013;37(3):576–99. Cerca con Google

80. Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Failure Reviews 2017;22(4):465–76. Cerca con Google

81. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human Heart: Tagging with MR Imaging -- a Method for Noninvasive Assessment of Myocardlal Motion. Cardiac Radiology1988; 169: 59-63. Cerca con Google

82. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: Displacement Encoding with Stimulated Echoes in Cardiac Functional MRI. J Magn Reson 1999; 137: 247-52. Cerca con Google

83. Jung B, Zaitsev M, Hennig J, Markl M. Navigator gated high temporal resolution tissue phase mapping of myocardial motion. Magn Reson Med. 2006;55(4):937–42. Cerca con Google

84. Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 2016;1–12. Cerca con Google

85. Schuster A, Stahnke VC, Unterberg-Buchwald C, Kowallick JT, Lamata P, Steinmetz Cerca con Google

M, et al. Cardiovascular magnetic resonance feature- tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility. Clin Radiol. 2015;70:989–98. Cerca con Google

86. Onishi T, Saha SK, Delgado-Montero A, Ludwig DR, Onishi T, Schelbert EB, et al. Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr 2015; 28(5): 587–96. Cerca con Google

87. Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, et al. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 2013; 15: 95. Cerca con Google

88. Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: concepts and clinical application. Circ Cardiovasc Imaging 2016;9(4):e004077. doi: 10.1161/CIRCIMAGING.115.004077. Cerca con Google

89. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: How useful is it in clinical decision making? Eur Heart J 2016; 37: 1196-1207. Cerca con Google

90. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014;100(21):1673–80. Cerca con Google

91. Altiok E, Neizel M, Tiemann S, Krass V, Becker M, Zwicker C, et al. Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: Comparison of strain-encoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2013; 14: 570-8. Cerca con Google

92. Aly MFA, Kleijn SA, Menken-Negroiu RF, Robbers LF, Beek AM, Kamp O. Three- dimensional speckle tracking echocardiography and cardiac magnetic resonance for Cerca con Google

left ventricular chamber quantification and identification of myocardial transmural Cerca con Google

scar. Neth Heart J 2016; 24: 600-8. Cerca con Google

93. Shah AM, Solomon SD. Myocardial deformation imaging: Current status and future Cerca con Google

directions. Circulation. 2012; 125: e244-8. Cerca con Google

94. Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P, et al. Prediction of Cerca con Google

arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ Cardiovasc Imaging. 2012;5:448–56. Cerca con Google

95. McComb C, Carrick D, McClure JD, Woodward R, Radjenovic A, Foster JE, et al. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction . Int J Cardiovasc Imaging. 2015;31(6):1201–9. Cerca con Google

96. Taylor RJ, Umar F, Lin ELS, Ahmed A, Moody WE, Mazur W, et al. Mechanical effects of left ventricular midwall fibrosis in non-ischemic cardiomyopathy. J Cardiovasc Magn Reson 2016; 18: 1. Cerca con Google

97. Anthony AH, Tilak GS, Hsu LY, Arai AE. Heterogeneity of Intramural Function in Hypertrophic Cardiomyopathy: Mechanistic Insights from MRI Late Gadolinium Enhancement and High-resolution DENSE Strain Maps. Circ Cardiovasc Imaging. 2011;4(4):425–34. Cerca con Google

98. Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, et al. Minimizing Risk of Nephrogenic systemic fibrosis in Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson. 2012;14(1):31. Cerca con Google

99. Baritussio A, Zorzi A, Ghosh Dastidar A, Susana A, Mattesi G, Rodrigues JCL, et al. Out of hospital cardiac arrest survivors with inconclusive coronary angiogram: Impact of cardiovascular magnetic resonance on clinical management and decision- Cerca con Google

making. Resuscitation 2017;116:91–7. Cerca con Google

100. Anyfantakis ZA, Baron G, Aubry P, Himbert D, Feldman LJ, Juliard JM, et al. Acute Cerca con Google

coronary angiographic findings in survivors of out-of-hospital cardiac arrest. Am Cerca con Google

Heart J. 2009;157:312–8. Cerca con Google

101. Preston LM, Calvin JE, Class S, Parrillo JE KL. Coronary angiographic morphology Cerca con Google

in unstable angina: comparative observations of culprit lesions in saphenous vein Cerca con Google

graft versus native coronary arteries. J Invasive Cardiol. 2002;14(2):81–6. Cerca con Google

102. Abbasi S a, Ertel A, Shah R V, Dandekar V, Chung J, Bhat G, et al. Impact of Cerca con Google

cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. J Cardiovasc Magn Reson [Internet]. Journal of Cardiovascular Magnetic Resonance; 2013;15(1):89. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3851265&tool=pmcentrez &rendertype=abstract Vai! Cerca con Google

103. White JA, Fine NM, Gula L, Yee R, Skanes A, Klein G, et al. Utility of Cardiovascular Magnetic Resonance in Identifying Substrate for Malignant Ventricular Arrhythmias. 2016;12–21. Cerca con Google

104. Almehmadi F, Joncas SX, Nevis I, Zahrani M, Bokhari M, Stirrat J, et al. Prevalence of myocardial fibrosis patterns in patients with systolic dysfunction: prognostic significance for the prediction of sudden cardiac arrest or appropriate implantable cardiac defibrillator therapy. Circ Cardiovasc Imaging [Internet]. 2014;7:593–600. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24902587 Vai! Cerca con Google

105. Perazzolo Marra M, De Lazzari M, Zorzi A, Migliore F, Zilio F, Calore C, et al. Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm [Internet]. Elsevier; 2014;11(5):856–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24440822 Vai! Cerca con Google

106. Klem I, Shah DJ, White RD, Pennell DJ, Van Rossum AC, Regenfus M, et al. Prognostic value of routine cardiac magnetic resonance assessment of left ventricular ejection fraction and myocardial damage: An international, multicenter study. Circ Cardiovasc Imaging. 2011;4(6):610–9. Cerca con Google

107. Estner HL, Zviman MM, Herzka D, Miller F, Castro V, Nazarian S, et al. The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity , visualized by magnetic resonance imaging. HRTHM [Internet]. Elsevier Inc.; 2011;8(12):1942–9. Available from: http://dx.doi.org/10.1016/j.hrthm.2011.07.027 Vai! Cerca con Google

108. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, et al. Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction. 2007;2006– 14. Cerca con Google

109. Bucciarelli-Ducci C, Baritussi A, Auricchio A. Cardiac MRI Anatomy and Function as a Substrate for Arrhythmias. Europace [Internet]. 2016;18(suppl 4):iv130-iv135. Available from: http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdf%5Cnhttp://www .ncbi.nlm.nih.gov/pubmed/27899565%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/2801 1840 Vai! Cerca con Google

110. Arenjia N, Riffel JH, Fritz T, André F, Aus dem Siepen F, Mueller-Hennessen M, et al. Diagnostic and Prognostic Value of Long-Axis Strain and Myocardial Contraction Fraction Using Standard Cardiovascular MR Imaging in Patients with Nonischemic Dilated. Radiology 2017;283(3):681–691. Cerca con Google

111. Mordi I, Bezerra H, Carrick D, Tzemos N. The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by cmr. JACC Cardiovasc Imaging. 2015;8(5):540–9. Cerca con Google

112. Xu H, Chen J, Yang Z, Li R. Early Marker of Regional Left Ventricular Deformation in Cerca con Google

Patients With Hypertrophic Cardiomyopathy Evaluated by MRI Tissue Tracking  : The Cerca con Google

Effects of Myocardial Hypertrophy and Fibrosis. 2017;1–9. Cerca con Google

113. Boyé P, Abdel-Aty H, Zacharzowsky U, Bohl S, Schwenke C, Van Der Geest RJ, et Cerca con Google

al. Prediction of life-threatening arrhythmic events in patients with chronic myocardial infarction by contrast-enhanced CMR. JACC Cardiovasc Imaging [Internet]. Elsevier Inc.; 2011;4(8):871–9. Available from: http://dx.doi.org/10.1016/j.jcmg.2011.04.014 Vai! Cerca con Google

114. Rijnierse MT, Allaart CP, Haan S De, Harms HJ, Huisman MC, Beek AM, et al. Non- invasive imaging to identify susceptibility for ventricular arrhythmias in ischaemic left ventricular dysfunction. 2016;1–9. Cerca con Google

115. Klem, Igor, Weinstaf, Jonathan, Bahnson, Tristram, Hegland, Don, Kim, Han, Hayes, Brenda, Parker, Michael, Judd, Robert, Kim R. Assessment of Myocardial Scarring Improves Risk Stratification in Patients Evaluated for Cardiac Defibrillator Implantation. J Am Coll Cardiol. 2012;(60):408–20. Cerca con Google

116. Dawson DK, Hawlisch K, Prescott G, Roussin I, Di Pietro E, Deac M, et al. Prognostic role of CMR in patients presenting with ventricular arrhythmias. JACC Cardiovasc Imaging [Internet]. Elsevier Inc.; 2013;6(3):335–44. Available from: http://dx.doi.org/10.1016/j.jcmg.2012.09.012 Vai! Cerca con Google

117. Disertori M, Rigoni M, Pace N, Casolo G, Masè M, Gonzini L, et al. Myocardial Fibrosis Assessment by LGE Is a Powerful Predictor of Ventricular Tachyarrhythmias in Ischemic and Nonischemic LV Dysfunction: A Meta-Analysis. JACC Cardiovasc Imaging. 2016;9(9):1046–55. Cerca con Google

118. Nguyen BL, Capotosto L, Persi A, Placanica A, Rafique A, Piccirillo G, et al. Global and regional left ventricular strain indices in post-myocardial infarction patients with ventricular arrhythmias and moderately abnormal ejection fraction. Ultrasound Med Biol. 2015;41(2):407–17. Cerca con Google

119. Chimura M, Onishi T, Tsukishiro Y, Sawada T, Kiuchi K, Shimane A, et al. Cerca con Google

Longitudinal strain combined with delayed-enhancement magnetic resonance improves risk stratification in patients with dilated cardiomyopathy. Heart [Internet]. 2017;103(9):679–86. Available from: http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2016-309746 Vai! Cerca con Google

120. Tang X, Yu S, Yu Y, Ren H, Li S, Zhou L, et al. Left ventricular myocardial strain in ventricular arrhythmia without structural heart disease using cardiac magnetic resonance. Am J Transl Res [Internet]. 2017;9(6):3006–16. Available from: www.ajtr.org Vai! Cerca con Google

121. Van Welsenes GH, Van Rees JB, Borleffs CJW, Cannegieter SC, Bax JJ, Van Erven L, et al. Long-term follow-up of primary and secondary prevention implantable cardioverter defibrillator patients. Europace. 2011;13(3):389–94. Cerca con Google

122. file:///Users/annabaritussio/Documents/Bristol Workshop/SD/Papers/Letti/Epidemiology/LOng-term follow-up of primary and secondary prevention ICD patients Welsenes Europace 2011.pdfSingla I, Hreybe H, Saba S. Risk of death and recurrent ventricular arrhythmias in survivors of cardiac arrest concurrent with acute myocardial infarction. Indian Pacing Electrophysiol J. 2008;8(India RF-14 LG-English PT-Journal: Article DD-20080328):5–13. Cerca con Google

123. Klem I, Shah DJ, White RD, Pennell DJ, Van Rossum AC, Regenfus M, et al. Prognostic value of routine cardiac magnetic resonance assessment of left ventricular ejection fraction and myocardial damage: An international, multicenter study. Circ Cardiovasc Imaging. 2011;4:610–9. Cerca con Google

124. Vo HQ, Marwick TH, Negishi K. MRI-Derived Myocardial Strain Measures in Normal Subjects. JACC Cardiovasc Imaging 2017; pii: S1936-878X(17)30253-X. doi: 10.1016/j.jcmg.2016.12.025. Cerca con Google

125. Cai L, Addetia K, Medvedofsky D, Spencer KT. Myocardial strain may be useful in differentiating Takotsubo cardiomyopathy from left anterior descending coronary Cerca con Google

artery ischemia. Int J Cardiol 2017;230:359–63. Cerca con Google

126. Tibrewala A, Freed BH, Akhter N. Importance of temporal changes in myocardial Cerca con Google

strain in Takotsubo cardiomyopathy. BMJ Case Rep 2017; pii: bcr-2017-220719. Cerca con Google

doi: 10.1136/bcr-2017-220719. Cerca con Google

127. Chen Z, Sohal M, Voigt T, Sammut E, Tobon-gomez C, Child N, et al. Myocardial Cerca con Google

tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non – ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Hear Rhythm 2015;12(4):792– 801. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record